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Abstract: It is well-known that the embedding of the Sobolev space of weakly differentiable functions
into Hölder spaces holds if the integrability exponent is higher than the space dimension. In this paper,
the embedding of the Sobolev functions into the Hölder spaces is expressed in terms of the minimal
weak differentiability requirement independent of the integrability exponent. The proof is based on
the generalization of the Newton-Leibniz formula to the n-dimensional rectangle and the inductive
application of the Sobolev trace embedding results. The new method is applied to prove the embedding
of the Sobolev spaces with dominating mixed smoothness into Hölder spaces. Counterexamples
demonstrate that in terms of minimal weak regularity degree the Sobolev spaces with dominating mixed
smoothness present the largest class of weakly differentiable functions with the upgrade of pointwise
regularity to continuity. Remarkably, it also presents the largest class of weakly differentiable functions
where the generalized Newton-Leibniz formula holds.
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1. Prelude

Let W1
p(Rn), 1 ≤ p ≤ ∞ be a Sobolev space of weakly differentiable functions u ∈ Lp(Rn) with

first order weak derivatives in Lp(Rn), i = 1, ..., n. Originally discovered in the celebrated paper [1],
the concept of Sobolev spaces became a trailblazing idea in many fields of mathematics. The goal of
this paper is to analyze embedding of W1

p(Rn) into Hölder spaces C0,µ(Rn), 0 ≤ µ ≤ 1 [2]. A standard
notation will be employed for the embedding of Banach spaces:

• B1 ↪→ B2 means bounded embedding of B1 into B2, i.e., B1 ⊂ B2, and

‖u‖B2 ≤ C‖u‖B1 , ∀u ∈ B1, for some constant C.
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• B1 b B2 denotes compact embedding of B1 into B2, meaning that B1 ↪→ B2, and every bounded
subset of B1 is precompact in B2.

If n = 1, the equivalency class of elements of W1
p(R) always contain an absolutely continuous element,

which is Hölder continuous with exponent 1 − p−1, if p > 1, i.e., there is a bounded embedding

W1
p(R) ↪→ C0,1− 1

p (R), if p > 1; W1
1 (R) ↪→ C0(R). (1.1)

The embedding (1.1) easily follows from the Newton-Leibniz formula

u(x′) − u(x) =

∫ x′

x

du(y)
dx

dy (1.2)

via the application of the Hölder inequality and compactness argument. The embedding (1.1) fails to
be true if n ≥ 2 and p ≤ n. However, there is a bounded embedding [3]

W1
p(Rn) ↪→ C0,1− n

p (Rn) if p > n. (1.3)

Hence, stretching the integrability exponent p beyond space dimension n implies the Hölder continuity.
In particular, elements of the Hilbert space H1(Rn) = W1

2 (Rn), are not continuous in general, if n ≥ 2.
The main goal of this paper is to express the continuity of elements of W1

p(Rn) in terms of weak
differentiability requirements.

Problem 1.1. What are the minimal weak differentiability requirements on elements of W1
p(Rn) (1 ≤

p ≤ n) to be continuous? In terms of weak differentiability requirements, what is the largest subspace
of W1

p(Rn) embedded into Hölder spaces for all p ≥ 1?

The paper reveals that the anticipated subspace is the Sobolev-Nikol’skii space

S 1
p(Rn) =

{
u ∈ W1

p(Rn)
∣∣∣∣ ∂ku
∂xi1 · · · ∂xik

∈ Lp(Rn), i1 < · · · < ik, k = 2, n
}
,

equipped with the norm

‖u‖S 1
p(Rn) :=



(
‖u‖p

Lp(Rn) +
n∑

k=1

n∑
i1,...,ik=1
i1<...<ik

∥∥∥∥ ∂ku
∂xi1 ···∂xik

∥∥∥∥p

Lp(Rn)

) 1
p
, if 1 ≤ p < ∞,

‖u‖L∞(Rn) +
n∑

k=1

n∑
i1,...,ik=1
i1<...<ik

∥∥∥∥ ∂ku
∂xi1 ···∂xik

∥∥∥∥
L∞(Rn)

, if p = ∞.

