AIMS Mathematics, 8(9): 22319-22337.
DOI: 10.3934/math.20231138
AIMS Mathematics Received: 07 May 2023

Revised: 02 July 2023

Accepted: 10 July 2023
http://www.aimspress.com/journal/Math Published: 13 July 2023

Research article

Complete integral convergence for weighted sums of negatively dependent
random variables under sub-linear expectations

Lunyi Liu and Qunying Wu*
College of Science, Guilin University of Technology, Guilin 541006, China
* Correspondence: Email: wqy666@glut.edu.cn; Tel: +8615877031406.

Abstract: In the paper, the complete convergence and complete integral convergence for weighted
sums of negatively dependent random variables under the sub-linear expectations are established. The
results in the paper extend some complete moment convergence theorems from the classical probability
space to the situation of sub-linear expectation space.

Keywords: negatively dependent; complete convergence; complete integral convergence; weighted
sums; sub-linear expectation
Mathematics Subject Classification: 60F15

1. Introduction

Probability limit theory is an important research topic in mathematical statistics that has found
extensive application in the fields of mathematics, statistics, and finance. However, the limitations of
classical limit theory have become increasingly apparent with the application of limit theory in
finance, risk measurement and other areas. In situations where the mathematical model is
characterized by uncertainty, the analysis and computation of sub-linearity becomes feasible. To
address this issue, academician Peng [1-3] put forward the concept of sub-linear expectation space,
constructed the complete theoretical system of sub-linear expectation space and effectively solved the
limitation of traditional probability space theory in statistics, economics, and other fields. In recent
years, an increasing number of scholars have conducted extensive research in this field, yielding
numerous relevant findings. Notably, Peng [1-3] and Zhang [4—6] have derived a series of significant
conclusions, including the law of large numbers of strong numbers, the exponential inequality and
Rosenthal’s inequality under sub-linear expectations. These findings have established a solid
groundwork for investigating of the limit theory of sub-linear expectation spaces. The results obtained
by Peng and Zhang have greatly contributed to the advancement of our understanding of the
sub-linear expectation space theorem.
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The concepts of complete convergence and complete moment convergence hold significant
importance in the probability limit theory. The theory of complete convergence was initially
introduced by Hsu and Robbins [7]. Chow [8] introduced the concept of complete convergence of
independent random variables, which has since been expanded upon. As a result of complete
convergence, complete moment convergence is more accurate, prompting a further investigation by
scholars. Qiu and Chen [9] established the complete moment convergence for independent and
identically distributed random variables, while Yang and Hu [10] demonstrated the complete moment
convergence for pairwise NQD random variables. Song and Zhu [11] derived the complete
convergence theorem for extended negatively dependent random variables. Notably, in the sub-linear
expectation space, the complete moment convergence is equivalent to the complete integral
convergence. In recent years, an increasing number of scholars have conducted research on the topics
of complete convergence and complete integral convergence within the context of sub-linear
expectations, thereby significantly augmenting the associated theoretical frameworks. For example,
Li and Wu [12] conducted a study on the convergence of complete integrals for arrays of row-wise
extended negatively dependent random variables. Similarly, Lu and Weng [13] examined the
complete and complete integral convergence of arrays consisting of row-wise widely negative
dependent random variables. Additionally, Chen and Wu [14] investigated the complete convergence
and complete integral convergence of partial sums for the moving average process. It is noteworthy
that complete convergence and complete integral convergence with maxima under sub-linear
expectation spaces are only valid when the sequences are independent or negatively dependent. For
example, Feng and Zeng [15] proved a complete convergence theorem of the maximum of partial
sums under the sub-linear expectations. Xu and Kong [16,17] discussed complete convergence and
complete integral convergence under negatively dependent sequences. The aforementioned findings
suggest a need for further development in the field of complete integral convergence. The objective of
this research is to extend the complete moment convergence characteristic, as established by Wu and
Wang [18], to sub-linear space through a probabilistic approach and, subsequently, derive relevant
outcomes.

