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Abstract: In this paper, we suggest the Rishi transform, which may be used to find the analytic (exact) 

solution to multi-high-order linear fractional differential equations, where the Riemann-Liouville and 

Caputo fractional derivatives are used. We first developed the Rishi transform of foundational 

mathematical functions for this purpose and then described the important characteristics of the Rishi 

transform, which may be applied to solve ordinary differential equations and fractional differential 

equations. Following that, we found an exact solution to a particular example of fractional differential 

equations. We looked at four numerical problems and solved them all step by step to demonstrate the 

value of the Rishi transform. The results show that the suggested novel transform, "Rishi Transform," 

yields exact solutions to multi-higher-order fractional differential equations without doing complicated 

calculation work. 
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1. Introduction 

A strong tool for explaining the memory and inherited characteristics of diverse components and 

methods is fractional calculus [1–4]. It may be used in a variety of scientific and technical domains, 

including biology, chemistry, acoustics, fluid mechanics, anomalous diffusion, viscoelasticity and 

others. In these applications, a family of integro-differential equations with singularities involved 

fractional differential equations [5,6]. Several analytic or numerical approaches to solving fractional 

differential equations have already been published, including [7–10]. 

Due to their three key characteristics of simplicity, accuracy and providing results without the 

need for time-consuming calculation work, integral transforms are currently researchers' first choice 

among other mathematical techniques to determine the answers to problems in science, social science 

and engineering [11]. Fractional calculus is also useful in engineering and mathematical modeling [12]. 

Moreover, the fractional approach is useful in chemistry and using a meshless technique, a numerical 

solution of fractional reaction-convection-diffusion is shown for modeling PEM fuel cells [13,14]. 

Some new integral transformations are developed to solve differential equations and fractional 

differential equations, such as Kamal  transformation [15], Aboodh transformation [16], Sumudu 

transformation [17] and Rishi transformation [18], which are a few examples of recent developments 

in integral transforms and fractional differential equations. The renowned issues were examined by 

Aggarwal and other scholars [19] using a variety of integral transforms. 

Our goal of this article is to create the "Rishi Transform", a novel integral transform with essential 

qualities for fractional and fractional differential equations, and to ascertain the solution of the 

fractional differential equations. The "Rishi transform" that has been suggested is superior to the other 

transforms that have already been developed since it offers the precise solutions to the issues without 

requiring time-consuming computations. Laplace transform, a well-known and often used integral 

transform, and the Rishi transform are dualistic. 

We want to generate fractional formulas for another transformation. Thus, just as most 

transformations have them, we have derived the fractional formula of the transformation and use it to 

analyze some problems. Other transformations for fractional integrals and derivatives were derived, 

and we studied the Rishi transform and derived fractional formulas and it is applications. 

2. Basic definitions and properties 

In this section, provides some fundamental definitions and properties of fractional calculus theory, 

which will be used in this study.  

Definition 2.1 (see [7,20]). The Riemann-Liouville integral operator of fractional order 𝛼 > 0  is 

defined as:  

𝐼𝑡
𝛼𝑓(𝑡) =

1

𝛤(𝛼)
∫  (𝑡 − 𝑠)𝛼−1𝑡

𝑎
𝑓(𝑠)𝑑𝑠,      − ∞ ≤ 𝑎 < 𝑡 < ∞,    (1) 

where 𝛤(𝛼) is Gamma function defined by  𝛤(𝛼) = ∫ 𝑡𝛼−1∞

0
𝑒−𝑡𝑑𝑡. 
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Definition 2.2 (see [7,20]). The Riemann-Liouville differential operator of fractional order 𝛼 > 0, and 

𝑚 = ⌈𝛼⌉ is defined as: 

𝐷𝑎
𝑅𝐿

𝑡
𝛼𝑓(𝑡) =

1

𝛤(𝑚−𝛼)

𝑑𝑚

𝑑𝑡𝑚 ∫  (𝑡 − 𝑠)𝑚−𝛼−1𝑡

𝑎
 𝑓(𝑠)𝑑𝑠..    (2) 

Definition 2.3 (see [7,20]). The Liouville -Caputo differential operator of fractional order 𝛼 > 0 , 

and 𝑚 = ⌈𝛼⌉, and 𝑓(𝑡) be 𝑚 −times differentiabl function, 𝑡 > 𝑎 is defined as:  

𝐷𝑎
𝐿𝐶

𝑡
𝛼𝑓(𝑡) =

1

𝛤(𝑚−𝛼)
∫ (𝑡 − 𝑠)𝑚−𝛼−1𝑡

𝑎
 (

𝑑

𝑑𝑠
)