The space S 1
p(Rn) is a special case of Sobolev spaces with dominating mixed smoothness. The class

was introduced by Nikol’skii in [4, 5]. There is a vast literature on the analysis of these spaces. We
refer to [6–9] and the references therein.

The main result of this paper is twofold. First, we introduce and prove a generalization of the
celebrated Newton-Leibniz formula to n-dimensional rectangles (or n-rectangles). Then by using the
new formula as a tool, we present a surprisingly simple and elegant proof of the embedding of the
Sobolev spaces with dominating mixed smoothness into Hölder spaces. The proof resembles the proof
of the embedding (1.1) in the one-dimensional case by using generalized Newton-Leibniz formula,
Hölder inequality, and iterative application of the Sobolev trace embedding results. In particular, we
prove that the generalized Newton-Leibniz formula is preserved in space S 1

p(Rn). Counterexamples
support the claim that in terms of weak differentiability requirements, S 1

p is the largest class of
Lebesgue’s integrable and weakly differentiable functions in Rn which preserve generalized Newton-
Leibniz formula, and upgrades the pointwise regularity to Hölder continuity.
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2. Notations

• C0(Rn) is a Banach space of continuous and bounded functions with the norm

‖u‖C0(Rn) := sup
x∈Rn
|u(x)| = ‖u‖L∞(Rn).

• For k ∈ N, Ck(Rn) is a Banach space of k times continuously differentiable functions, with all
derivatives of order k bounded, and with the norm

‖u‖Ck(Rn) :=
k∑

j=0

sup
x∈Rn
|D ju(x)| =

k∑
j=0

‖D ju‖L∞(Rn),

where D ju is a tensor of rank j, dimension n, and

|D ju| =
( n∑

i1,...,i j=1

∣∣∣∣ ∂ ju(x)
∂xi1 · · · ∂xi j

∣∣∣∣2) 1
2
.

• S C1(Rn) is a Banach space with the norm

‖u‖S C1(Rn) :=
∑

α∈Zn
+,αi≤1

∥∥∥∥ ∂|α|u(x)
∂xα1

1 · · · ∂xαn
n

∥∥∥∥
C0(Rn)

.

The following standard notation will be used for Hölder spaces:

• For 0 ≤ γ ≤ 1, Hölder space C0,γ(Rn) is the Banach space of elements u ∈ C0(Rn) with finite norm

‖u‖C0,γ(Rn) := ‖u‖C0(Rn) + [u]C0,γ(Rn),

where
[v]C0,γ(Rn) := sup

x,x′∈Rn

x,x′

|v(x) − v(x′)|
|x − x′|γ

.

The space C0,0(Rn) is equivalent to C0(Rn).
• For k ∈ N, 0 ≤ γ ≤ 1, Hölder space Ck,γ(Rn) is a subspace of Ck(Rn) with finite norm

‖u‖Ck,γ(Rn) :=
k∑

j=0

‖D ju‖C0,γ(Rn)

Throughout the paper we use standard notations for Lp(Q), 1 ≤ p ≤ ∞ spaces; the following standard
notations are used for Sobolev spaces [2]:

• For k ∈ N, 1 ≤ p ≤ ∞, Sobolev space Wk
p(Rn) is the Banach space of measurable functions on Rn

with finite norm

‖u‖Wk
p(Rn) :=

k∑
j=0

‖D ju‖Lp(Rn).
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• For s = (s1, ..., sn) ∈ Zn
+, 1 ≤ p ≤ ∞, anisotropic Sobolev space Ws

p(Rn) is the Banach space of
measurable functions on Rn with finite norm

‖u‖Ws
p(Rn) := ‖u‖Lp(Rn) +

n∑
i=1

si∑
k=1

∥∥∥∥∂ku
∂xk

i

∥∥∥∥
Lp(Rn)

.

Note that the size of the vector s coincides with the dimension of the space. In particular, for 1 ≤
k ≤ n, and fixed j ∈ {1, ..., k}, we consider Sobolev spaces Ws

p(Rk) of the weakly x j-differentiable
functions on Rk, where s = (si)k

i=1 ∈ Z
k
+ and si = δi j is a Kronecker symbol.