The present article is structured as follows: Section 2 provides an introduction to basic notations,
concepts and related properties within the context of sub-linear expectations, along with the
presentation of several lemmas. Section 3 establishes complete convergence and complete integral
convergence for weighted sums of negatively dependent random variables under sub-linear
expectations. Finally, in Section 4, the aforementioned lemmas are utilized to demonstrate the major
findings of this study. The symbol ¢ denotes an arbitrary constant and is independent of n. The Inx is
denoted as log,x in the paper and I (-) denotes an indicator function.

2. Preliminaries

We use the framework and notions of Peng [1-3] and Zhang [6]. Let (2, ¥) be a given measurable
space and let H be a linear space of real functions defined on (Q, ) such that if X;,X,,...,X, € H,
then ¢ (Xy,...,X,) € H for each ¢ € C; i, (R,), where ¢ € C; 1jp (R,) denotes the linear space of
(local Lipschitz) functions ¢ satisfying

lo(x) =W < c (I + [x" + ") [x =y, Vx,y€eR,,
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for some ¢ > 0,m € N depending on ¢. H is considered as a space of random variable. In this case we
denote X € H.

Definition 2.1. A sub-linear expectationis E on H is a function B : H — [—co, +00] satisfying the
following properties: for all X, Y € H, we have
(a) Monotonicity: if X > Y, then B(X) > E(Y);
(b) Constant preserving: E(c) = ¢;
(c) Sub-additivity: BE(X + ¥) < B(X) + E(Y);
(d) Positive homogeneity: BE(1X) = AB(X), 1> 0.
The triple (Q, H, E) is called a sub-linear expectation space.
Given a sub-linear expectation E, let us denote the conjugate expectation & of I b

&(X) := -E(-X),VX € H.
Form the definition, it is easily shown that for all X, Y € H,

&(X) <B(X),
BX - Y) >B(X) - B(Y),
BX +¢) =BX) +c, (2.1)
IBX -Y)| <EX -7 (2.2)

Definition 2.2. Let G C F, a function V : G — [0, 1] is called a capacity, if
V)=0,V(Q)=1and V(A) < V(B)forAC B,A,BegG.

It is called to be sub-additive if V(A U B) < V(A) + V(B) for all A, B € G. In the sub-linear space
(Q,H, E), we denote a pair (V, V) of capacities by

V(A) = inf {BI£] : Iy < £.6 € H|, V(A) := 1 - V(A), A€ F,
where A€ is the complement set of A. It is obvious that V is sub-additive, and
Bf <V(A) <Bg, &f <V(A) <ég iff <I(A)<g, f, geH.
This implies Markov inequality:
V(X| > x) <EBIX|P/x",¥x > 0,p > 0.

Form I(]X| > x) < |X|”/x" € H, by Lemma 4.1 in Zhang [5], we have Holder inequality:
VX, Y € H,p,q > 1 satisfying p~! + ¢! =1,

N A 1/p /A 1/
BaxyD < (Baxm) " (Eaxim) .
particularly, Jensen inequality: VX € H,
A 1/r A 1/s
(Baxn)" < (B(x1)) " for 0<r<s.
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Definition 2.3. We define the Choquet integrals/expectations (Cv, C«y) by

00 0
Cy(X) = f V(X > ndr + f [V(X > 1) - 1]dt,
0 —c0

with V being replaced by V and V respectively.

Definition 2.4. (Identical distribution) Let X; and X, be two n-dimensional random vectors defined,
respectively, in sub-linear expectation spaces (Q LHLE 1) and (Qg, H,, Ez). They are called identically
distributed if

Ei (¢ (X)) = B2 (¢ (X2), Vg € Cp1ip (R,

whenever the sub-expectations are finite. A sequence {X,,n > 1} of random variables is said to be
identically distributed if, for each i > 1, X; and X, are identically distributed.