𝑚
𝑓(𝑠)𝑑𝑠.      (3) 

Remark (see [21–25]). Some basic properties of fractional calculus are as follows: 

1. The fractional (integral and differential) Operator is linear operator. 

2. Composition between two Riemann-Liouville integration of orders 𝛼 and 𝛽 , is defined as 

follows: 

𝐼𝑡
𝛼

𝑎
  𝐼𝑡

𝛽
𝑎
 𝑓(𝑡) =  𝐼𝑡

𝛽
𝑎
  𝐼𝑡

𝛼
𝑎
 𝑓(𝑡) =  𝐼𝑡

𝛼+𝛽
𝑓(𝑡).    (4) 

3. If 𝑘 ≥ 𝛼, for 𝑓(𝑡) ∈ 𝐶[𝑎, 𝑏], and at every point 𝑡 ∈ [𝑎, 𝑏], then  

𝐷𝑎
𝑅𝐿

𝑡
𝑘( 𝐼𝑡

𝛼
𝑎
 𝑓(𝑡)) = 𝐷𝑎

𝑅𝐿
𝑡
𝑘−𝛼𝑓(𝑡).      (5) 

The relation is done.  

4. Composition between fractional (differentiation and integration) of Liouville-Caputo operator 

of order 𝛼, is defined as follows:  

𝐷𝑎
𝐿𝐶

𝑡
𝑘( 𝐼𝑡

𝛼
𝑎
 𝑓(𝑡)) = 𝑓(𝑡).         (6) 

5. Composition between fractional (integration and differentiation) of Liouville -Caputo operator 

of order 𝛼, and 𝑚 = ⌈𝛼⌉ is defined as follows:  

𝐼𝑡
𝛼

𝑎
 ( 𝐷𝑎

𝐿𝐶
𝑡
𝑘𝑓(𝑡)) = 𝑓(𝑡) − ∑

(𝑡−𝑎)𝑘

𝑘!

𝑚−1
𝑘=0  𝑓(𝑘)(𝑎).     (7) 

In general,  𝐷𝑎
𝐿𝐶

𝑡
𝑘( 𝐼𝑡

𝛼
𝑎
 𝑓(𝑡)) ≠ 𝐼𝑡

𝛼
𝑎
 ( 𝐷𝑎

𝐿𝐶
𝑡
𝑘𝑓(𝑡)). 

6. Apply fractional integral and differential of Liouville-Caputo operator of function 𝑡𝑛, 𝑛 ≥ 0, 

we get:              𝐼𝑡
𝛼

𝑎
 𝑡𝑛 =

𝛤(1+𝑛)

𝛤(1+𝑛+𝛼)
𝑡𝑛+𝛼 𝑎𝑛𝑑 𝐷𝑎

𝐿𝐶
𝑡
𝑘𝑡𝑛 =

𝛤(1+𝑛)

𝛤(1+𝑛−𝛼)
𝑡𝑛−𝛼 .   (8) 

3. Fundamental properties of Rishi transform 

In this section, we have defined the Rishi transform and its properties (see [11]). Using several 

other studies, we will learn an introduction to the fractional formula of the new transform: 

Definition 3.1 [Rishi transforms, 11]. The piecewise continuous function of exponential order using 

the Rishi transform 𝑓(𝑡) defined in the interval [0, ∞), is given by: 

𝑅{𝑓(𝑡)} = (
𝑝

𝑞
) ∫  𝑓(𝑡)𝑒

−(
𝑞

𝑝
)𝑡∞

0
𝑑𝑡 = 𝐹(𝑞, 𝑝),         𝑞 > 0, 𝑝 > 0. 



3801 

AIMS Mathematics Volume 9, Issue 2, 3798–3809. 

Property 1 (see [24]). Some fundamental functions and apply the Rishi transformation: 

𝑓(𝑡), 𝑡 > 0 𝑅{𝑓(𝑡)} = 𝐹(𝑞, 𝑝) 𝑓(𝑡), 𝑡 > 0 𝑅{𝑓(𝑡)} = 𝐹(𝑞, 𝑝) 

1 
(

𝑝

𝑞
)

2

 
𝑠𝑖𝑛𝑘𝑡 𝑘𝑝3

𝑞(𝑞2 + 𝑘2𝑝2)
 

𝑒𝑘𝑡 
𝑝2

𝑞(𝑞 − 𝑘𝑝)
 

𝑐𝑜𝑠𝑘𝑡 𝑝2

(𝑞2 + 𝑝2𝑘2)
 

𝑡𝛽 , 𝛽 ∈ 𝑁 
𝛽! (

𝑝

𝑞
)