• For k = (k1, ..., kn) ∈ Zn
+, 1 ≤ p ≤ ∞, Sobolev space S k

p(Rn) with dominating mixed derivatives is
a Banach space of measurable functions on Rn with the finite norm

‖u‖S k
p(Rn) :=

∑
α∈Zn

+,αi≤ki

∥∥∥∥ ∂|α|u(x)
∂xα1

1 · · · ∂xαn
n

∥∥∥∥
Lp(Rn)

.

If k1 = · · · = kn = k ∈ N, we shall write S k
p(Rn) = S k

p(Rn).
• Let Q ⊂ Rn be a bounded domain. For k = (k1, ..., kn) ∈ Zn

+, 1 ≤ p ≤ ∞, Sobolev space S k
p(Q)

with dominating mixed derivatives is defined as

S k
p(Q) = { f ∈ D′(Q) : ∃g ∈ S k

p(Rn) with g|Q = f }

and with
‖ f ‖S k

p(Q) := inf ‖g‖S k
p(Rn),

where the infimum is taken over all g ∈ S k
p(Rn) such that its restriction g|Q to Q coincides with f

in the space of distributionsD′(Q). If k1 = · · · = kn = k ∈ N, we shall write S k
p(Q) = S k

p(Q).

3. Main results

3.1. Generalized Newton-Leibniz formula

Let x, x′ ∈ Rn with xi < x′i , i = 1, n are fixed and P be n-rectangle

P = {η ∈ Rn : xi ≤ ηi ≤ x′i , i = 1, n} (3.1)

with vertex x (or x′) called a bottom (or top) corner of P. For any subset {i1, ..., ik} ⊂ {1, ..., n}, k = 1, n,
let

Pi1...ik = P ∩ {η ∈ Rn : ηl = xl, l , i j, j = 1, k}

be a k-rectangle with bottom corner x. Note that Pi1...ik is invariant with respect to permutation of
multi-index i1 · · · ik, and it coincides with P if k = n.

The following is the generalization of the celebrated Newton-Leibniz formula:

Theorem 3.1. Any function u ∈ S C1(Rn) satisfies the following generalized Newton-Leibniz formula:

u(x′) − u(x) =

n∑
k=1

n∑
i1,...,ik=1
i1<...<ik

∫
Pi1 ...ik

∂ku(η)
∂xi1 · · · ∂xik

dηi1 · · · dηik . (3.2)
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If n = 1, (3.2) coincides with the Newton-Leibniz formula (1.2). Note that for ∀k there are
(

n
k

)
integrals in (3.2) along all k-rectangles Pi1...ik with bottom corner x. Therefore, altogether there are

n∑
k=1

(
n
k

)
=

n∑
k=0

(
n
k

)
− 1 = (1 + 1)n − 1 = 2n − 1,

integrals in (3.2) along all sub-rectangles of P with bottom corner at x.
Having generalized the Newton-Leibniz formula in the class of smooth functions, we can now

formulate the major problem of classical analysis generated by the Newton-Leibniz formula:

Problem 3.1. What is the largest class of Lebesgue integrable and weakly differentiable functions in
Rn which preserve generalized Newton-Leibniz formula?

In Theorem 3.2 we prove that the formula (3.2) remains valid in spaces S 1
p(Rn), 1 ≤ p ≤ ∞, where

the right-hand side is understood as trace integrals of respective weak derivatives. Counterexamples
constructed in Section 3.3 support the claim that in terms of weak differentiability requirements S 1

p(Rn)
is the largest class of Lebesgue’s integrable and weakly differentiable functions in Rn which preserve
generalized Newton-Leibniz formula. The formula (3.2) is a key to prove the Hölder continuity of
elements of S 1

p(Rn).

Remark 3.1. Some variant of the formula (3.2) is proved in [10] in the class of tensor product
space, i.e., linear cover of the space of separable (or product form) functions equipped with special
norm consisting of some algebraic combination of one-dimensional W1,p norms selected in a way to
guarantee the Lp-boundedness of mixed derivatives of product functions.