Definition 2.5. (Negative dependence) In a sub-linear expectation space (Q, H, E), a random vector
Y = (Yy,---,Y,)(Y; € H) is said to be negatively dependent (ND) to another random vector X =
X1, , X)) (X; € H) under [ if for each pair of test functions ¢; € C; i (R,) and ¢, € Cprip (R,),
we have

Elp1Xe(N] < E 01 0] E[e(1)],

whenever ¢1(X) 2 0, [@2(Y)] 2 0,E [lo;(X)pa(Y)]] < 00, B [lg1(X)I] < o0, E[lga(¥)I] < oo and either
¢, and ¢, are coordinatewise non-increasing or coordinatewise non-decreasing.

A sequence of random variables {X,,n > 1} is said to be negatively dependent if X;,; is negatively
dependent to (Xi, ..., X;) for each i > 1.

It is obvious that, if {X,,n > 1} is a sequence of negatively dependent random variables and
functions  fi(x), fo(x),... € Cy1;p(R) are all non-decreasing (resp. all non-increasing), then
{f, (X,),n > 1} is also a sequence of negatively dependent random variables.

Definition 2.6. A sub-linear expectation E : H — R is called to be countably sub-additive, if

E(X)sZE(Xn), where XsZXn, XX, eH, X>0,X,>0, n>l1.
n=1

n=1
We need the following lemmas to prove the main results.

Lemma 2.1. (Zhang [5]) Suppose that X, is negatively dependent to (Xi,1,--- ,X,) for each k =
1,...,n—1 andE(Xk) <0, then for g > 2,

R n R n ) % n R N q

B|max|Si| < e, ) BIXH] + (Z B [|Xk|2]] . (Z |@x0™ + (Bx,) ]] SENCE)
=" k=1 k=1 k=1

where c, is a positive constant depending only on q.

Lemma 2.2. Suppose X € H,y > 0,0 < a <2and b, = y"/*In'"y,
(1) Then, for any ¢ > 0,

Cy (|X|21n1_2/7 |X|) <o & Z n** M nnV (IX| > cb,) < oo. (2.4)

n=1
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(i) If Cy (|X|2 In'"2" |X|) < oo, then for any > 1 and ¢ > 0,

D" B kingY (1X] > cby) < oo, (2.5)
k=1
Proof. (1) Because
Cy (IXP ' 1X]) < 00 & f V(|X|2 In'=27 |X| > x) dx < oo. (2.6)
1

Let f(x) = x*In'™" x, x > 1. We define the inverse function of f (x) as f~' (x). Then, we can get
f ¥ (IXP ' X] > x) dx = f v (1X1 > f7(x)) dx. 2.7)
1 1

Let f~(x) = cb, = cy'* In'"y, for any ¢ > 0, we have
X = f(cyl/a In'"” y) =y ¥y - In'"2" (yl/(x In'"” y).
Let
2 1-2/y (1 1/ > g(u)
h(y) := 1?7y - In y(y /In y)’) =y - exp f —duy,

u

where ¢, = exp{(l - %)lna}, g(u) = (%ﬁ + s (1 41

T T
;lnu+;lnlnu a vinu

)) and obviously g(u) — 0,u — oo.
Then, for any ¢ > 0, we can get

80 _

/ (04 ’ 2C a— a a—
¥ = (ey?hG)) = =y h) + e ) - ¢y ny.

Therefore, combining (2.7), for any ¢ > 0, we have

(oo

f V(1X1 > () dx = f V (1X1 > cby) x dy ~ ¢ f V (1X] > cby)y?* ' Iny dy. (2.8)
1 1 1
Obviously, combining (2.6)—(2.8), we can get
Cy (IXPIn' 27 [X]) < 0 & Z R 0 nV (1X] > cb,) < oo,
n=1

hence, the proof of (1) is established.
(i1) By the proof of (1), we can get (2.4), then for any 8 > 1 and ¢ > 0,