𝛽+2

 
𝑠𝑖𝑛ℎ𝑘𝑡 𝑘𝑝3

𝑞(𝑞2 − 𝑘2𝑝2)
 

𝑡𝛽 , 𝛽 > −1, 𝛽 ∈ 𝑅 
𝛤(𝛽 + 1) (

𝑝

𝑞
)

𝛽+2

 
𝑐𝑜𝑠ℎ𝑘𝑡 𝑝2

(𝑞2 − 𝑝2𝑘2)
 

Property 2 (see [24]). Some fundamental functions, and apply inverse the Rishi transformation: 

𝐹(𝑞, 𝑝) 𝑅−1{𝐹(𝑞, 𝑝)} = 𝑓(𝑡) 𝐹(𝑞, 𝑝) 𝑅−1{𝐹(𝑞, 𝑝)} = 𝑓(𝑡) 

(
𝑝

𝑞
)

2

 
1 𝑘𝑝3

𝑞(𝑞2 + 𝑘2𝑝2)
 

𝑠𝑖𝑛𝑘𝑡 

𝑝2

𝑞(𝑞 − 𝑘𝑝)
 

𝑒𝑘𝑡 𝑝2

(𝑞2 + 𝑝2𝑘2)
 

𝑐𝑜𝑠𝑘𝑡 

𝛽! (
𝑝

𝑞
)

𝛽+2

 
𝑡𝛽 , 𝛽 ∈ 𝑁 𝑘𝑝3

𝑞(𝑞2 − 𝑘2𝑝2)
 

𝑠𝑖𝑛ℎ𝑘𝑡 

𝛤(𝛽 + 1) (
𝑝

𝑞
)

𝛽+2

 
𝑡𝛽 , 𝛽 > −1, 𝛽 ∈ 𝑅 𝑝2

(𝑞2 − 𝑝2𝑘2)
 

𝑐𝑜𝑠ℎ𝑘𝑡 

Property 3 [Convolution property, 21]. If 𝑅{𝑓(𝑡)} = 𝐹(𝑞, 𝑝) and 𝑅{𝑔(𝑡)} = 𝐺(𝑞, 𝑝), then 

𝑅{𝑓(𝑡) ∗ 𝑔(𝑡)} = (
𝑞

𝑝
) 𝐹(𝑞, 𝑝) 𝐺(𝑞, 𝑝), 

where * denotes convolution of 𝑓 and 𝑔 , then 𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑡 − 𝑠)
𝑡

0
 𝑔(𝑠)𝑑𝑠. 

Property 4 (see [11]). The Rishi transform operator and inverse Rishi transform is linear operator. 

1. Rishi Transform is linear operator 

𝑅{∑ 𝑘𝑖𝑓𝑖(𝑡)𝑛
𝑖=0 } = ∑ 𝑘𝑖𝑅{𝑓𝑖(𝑡)}𝑛

𝑖=0  .     Where 𝑘𝑖 are arbitrary constant. 

2. Inverse Rishi Transform is linear operator 

If 𝑓𝑖(𝑡) = 𝑅−1{𝐹𝑖(𝑞, 𝑝)}, then 𝑅−1{∑ 𝑘𝑖𝐹𝑖(𝑞, 𝑝)𝑛
𝑖=0 } = ∑ 𝑘𝑖𝑅−1{𝐹𝑖(𝑞, 𝑝)}𝑛

𝑖=0 , where 𝑘𝑖 are arbitrary 

constant. 

4. Rishi transform of fractional integrals and derivatives 

In this section, we derived fractional formula of Rishi transform for fractional integral and 

fractional derivative using those properties. 

Property 5: (see [11]). The Rishi transformation for integer order derivative of 𝑓(𝑡) is: 

𝑅{𝑓(𝑚)(𝑡)} = (
𝑞

𝑝
)

𝑚
𝐹(𝑞, 𝑝) − ∑ (

𝑞

𝑝
)

𝑘−1
𝑚−1
𝑘=0  𝑓(𝑚−1−𝑘)(0), 
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It is easy prove by Mathematical Induction. 

Theorem 4.1: If fractional order 𝛼 ∈ [𝑚 − 1, 𝑚) , and apply the Rishi transform of the fractional 

integral is            𝑅{𝐼𝑡
𝛼𝑓(𝑡)} = (

𝑝

𝑞
)

𝛼
𝐹(𝑞, 𝑝). 