3.2. Embedding of the Sobolev spaces with dominating mixed smoothness into Hölder spaces

Theorem 3.2. The following bounded embedding holds

S 1
p(Rn) ↪→ C0,1− 1

p (Rn); 1 ≤ p ≤ ∞. (3.3)

The equivalency class of every element of S 1
p(Rn) possesses a representative in C0,1− 1

p (Rn), which
satisfies the generalized Newton-Leibniz formula (3.2), where P ⊂ Rn is an n-rectangle with bottom
and top corner at x and x′ respectively. In particular, ∀k = 1, ..., n − 1 and 1 ≤ i1 < · · · < ik ≤ n

∂ku
∂xi1 · · · ∂xik

∈ Lp(Pi1...ik), (3.4)

in the sense of traces.

Corollary 3.1. For k ∈ N the following bounded embedding holds

S k
p(Rn) ↪→ Ck−1,1− 1

p (Rn); 1 ≤ p ≤ ∞. (3.5)

The following sharp embedding result holds for the anisotropic Sobolev spaces with dominating
mixed smoothness:
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Corollary 3.2. Let k = (k1, ..., kn) ∈ Nn, 1 ≤ p ≤ ∞, and u ∈ S k
p(Rn). Then ∀m = 1, ..., n and

∀1 ≤ i1 < i2 < · · · < im ≤ n
∂ki1 +···+kim−mu

∂x
ki1−1
i1
· · · ∂xkim−1

im

∈ C0,1− 1
p (Rn). (3.6)

Corollary 3.3. Let Q ⊂ Rn be a bounded domain. For k ∈ N the following bounded and compact
embeddings hold

S k
p(Q) ↪→ Ck−1,1− 1

p (Q), if 1 ≤ p ≤ ∞; (3.7)

S k
p(Q) b Ck−1,µ(Q), 0 < µ < 1 −

1
p
, if 1 < p ≤ ∞. (3.8)

3.3. Counterexamples

The goal of this section is to provide counterexamples to support the claim that S 1
p(Rn) is a subspace

of W1
p(Rn), 1 ≤ p ≤ n with minimal increase of the weak differentiability requirements in order that

every equivalency class has an element which is

• Hölder continuous;
• satisfy generalized Newton-Leibniz formula (3.2);
• satisfy the trace regularity (3.4);

Example 3.1. Consider a function

u(x) = log log
(
1 +

1
|x|

)
∈ W1

n (B(0, 1)) (3.9)

where B(0, 1) ⊂ Rn is a unit ball with center 0. It is discontinuous at 0. Direct calculation demonstrates
that for arbitrary k ∈ {1, ..., n − 1} we have

∂ku
∂xi1 · · · ∂xik

∈ Lp(B(0, 1)), 1 ≤ p ≤
n
k
, (3.10)

for all 1 ≤ i1 ≤ · · · ≤ ik ≤ n. However, we have

∂nu
∂x1 · · · ∂xn

< L1(B(0, 1)). (3.11)

Since for all k ∈ {1, ..., n − 1} all k-th order weak derivatives are in L1(B(0, 1)), by using standard
extension theorem [2] function u can be extended to Rn by possessing the regularity

∂ku
∂xi1 · · · ∂xik

∈ Lp(Rn), 1 ≤ p ≤
n
k
, (3.12)

for all 1 ≤ i1 ≤ · · · ≤ ik ≤ n. From (3.11) it follows that the n-th order mixed derivative of the extended
function is not integrable, i.e.,

∂nu
∂x1 · · · ∂xn

< L1(Rn). (3.13)
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It can also be verified that if P is an n-rectangle with bottom corner at 0, then ∀k = 1, ..., n − 1 and
1 ≤ i1 < · · · < ik ≤ n, we have

∂ku
∂xi1 · · · ∂xik

< L1(Pi1...ik). (3.14)

Clearly, Newton-Leibniz formula (3.2) is not satisfied at the origin. Hence, the extended function
presents the desired counterexample when the n-th order mixed derivative is removed from the
definition of the space S 1

p(Rn).