00 > Z n2*VInnV (|X| > cb,)

n=1
> ci > B DkInpY (1X] > chy)
k=1 pgr-l<p<pk

—c Zﬁzk/aklnﬂv (|X| > Cbﬁk) ,

hence, the proof of (i) is established.
Lemma 2.3. (Zhang [5] ) If B is countably sub-additive, then for X € H,
E(X1) < Cy(IX)). (2.9)
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3. Main results

Theorem 3.1. Assume that {X,X,,n > 1} is a sequence of negatively dependent and identically
distributed random variables under sub-linear expectations. Suppose that {a, 1 <k <n,n > 1} is an
array of positive real numbers and B is countably sub-additive. Set b, = n"/*In""" n, where 0 < a < 2,
O0<y<2if

Cy (IXP ' |X]) < oo, (3.1)
D as = 0m), (32)
=1
EX, = &X; = 0, (3.3)
then for any € > 0,
o j
Z; 1r1<1?<); Z A Xl > bns] < oo, (3.4)

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied, then for 0 < 6 < 2 and € > (),

i _1CV{b {13}&2(1 Ea X

n=1 k=1

0

- 3} 00, (3.5)

where + is the positive part.

Remark 3.1. Theorem 3.2 not only pushes the result of Wu and Wang[ 18] from probability space to
sub-linear expectation space but also extends 1 < a <2t00<a <2, 0<y<atol<y<?2
0<O<ato0 <6 <2, extending the original range and enhancing the result.

4. proof of main results

4.1. Proof of Theorem 3.1.

For fixedn > 1 and 1 < k < n, denote

Yo = -b I()(k‘< -b ) +-}(kI(LX%|‘< b )'+ b I(}(k >'bn)
Zok := X = Yo = Xi + b)) I (Xi < =by,) + (X — b)) I (X > by).

We can easily see that for any € > 0,

Zj: A Xk

k=1

> bns} c{dl <k <n,|Xy| > by}

Zj: A Xy

U < max
1<j<n
k=1

c{Al <k <n,|Xil > by}

max
1<j<n

> be, V1 <k <n Xyl < bn}
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J

zg: Ank (y%k _'Ezy%k)

k=1

> b,e — max
1<j<n

J
U {]ngjagz kZ_; E(anYur) } .

Then, we have

max
1<j<n
n=1 k=1
o0 n o0 J J
< Z n N V(X > by) + Z 2~V | max Z i (Yo = BY,)| > bye — max Z Bla Y
1 = ] IS,I'SI’! =l 1Sj§n =1
n= = n= = =

In order to prove (3.4), we just need to prove

[, < oo, 4.1)
L < oo. (4.2)

First of all, we prove (4.1). We know that in the probability space: EI(|X| < a) = P(X| < a)
holds, nevertheless under the sub-linear expectation space, the expression I(|x| < a) not necessarily
continuous. As a result, EI(|X| < a) does not necessarily exist. So, we need to modify the indicator
function by functions in C;z;, (R). We define the function g(x) € C;1;,(R) as follows.

For 271/% < 11 < 1, suppose that even function g(x) € C.1ip(R) and g(x) is decreasing in x > 0, such

that 0 < g(x) < 1 forall x and g(x) = 1 if |x| < u, g(x) = 0if |x| > 1. Then
(x| <) < g(xl) < I(xl < 1), I(Ix[ > 1) < 1 = g(|x]) < I(|x] > po). (4.3)

By (2.4), (3.1) and (4.3), we have

n

Dot Y V(X > by)

=~
1]

hence, the proof of (4.1) is established.
Next, we prove (4.2). First of all, we verify that

2 E (auYuw)

— 0, asn — oo.
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Noting that
Zkl = 1X + bul I (X < =by) + | Xic = byl I (Xic > by) < |Xi (1 - g(lfkl» (4.4)
According to (3.3) and a, is non-negative, we can get
E (auXy) = axBX; = 0. (4.5)

Combining with (4.3), we have
IXI* In' 7 |X]
ub, In' 27 (ub,)’

When 1 < a < 2, we contact (2.2), (2.9), (3.1), (3.2), (4.4)—(4.6) and Inb, ~ clnn. It is easy to
obtain that

|X|(1 - (Ib l)) < |IXII (|X| > ub,) < (4.6)

n

.