Proof: From definition of Riemann-Liouville integral of Eq (1), and apply Rishi transform 

𝑅{𝐼𝑡
𝛼𝑓(𝑡)} = 𝑅{ 𝐷0

𝑅𝐿
𝑡
−𝛼𝑓(𝑡)} = 𝑅 {

1

𝛤(𝛼)
∫  (𝑡 − 𝑠)𝛼−1𝑡

0
𝑓(𝑠)𝑑𝑠} =

1

𝛤(𝛼)
𝑅 {∫ (𝑡 − 𝑠)𝛼−1𝑡

0
 𝑓(𝑠)𝑑𝑠} .  

By using properties (3), and (1), we get: 

𝑅{𝐼𝑡
𝛼𝑓(𝑡)} =

1

𝛤(𝛼)
 
𝑞

𝑝
𝑅{𝑡𝛼−1}𝐹(𝑞, 𝑝) =

1

𝛤(𝛼)

𝑞

𝑝
(

𝑝

𝑞
)

𝛼+1
𝛤(𝛼)𝐹(𝑞, 𝑝). 

Hence   𝑅{𝐼𝑡
𝛼𝑓(𝑡)} = (

𝑝

𝑞
)

𝛼
𝐹(𝑞, 𝑝). 

Theorem 4.2: If 𝑓(𝑡) is a function and 𝐹(𝑞, 𝑝) is a Rishi transform for Reimann-Liouville fractional 

derivative of order 𝛼 > 0 is: 

𝑅{ 𝐷0
𝑅𝐿

𝑡
𝛼𝑓(𝑡)}  = (

𝑞

𝑝
)

𝛼
𝐹(𝑞, 𝑝) − ∑ (

𝑞

𝑝
)

𝑘−1
𝑚−1
𝑘=0   [ 𝐷0

𝑅𝐿
𝑡
𝛼−𝑘−1𝑓(𝑡)]𝑡=0. 

Proof: From definition of Riemann-Liouville fractional derivative, we have: 

𝑅{ 𝐷0
𝑅𝐿

𝑡
𝛼𝑓(𝑡)} = 𝑅{𝐷𝑡

𝑚𝐼𝑡
𝑚−𝛼𝑓(𝑡)}, 

Now, from property (5), and apply Rishi transform of above relation, we get: 

𝑅{𝐷𝑡
𝑚𝐼𝑡

𝑚−𝛼𝑓(𝑡)} = (
𝑞

𝑝
)

𝑚
𝑅{𝐼𝑡

𝑚−𝛼𝑓(𝑡)} − ∑ (
𝑞

𝑝
)

𝑘−1
𝑚−1
𝑘=0  𝐷𝑡

𝑚−𝑘−1[𝐼𝑡
𝑚−𝛼𝑓(𝑡)]𝑡=0, 

Using Theorem (4.1), and Eq (5), we get: 

= (
𝑞

𝑝
)

𝑚
(

𝑝

𝑞
)

𝑚−𝛼
𝐹(𝑞, 𝑝) − ∑ (

𝑞

𝑝
)

𝑘−1
𝑚−1
𝑘=0   [ 𝐷0

𝑅𝐿
𝑡
𝛼−𝑘−1𝑓(𝑡)]𝑡=0. 

Hence, 

𝑅{ 𝐷0
𝑅𝐿

𝑡
𝛼𝑓(𝑡)}  = (

𝑞

𝑝
)

𝛼
𝐹(𝑞, 𝑝) − ∑ (

𝑞

𝑝
)

𝑘−1
𝑚−1
𝑘=0   [ 𝐷0

𝑅𝐿
𝑡
𝛼−𝑘−1𝑓(𝑡)]𝑡=0. 

Theorem 4.3: If 𝑓(𝑡) is a function and 𝐹(𝑞, 𝑝) is a Rishi transform then the Rishi transform for 

Liouville-Caputo fractional derivative of order 𝛼 > 0 is: 

𝑅{ 𝐷0
𝐿𝐶

𝑡
𝛼𝑓(𝑡)} =  (

𝑞

𝑝
)

𝛼
𝐹(𝑞, 𝑝) − ∑ (

𝑝

𝑞
)

𝑚−𝑘−𝛼+1
𝑚−1
𝑘=0  𝑓(𝑚−𝑘−1)(0). 

Proof: From definition of Liouville -Caputo fractional derivative, we have: 

𝑅{ 𝐷0
𝐿𝐶

𝑡
𝛼𝑓(𝑡)} = 𝑅{𝐼𝑡

𝑚−𝛼𝐷𝑡
𝑚𝑓(𝑡)}. 