<b,' Z B (@Y u)

k=1

=5 D B (X ~ Bt

k=1

n
_1 A
<b, Z ElauXi — anYul
=1

n

<b,' Y auB |zl (47

k=1

<o (S5) (1) 2fonl—+(29)

< nb;" (ub, In'"" (ub, )) E (1xP ' |x])
n
=m0 b,
1

SC———F7—
n?/ellnn

b max
1<j<n

Z (@ Yor)

— 0, asn — oo.

When 0 < « < 1, according to (2.9) and (3.1), we can get E(|X]) < Cy (|X|2 In'~2/7 |X|) < c0. Noting
|Y.l < |1Xi| and v > 0, we have

J n
A _1 aS
b! » max ZE(ankYnk) <b, ; |E (@ Yoe)
=b,' ) auk |l (4.8)
k=1
< b;1 andél)q
k=1
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< n'"b'BIX|
1

In'"n

<c — 0, asn — oo.

Thus, for £ > 0 and all n large enough, we have

J

Z ank Ynk)

k=1

nS

>

max
1<j<n

In order to prove (4.2), it suffices to show

) J bn
L= Z {Bfgi Zank EYnk) 28] < 0.
n=1 k=1
Noting that, for p > 1,
B|(Y = BY)| < B (Yl + [BY]") < 20, 1Yl (4.9)

where ¢, is a positive constant depending only on p.

We know a,; is non-negative. By Definition 2.5, for fixedn > 1, {ank (Ynk - EYnk) 1 <k< n} 1s still
negatively dependent sequence of random variables. By (4.9), Markov inequality and (2.3) for g = 2,
we can get

n=1 fessn k=1
Scin_lbgz( " E |au (Ynk EYnk) 2]+
n=1 k=1
[eN] n g
e 5235 el - )+ el (- )
n=1 k=1

By (4.3) and C, inequality, for any A > 0, we can obtain

X X
Vo' < XU (Xl < Bo) + B (Xl > by) < Xel'g (‘%) Y (1 _ g(' bk')) | (4.10)

For 1, combining (2.4), (3.1), (3.2) and (4.10), we have

[Se]

Ii=c Z n'b? i E lau Yol
=1

n=1
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o] n
_ ~13-2 2 A 2
= cZn b, E a B Yl
k=1

n=1
°° . X . X
<c ) w2 | BIXPg “ZL | +b§E(1 —g(lb—l)))
n=1 n n
(o] R X o0
<c Y n R (BlxPg “[L | )+cZn2/“_1V(IX| > pby)
n=1 n n=1
- ~ X
S CZ”Z/Q_lb;z EleZg I’LZL | ).
n=1 n

Let gj(x) € C;Lip(R), j > 1, such that 0 < g;(x) < 1 for all x; g;(x/byi) = 11if by < |x| < by and
8 (x/byi) = 0if x| < ubyj1 or |x| > (1 + p)by;. Then for any r > 0, we can obtain

I(by- < |X| < by)) < gj(b ) < I(ubyi-r < |X] < (1 + p)byy), (4.11)

27
X : X
'X"g(L_ZJ) Z XI'g (Lz') (4.12)

It is noted that according to (2.5), (3.1), (4.11), (4.12), 0 <y < 2 and g(x) is decreasing in x > 0. It
is easy to prove that.