Now, by using theorem (4.1), we get: 

𝑅{𝐼𝑡
𝑚−𝛼𝐷𝑡

𝑚𝑓(𝑡)} = (
𝑝

𝑞
)

𝑚−𝛼
𝑅{𝐷𝑡

𝑚𝑓(𝑡)}. 
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Also, using property (5), we get: 

(
𝑝

𝑞
)

𝑚−𝛼

𝑅{𝐷𝑡
𝑚𝑓(𝑡)} = (

𝑝

𝑞
)

𝑚−𝛼

[(
𝑞

𝑝
)𝑚𝐹(𝑞, 𝑝) − ∑ (

𝑞

𝑝
)

𝑘−1
𝑚−1

𝑘=0

 𝑓(𝑚−𝑘−1)(0)] 

= (
𝑞

𝑝
)

𝛼
𝐹(𝑞, 𝑝) − ∑ (

𝑝

𝑞
)

𝑚−𝑘−𝛼+1
𝑚−1
𝑘=0  𝑓(𝑚−𝑘−1)(0). 

Hence, 

𝑅{ 𝐷0
𝐿𝐶

𝑡
𝛼𝑓(𝑡)} =  (

𝑞

𝑝
)

𝛼
𝐹(𝑞, 𝑝) − ∑ (

𝑝

𝑞
)

𝑚−𝑘−𝛼+1
𝑚−1
𝑘=0  𝑓(𝑚−𝑘−1)(0). 

5. Illustrative examples 

In this section, contains four analytical problems for explaining the utility of Rishi transform for 

determining the exact (analytic) solution of multi-high order linear fractional differential equations of 

Riemann-Liouville and Liouville -Caputo Sense. 

Example 5.1: Consider the linear fractional differential equation for Riemann-Liouville’s fractional 

derivative 

𝐷0
𝑅𝐿

𝑡
1.3𝑓(𝑡) + 2

𝑑

𝑑𝑡
𝑓(𝑡) =

6

𝛤(2.7)
𝑡1.7 −

2

𝛤(1.7)
𝑡0.7 + 6𝑡2 − 4𝑡, 

with the initial conditions: 𝑓(0) = 0  , [ 𝐷0
𝑅𝐿

𝑡
0.3(𝑓(𝑡))]𝑡=0 = 0  𝑎𝑛𝑑  [ 𝐷0

𝑅𝐿
𝑡
−0.7(𝑓(𝑡))]𝑡=0 = 0. 

Solution: Apply Rishi transform for both sides, by using property (4), we get:  

𝑅{ 𝐷0
𝑅𝐿

𝑡
1.3𝑦(𝑡)} + 𝑅 {2

𝑑

𝑑𝑡
𝑦(𝑡)} = 𝑅 {

6

𝛤(2.7)
𝑡1.7 −

2

𝛤(1.7)
𝑡0.7 + 6𝑡2 − 4𝑡}. 

By using theorem (4.2) and property (1), we get: 

((
𝑞

𝑝
)

1.3
𝐹(𝑞, 𝑝) − ∑ (

𝑞

𝑝
)

𝑘−1
1
𝑘=0   [ 𝐷0

𝑅𝐿
𝑡
1.3−𝑘−1𝑓(𝑡)]𝑡=0) + 2 (

𝑞

𝑝
𝐹(𝑞, 𝑝) − ∑ (

𝑞

𝑝
)

𝑘−1
0
𝑘=0  𝑓(1−1−𝑘)(0)) =

6

𝛤(2.7)
(

𝑝

𝑞
)

3.7
𝛤(2.7) −

2

𝛤(1.7)
(

𝑝

𝑞
)

2.7
𝛤(1.7) + 12 (

𝑝

𝑞
)

4
− 4 (

𝑝

𝑞
)

3
, 

(
𝑞

𝑝
)

1.3
𝐹(𝑞, 𝑝) − (

𝑞

𝑝
)

−1
[ 𝐷0

𝑅𝐿
𝑡
0.3𝑓(𝑡)]𝑡=0 − [ 𝐷0

𝑅𝐿
𝑡
−0.7𝑓(𝑡)]𝑡=0 + 2

𝑞

𝑝
𝐹(𝑞, 𝑝) − 2 (

𝑞

𝑝
)

−1
𝑓(0) =

6 (
𝑝

𝑞
)

3.7
− 2 (

𝑝

𝑞
)

2.7
+ 12 (

𝑝

𝑞
)

4
− 4 (

𝑝

𝑞
)

3
, 

𝐹(𝑞, 𝑝) ((
𝑞

𝑝
)

0.3
+ 2) (

𝑝

𝑞
)

−1
= 6 (

𝑝

𝑞
)

3.7
+ 12 (

𝑝

𝑞
)

4
− 2 (

𝑝

𝑞
)

2.7
− 4 (

𝑝

𝑞
)

3
, 

𝐹(𝑞, 𝑝) ((
𝑞

𝑝
)