L < CZ 2/a=1p- 2E(|X|2 (,U[L |))

n

N a— ’\ #l |
Z Z k(2 1)b2k21 (|X| (b ))

=1 k-1 <p<k 2
C : ulX|
gl )
k=1 =1 2
_ O e 2 (HIXI N 2hfa.~2
_CZE |X]"g; - ZZ b,
J=1 =y
g o (X -2/y
< CZE XPg;| % Zk (4.13)
J=1 =y

< Zjl 2 B2V (1X| > byr)

= Z 220 i (1X] > cbyy)
=1

< 00.
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Next, we estimate Is < co. According to (2.1), then we have ]E(ankYnk - E(ankYnk)) = 0. By
Definition 2.1, we know E(-X) = —&(X). Combining (2.2) and C, inequality, we can obtain

o0 n ?
1= 357 3 el (a0 |
n=1 k=1
; 2

(—E [—ank (Ynk - EYnk)])

k=1

S |l

2
|_E [_ankYnk + I/E'ankYnk] ]
k=1

i

s

2
Z n'b;? |E[—ankYnk]+E[ankYnk]]
1

n=1 k=
[ n 2
<c Z n_lb,;2 (|1’E [—anmYul| + |E (@i Yx] ))
n=1 k=1
) n 2 ) n 2
< CZn_lbnz a nk] ] + Czn_lbr_lz [Z Ak I/E[Ynk] ]
n=1 k=1 n=1 k=1
e n 2
=cy n'b? Y a 1-B[ Ynk]) +
n=1 k=1
e n 2
CZ; n'b? 2 i | —B[Yul ]
) n 2 ) n 2
<y b’ ) auBlXe - (—Y,,k>|] vey 'y’ [Z auB X - m]
n=1 k=1 n=1 k=1
e8] n 2
<c Z; n b’ 3 auB X, - Ynkl) :

Noting 2719 < 1 < 1, we can get it > by1/by. By (4.3), we have

X
1—g(|bz:) (l | )<I(|X|>bzk1)—21(b211<|X|<b2,)<zgj(| |) (4.14)

For Is, we contact (2.5), (3.1), (3.2), (4.11), (4.14) and E is countably sub-additive. We can get

; 2
n b’ [Z anB X — Ynkl]

k=1

. X|
—lb—2 max(2,2/a)E2 1 _ |_
n b, n 1X] 8 b,

X
2= kb2k l2max(2 2/(1/)kE2 (le (1 _ g( | | )))
bor-1
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S ()]

QPO k! Y Z bV (1X| > cby) - Z bV (1X| > cby))

k=1 =k =k

Z b 2max(2 2/a)k
k=1

M T

IN

(o

IA
o

Qma2(@k 21y 3 me J7V (X] > cby) Z by V (IX] > cby)

Jj=k Jj=k

IA
o

D 1

2max(2,2/a)kk2/)’—1b;k3 Z szV (le > Csz)
1 J=k

o~
1l

00 i
=c Y by V (X > chy) ) 2mC2kg2ly-tp3
j=1 k=1

o0 J

—c Z by V (IX| > cby) Z ymax(2=3/a,~1/a)kj—~1-1/y

=1 k=1

8

by V (IX] > cby) if0 < a<3/2:
<c ];1
S by V(X| > chy) z WQ3/p-1-11y  if3/2 < @ < 2;
j=1
3 bV (X1 > cby) if0 < a<3/2:
<c!’3
3 203 Vv 7 (1X] > chy) i£3/2 < < 2:
=1
3 201 UV (1X| > chyy) < o0 if0<a<3/2
<c{/Z!
3 2200-1/0) i1 (|X] > chy;) < 00 if3/2<a<2.
=1

4.2. Proof of Theorem 3.2.
For Ye > 0, we have by Theorem 3.1 that

n=1 k=1
00 00 J
:Z:n_1 V| b, max Zanka —e>1"dr
0 1<j<n
n=1 k=1
o J o 00 J
SZn_lv max Zanka > b,& +Zn_1 V | max Zanka > b7 | ds
1<j<n pry p— 1 1<j<n pry
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In order to prove (3.5), for t > 1, denoted as 1 < k < n, we obtain

Yy o= =bat 1 (Xy < =b,t"?) + X (IXil < but"?) + but 1 (X; > b,t"?),
¢ = bt ") 1(X > b,t""?).

Z, =X Y, = (Xk + bnt”e) I(Xk < —b,,t”G) + (X

We can easily see that
J
Z Ang X

n=1 k=1
Z f v (1Xid > bur'/*) de+

n=1 =1

(o]
E max
. 1<j<n

.:H1 + H,.