0.3
+ 2) = 6 (

𝑝

𝑞
)

4.7
+ 12 (

𝑝

𝑞
)

5
− 2 (

𝑝

𝑞
)

3.7
− 4 (

𝑝

𝑞
)

4
, 

𝐹(𝑞, 𝑝) =
1

(
𝑞

𝑝
)

0.3
+2

(6 (
𝑝

𝑞
)

5

((
𝑝

𝑞
)

−0.3
+ 2) − 2 (

𝑝

𝑞
)

4

((
𝑝

𝑞
)

−0.3
+ 2)) , 
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𝐹(𝑞, 𝑝) =
1

(
𝑞

𝑝
)

0.3
+2

(6 (
𝑝

𝑞
)

5
− 2 (

𝑝

𝑞
)

4

) ((
𝑞

𝑝
)

0.3
+ 2). 

Hence 

𝐹(𝑞, 𝑝) = 6 (
𝑝

𝑞
)

5
− 2 (

𝑝

𝑞
)

4
, 

Take Inverse Rishi transform for both sides 𝑅−1{𝐹(𝑞, 𝑝)} = 𝑅−1 {6 (
𝑝

𝑞
)

5
− 2 (

𝑝

𝑞
)

4
}. 

The exact solution is:  𝑓(𝑡) = 𝑡2(𝑡 − 1) . Furthermore, the graph of the exact solution has been 

demonstrated in Figure 1. 

Example 5.2 (see [15]). Consider the linear fractional differential equation for Riemann-Liouville’s 

fractional derivative, given by: 

𝐷0
𝑅𝐿

𝑡

1

2𝑓(𝑡) + 𝑓(𝑡) =
1

2
𝑡 +

√𝑡

√𝜋
, 

with the initial conditions: [ 𝐷0
𝑅𝐿

𝑡

−
1

2𝑓(𝑡)]
𝑡=0

= 0. 

Solution: Apply Rishi transform for both sides of problem above, using property (4), we get:  

𝑅 { 𝐷0
𝑅𝐿

𝑡

1

2𝑓(𝑡)} + 𝑅{𝑓(𝑡)} = 𝑅 {
1

2
𝑡 +

√𝑡

√𝜋
} , 

By using theorem (4.2), property (1) and definition (3.1), we can say:  

𝑅 { 𝐷0
𝑅𝐿

𝑡

1
2𝑓(𝑡)}  = (

𝑞

𝑝
)

1
2

𝐹(𝑞, 𝑝) − ∑ (
𝑞

𝑝
)

𝑘−1
0

𝑘=0

[ 𝐷0
𝑅𝐿

𝑡

1
2−𝑘−1

𝑓(𝑡)]
𝑡=0

 : 𝑅{𝑓(𝑡)} = 𝐹(𝑞, 𝑝), 

𝑅 {
1

2
𝑡 +

√𝑡

√𝜋
} =

1

2
(

𝑝

𝑞
)

3
+

1

√𝜋
(

𝑝

𝑞
)

5

2
𝛤(

3

2
), 

So, the above equation as follows: 

(
𝑞

𝑝
)

1

2
𝐹(𝑞, 𝑝) − ∑ (

𝑞

𝑝
)

𝑘−1
0
𝑘=0 [ 𝐷0

𝑅𝐿
𝑡

1

2
−𝑘−1

𝑓(𝑡)]
𝑡=0

  + 𝐹(𝑞, 𝑝) =
1

2
(

𝑝

𝑞
)

3
+

1

√𝜋
(

𝑝

𝑞
)

5

2
𝛤(

3

2
) , 

𝐹(𝑞, 𝑝) ((
𝑞

𝑝
)

1

2
+ 1) =

1

2
(

𝑝

𝑞
)

3
+

1

2
(

𝑝

𝑞
)

5

2
=

1

2
(

𝑝

𝑞
)

3
(1 + (

𝑞

𝑝
)

1

2
),  

𝐹(𝑞, 𝑝) =
1

2
(

𝑝

𝑞
)

3
. 

Now, take inverse Rishi transform for both sides, we get:  

𝑅−1{𝐹(𝑞, 𝑝)} = 𝑅−1 {
1

2
(

𝑝

𝑞
)

3
}. Hence, the exact solution is 𝑓(𝑡) =

1

2
𝑡. Furthermore, the graph of this 

exact solution has been demonstrated in Figure 2. 
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Figure 1. Exact solution of Example 5.1.          Figure 2. Exact solution of Example 5.2. 

Remark: The above example was proved by Kamal transform in [12]. Exact solutions were obtained 

from both methods. 

Example 5.3 Consider the linear fractional differential equation for Liouville -Caputo fractional 

derivative is given by: 

𝐷0
𝐿𝐶

𝑡
1.2𝑓(𝑡) + 𝐷0

𝐿𝐶
𝑡
0.2𝑓(𝑡) + 𝑓(𝑡) =

𝛤(2.5)

𝛤(1.3)
𝑡0.3 +

𝛤(2.5)

𝛤(2.3)
𝑡1.3 + 𝑡1.5 + 1,  

with the initial conditions: 𝑓(0) = 1,  𝑓′(0) = 0 . 

Solution: Take Rishi transform for both sides, by using property (4), we obtain: 

𝑅{ 𝐷0
𝐿𝐶

𝑡
1.2𝑓(𝑡) + 𝐷0

𝐿𝐶
𝑡
0.2𝑓(𝑡)} + 𝑅{𝑓(𝑡)} = 𝑅 {

𝛤(2.5)

𝛤(1.3)
𝑡0.3 +

𝛤(2.5)

𝛤(2.3)
𝑡1.3 + 𝑡1.5 + 1}. 

By using theorem (4.3), property (1) and definition (3.1), we get: 

(
𝑞

𝑝
)

1.2

𝐹(𝑞, 𝑝) − ∑ (
𝑝

𝑞
)

1.8−𝑘
1

𝑘=0

𝑓(1−𝑘)(0) + (
𝑞

𝑝
)

0.2

𝐹(𝑞, 𝑝) − ∑ (
𝑝

𝑞
)

0.8−𝑘
0

𝑘=0

𝑓(−𝑘)(0) + 𝐹(𝑞, 𝑝)

=
𝛤(2.5)

𝛤(1.3)
(

𝑝

𝑞
)

2.3

𝛤(1.3) +
𝛤(2.5)

𝛤(2.3)
(

𝑝

𝑞
)

3.3

𝛤(2.3) + 𝛤(2.5) (
𝑝

𝑞
)

3.5

+ (
𝑝

𝑞
)

2

. 

Simplify the statement 

(
𝑞

𝑝
)

1.2
𝐹(𝑞, 𝑝) − (

𝑝

𝑞
)

1.8
𝑓′(0) − (

𝑝

𝑞
)

0.8
𝑓(0) + (

𝑞

𝑝
)

0.2
𝐹(𝑞, 𝑝) − (

𝑝

𝑞
)

1.8
𝑓(0) + 𝐹(𝑞, 𝑝) =

𝛤(2.5) (
𝑝

𝑞
)

2.3
+ 𝛤(2.5) (

𝑝

𝑞
)

3.3
+ 𝛤(2.5) (

𝑝

𝑞
)

3.5
+ (

𝑝

𝑞
)

2
. 

After input initial conditions, we get: 
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𝐹(𝑞, 𝑝) ((
𝑞

𝑝
)

1.2
+ (

𝑞

𝑝
)

0.2
+ 1) = 𝛤(2.5) (

𝑝

𝑞
)

2.3
+ 𝛤(2.5) (

𝑝

𝑞
)

3.3
+ 𝛤(2.5) (

𝑝

𝑞
)

3.5
+ (

𝑝

𝑞
)

2
+ (

𝑝

𝑞
)

0.8
+

(
𝑝

𝑞
)

1.8
, 

𝐹(𝑞, 𝑝) ((
𝑞

𝑝
)

1.2
+ (

𝑞

𝑝
)

0.2
+ 1) = 𝛤(2.5) (

𝑝

𝑞
)

3.5

((
𝑞

𝑝
)

1.2
+ (

𝑞

𝑝
)

0.2
+ 1) + (

𝑝

𝑞
)

2

((
𝑞

𝑝
)

1.2
+ (

𝑞

𝑝
)

0.2
+ 1), 

𝐹(𝑞, 𝑝) ((
𝑞

𝑝
)

1.2
+ (

𝑞

𝑝
)

0.2
+ 1) = ((

𝑞

𝑝
)

1.2
+ (

𝑞

𝑝
)

0.2
+ 1) [𝛤(2.5) (

𝑝

𝑞
)

3.5
+ (

𝑝

𝑞
)

2
]. 

Implies that 𝐹(𝑞, 𝑝) =  𝛤(2.5) (
𝑝

𝑞
)

3.5
+ (

𝑝

𝑞
)

2
. 

Now, take inverse Rishi transform for both sides, we get: 

𝑅−1{𝐹(𝑞, 𝑝)} = 𝑅−1 {𝛤(2.5) (
𝑝

𝑞
)

3.5
+ (

𝑝

𝑞
)

2
}. 