> bnt”e] dr

J

Z Ank le;k - EYI’Ilk)

k=1

In order to prove (3.5), we just need to prove

H| < oo,
H2<00.

First of all, we prove (4.15). For t'/% > 1, since g(x) is decreasing in x > 0, we have 1 — g(

> bt —

max
1<j<n

M\

k=1

ank Y

o

1X| )
bntl/e <

(4.15)
(4.16)

1 - g(%). According to (2.5), (3.1), (4.11), (4.14), 0 < 6 < 2 and E is countably sub-additive. We can

byj

|XI|

|XI|

n

)

)

obtain
H <§:n_1 WZ":E 1- Xl dr
= 4 8 b, 1178
- X In'2"12 x X
Szf |IX? 1X| (l—g(lll))dt
i (ub, 19 In' V2 (b, 1119 b,t'/*
<c f byt ) 1022 () B (X 102 |X|)( (
— Z (le 1n1/2 2y |X| ( ( ))f —21n2/7—1/2y_b;H'u—é)eyH—ldy (lety :#bntl/e)
n=1 ub,
<c Z (|X|2 ln1/2—2/7 |X|) (1 - g(lb—l)) br_lebz_zlnz/'}’—l/z (/an)
2 1.2/y-1/2 & (V12 1al/2-2/ B
<c ; k;dk b32 7712 (b ) B (IXP In 7|X|)(1 g(bZk_l
<c 2k(1—2/a)k—1/22 (|X| 1nl/2-2 |X|) (|X|)
T =

k=
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[Se]

x| sy
=c X ln1/2 2]y X 2k(1 2/a)k 1/2
2 B (1xP X1) 8 Z

Z 1/2 2V (1X] > cby) if O<a<?2;
<!

2 12b2 22 (X > cby) if @ = 2;

Z U@ IRV (IX| > chby) < 00 if 0 < a < 2.
<c{

Z 27V (IX] > cbyj) < o0 if @ =2.

hence, the proof of (4.15) is established.
Next, we prove (4.16). Let’s prove that

sup b, 't~% max
>1 1<j<n

— 0, asn — oo,

M\.

ankY k)

k=1

When 1 < @ < 2, similar considerations to (4.7), we have

J n
sup b 't~% max E (amY?,) <supb g6 E IE (@Y,
1 1<j<n
2 P P
“1,-1/6 A A y
<supb ' E B (auXp) — E(aunY))|
>1
2 k=1

n

< supb, 't Z )

>1 =1

. X
<supb 'r'/f anE(le(l— (' )))
IZP 8 k=1 ¢ g bntl/g

X
<supb,'tVnE (le(l— (U)))
>1 bn
X
< nb- I}E(le(l— (L')))

< nby" (b, 10" (ub,))
1

SC—FF—7—
n2/(t—1 Inn

’
an

S |l

B (|X|2 In'~%” |X|)

— 0, asn — oo.

When 0 < @ < 1, noting Y;lk| < |Xi|, similar to (4.8), we can get

J n
sup b, 't/ max ZE(ankY,’lk) < sup b;lt_l/ez B (@)
>1 1<j<n = >1 =
n
< Supb,;lt_l/az anB|Y’,
=1 =
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Hence, for t'/% > 1 and all n large enough, we can get

¥ bntl/é)
n .

M\

max
1<j<n

k=1

In order to prove (4.14), it suffices to show

ngnzz;n_lﬁ \%

We know a,; is non-negative. By Definition 2.5, for fixed n > 1, {ank (Y !

J

D au (Y - BY,)| >

k=1

1/6

max
1<j<n

]dt< 0.

i IAEY,;,(), 1<k< n} is
still a negatively dependent sequence of random variables. By (4.9), Markov inequality and (2.3) for
q = 2, we can get

> b";”e]dt
j 2

> aw (Y - BY;,) ]dt

<c Z n! ‘[ (bntl/")_z E |am (Y,;k - EY,’lk) i dr+

=1 k=1
PRI AARTASC-E P ’
Scnzz;n f; (bnt ) £ E ankYnk dr+
(o) 00 n 2
S [ (o) (S Bl 1z 2] el (- ) |
=1 k=1
=H, + H;

For H,, similar considerations to (4.10), we can get for any 4 > 0,

A :ulxkl 1/9/1 |Xk|
g(—bnll/e)+(bnt ) 1-¢ o)) (4.17)
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Combining (3.2) and (4.17), we have

H, = Z f b tl/e ZE ankY’
— i b 1/9 I ;|12
- t 2B [ dr
n=1 k:l
N 1/0 20 o (s (#1X] 1/6)\% & 1X]
SZ f (bt 1ank( |X|g(bntl/9 + (b Y B(1-¢ )|
2/a-1 206 plX| O e [T B 1X|
sz b2 f1 Eleg(b tl/e)dt+c2n f] E(l g(bnﬂ/@ dr

n=1 n=1

= Hy + Hyy.

For Hy,, combining (2.5), (3.1), (4.11), (4.14), 0 < ¥ < 2,0 < 6 < 2 and E to countable sub-
additivity and g(x) is decreasing in x > 0. We have

n

_ N 2/a—1 * i |X|
H42—Zl’l f E(l— (b tl/@))dt
3 i XP ' 1) X1\ o,
" L - et o\ 8\ 5,
¢ X
< Z f ub, %) 2 2lr-12 (ubut"") B (X In'/>72 |X|)( ('b ')) dr

N X «
—IE (|X|2 1n1/2—2/y |X|) (1 _ g (|b_|)) f y—21n2/’y—1/2y A br—lglu—geyg—ldy
n MO

. X
_]E (|X|2 lnl/2—2/y |X|) (1 —g (lb_l)) b;ﬁbZ—ZIHZ/y—l/Z (/an)

n

IA
o

IA
)
Ms “Ms DINgk EMs ng g

IA

c

. X
D 2K 2 2 (b ) B (1XP In' 2 |X|)(l - g( Xl ))

Dor-1
2k-l<p<k 2

= X
22k/ab£3k2/7—1/2 Z (le In!/2-2/7 |X|) (|b |) (4.18)
= g

LB (P I 1) ('X')Z A

J1PB2 YV (X > cbyi)

I/\

IA
o

~.
11
—_

2217 1 (1X| > cby))

5’48

~.
11
—_
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Next, we prove Hy; < oo. Similar to the proof of (4.13) and (4.18), we can get

T PIER Ay PO, ulX| ulX|
H41 < Zl n bn f; ! (Ele (g(bnl.l/e -8 bn dt+
N X
> ety f 210 (E|X|2 (“' ')) dr
n=1 1 bn

fa- f * b’;zl—zmlnz/y—l/zbnﬁ(IXlzln” 221X (1 -8 (.U]LX| ))) dr+
1 n
R X
n?* 12 (IX g (l%))

Next, we estimate Hs < co. Similar to the proof of /5, we have

o [0 (3 eloat ) |
nlflm( (') (Zlank|E|Xk— 'k) d
o [ (S ms s o (155

(S-S <~

Hence, the proof of Theorem 3.2 is established.

IN
o 3
? b 100

5. Conclusions

This paper examines the concepts of complete convergence and complete integral convergence
within sub-linear expectation space. The proof methodology employed differs from that utilized in
probability space, as V and E are not countably sub-additive in sub-linear expectation space.
Additionally, the definition of identical distribution in sub-linear expectation is based on F rather than
V.

Therefore, the use of suitable auxiliary tools is crucial for conducting a thorough investigation in
the sub-linear expectation space. This study primarily relies on Zhang’s [5] upper expectation
inequality, which serves as a useful tool in our proof. Our findings indicate that the convergence
integral convergence of maxima is more comprehensive than previous research results. In upcoming
research endeavors, we aim to explore more intriguing outcomes.
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