Hence, the exact solution is: 𝑓(𝑡) = 1 + 𝑡√𝑡. Figure 3 demonstrates the graph of the exact solution for 

Example 5.3. 

Example 5.4 Consider the linear fractional differential equation given by 

𝐷0
𝐿𝐶

𝑡
1.9𝑓(𝑡) + 𝑓(𝑡) =

2

𝛤(1.1)
𝑡0.1 + 𝑡2 + 1, 

with the initial conditions: 𝑓(0) = 1, 𝑓′(0) = 0 

Solution: Take Rishi transform for both sides, and by property (4), we obtain: 

𝑅{ 𝐷0
𝐿𝐶

𝑡
1.9𝑓(𝑡)} + 𝑅{𝑓(𝑡)} = 𝑅 {

2

𝛤(1.1)
𝑡0.1 + 𝑡2 + 1}. 

By using theorem (4.3) and property (1), we get: 

(
𝑞

𝑝
)

1.9
𝐹(𝑞, 𝑝) − ∑ (

𝑝

𝑞
)

1.1−𝑘
1
𝑘=0 𝑓(1−𝑘)(0) + 𝐹(𝑞, 𝑝) =

2

𝛤(1.1)
(

𝑝

𝑞
)

2.1
𝛤(1.1) + (

𝑝

𝑞
)

4
𝛤(3) + (

𝑝

𝑞
)

2
, 

(
𝑞

𝑝
)

1.9
𝐹(𝑞, 𝑝) − (

𝑝

𝑞
)

1.1
𝑓′(0) − (

𝑝

𝑞
)

0.1
𝑓(0) + 𝐹(𝑞, 𝑝) = 2 (

𝑝

𝑞
)

2.1
+ 2 (

𝑝

𝑞
)

4
+ (

𝑝

𝑞
)

2
. 

After input initial conditions, we get: 

𝐹(𝑞, 𝑝) ((
𝑞

𝑝
)

1.9
+ 1) = 2 (

𝑝

𝑞
)

2.1
+ 2 (

𝑝

𝑞
)

4
+ (

𝑝

𝑞
)

2
+ (

𝑝

𝑞
)

0.1
, 

𝐹(𝑞, 𝑝) =
1

(
𝑞

𝑝
)

1.9
+1

(2 (
𝑝

𝑞
)

4

((
𝑞

𝑝
)

1.9
+ 1) + (

𝑝

𝑞
)

2

((
𝑞

𝑝
)

1.9
+ 1)), 

𝐹(𝑞, 𝑝) = (
1

(
𝑞

𝑝
)

1.9
+1

) ((
𝑞

𝑝
)

1.9
+ 1) (2 (

𝑝

𝑞
)

4
+ (

𝑝

𝑞
)

2

), 

𝐹(𝑞, 𝑝) = (
𝑝

𝑞
)

2
+ 2 (

𝑝

𝑞
)

4
. 

Finally, take inverse Rishi transform for both sides, we get: 
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𝑅−1{𝐹(𝑞, 𝑝)} = 𝑅−1 {(
𝑝

𝑞
)

2

+ 2 (
𝑝

𝑞
)

4

} 

Hence, the exact solution is: 𝑓(𝑡) = 1 + 𝑡2.  In addition, the graph of the exact solution has been 

demonstrated in Figure 4 for Example 5.4. 

 

Figure 3. Exact solution of Example 5.3.        Figure 4. Exact solution of Example 5.4. 

In this work, we proposed a transform for solving the fractional differential equations, but more 

studies will be required for solving the real-world problems modeled as fractional differential equations 

using our proposed method. 

6. Conclusions 

After analyzing the literature regarding fractional differential equations (FDEs), it can be 

concluded that the Rishi transformation method is a feasible approach for solving such equations. This 

method involves transforming the FDEs into a simpler form. The Rishi transformation method offers 

several advantages, such as the reduction of the order of the equation, simplification of the form of the 

equation and the ability to solve the FDEs with constant coefficients. What we have been able to 

achieve is that we have derived Rishi transform formulas for fractional derivation that can be used for 

later research. It is an applicable method for the analysis of many types of fractional differential 

equations, and several studies have shown that the Rishi transformation method is an effective tool for 

solving different types of FDEs.  

In conclusion, the Rishi transformation method is a promising method for solving FDEs, and with 

further research and development, it can become an even more efficient and effective tool for solving 

increasingly complex FDEs. 

Concerning future work, we plan to extend the numerical schemes presented here to apply them 

to other types of fractional differential equations, including exponential and Mittag-Leffler in kernels, 

to establish similar results (visit [21,26] to see these operators). 
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