Example 3.2. Consider a function

u(x) = |x|−n
n∏

k=1

xk ∈ L∞(Rn) (3.15)

It is discontinuous at 0. Along the each hyperplane {xk = 0} it is zero, but for ∀C > 0

lim
xk=Ct,t↓0

u = 1. (3.16)

Direct calculation demonstrates that for arbitrary k ∈ {1, ..., n − 1} we have

∂ku
∂xi1 · · · ∂xik

∈ Lp(B(0, 1)), 1 ≤ p <
n
k
, (3.17)

for all 1 ≤ i1 ≤ · · · ≤ ik ≤ n. However, we have

∂nu
∂x1 · · · ∂xn

< L1(B(0, 1)). (3.18)

Since for all k ∈ {1, ..., n − 1} all k-th order weak derivatives are in L1(B(0, 1)), by using standard
extension theorem [2] function u can be extended to Rn by possessing the regularity

∂ku
∂xi1 · · · ∂xik

∈ Lp(Rn), 1 ≤ p <
n
k
, (3.19)

for all 1 ≤ i1 ≤ · · · ≤ ik ≤ n. From (3.18) it follows that the n-th order mixed derivative of the extended
function is not integrable, i.e.

∂nu
∂x1 · · · ∂xn

< L1(Rn). (3.20)

It can also be verified that if P is an n-rectangle with bottom corner at 0, then ∀k = 1, ..., n − 1 and
1 ≤ i1 < · · · < ik ≤ n, we have

∂ku
∂xi1 · · · ∂xik

≡ 0 ∈ L1(Pi1...ik). (3.21)

In particular, this implies that the Newton-Leibniz formula is satisfied in any k-rectangle Pi1...ik with
k ≤ n − 1 if we assign u(0) = 0. However, Newton-Leibniz formula is not satisfied in an n-rectangle P
due to the fact that

∂nu
∂x1 · · · ∂xn

< L1(P). (3.22)
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Example 3.3. Consider a function

u(x) =

k∏
s=1

sign xs ∈ L∞(Rn), (3.23)

with k ∈ {1, ..., n − 1}. It is discontinuous along all the coordinates axis x1, ..., xk. For arbitrary
s ∈ {1, ..., k} the weak derivatives

∂su
∂x1 · · · ∂xs

(3.24)

do not exist. All the other mixed derivatives which involve differentiation with respect to any other
variables xl with l ∈ {k + 1, ..., n} exists and equal to zero. Clearly, the Newton-Leibniz formula is not
satisfied in any n-rectangle whose interior intersects any of the coordinate axis x1, ..., xk.

4. Proof of main results

Proof of Theorem 3.1. Assuming that u ∈ S C1(Rn), we prove (3.2) by induction in terms of the space
dimension n. If n = 1, it coincides with the Newton-Leibniz formula. Assume that (3.2) is true, and
demonstrate that it is true if n is replaced with n + 1. Let x, x′ ∈ Rn+1 with xi < x′i , i = 1, n + 1, are
fixed. We have

u(x′) − u(x) = (u(x′) − u(x̃, x′n+1)) + (u(x̃, x′n+1) − u(x)), (4.1)

where x̃ = (x1, ..., xn). Applying (3.2) to the first term and the Newton-Leibniz formula to the second
term in (4.1), we derive

u(x′) − u(x) =

n∑
k=1

n∑
i1,...,ik=1
i1<...<ik

∫
Pi1 ...ik

∂ku(η̃, x′n+1)
∂xi1 · · · ∂xik

dηi1 · · · dηik +

x′n+1∫
xn+1

∂u(x̃, η)
∂xn+1

dη. (4.2)

Applying the Newton-Leibniz formula to all but the last integrand, we have

u(x′) − u(x) =

n∑
k=1

n∑
i1,...,ik=1
i1<...<ik

∫
Pi1 ...ik

x′n+1∫
xn+1

∂k+1u(η)
∂xi1 · · · ∂xik∂xn+1

dηi1 · · · dηik dηn+1

+

x′n+1∫
xn+1

∂u(x̃, η)
∂xn+1

dη +

n∑
k=1

n∑
i1,...,ik=1
i1<...<ik

∫
Pi1 ...ik

∂ku(η)
∂xi1 · · · ∂xik

dηi1 · · · dηik , (4.3)

which imply that

u(x′) − u(x) =

n+1∑
k=1

n+1∑
i1,...,ik=1
i1<...<ik

∫
Pi1 ...ik

∂ku(η)
∂xi1 · · · ∂xik

dηi1 · · · dηik , (4.4)

where we use the same notation for the (n + 1)-rectangle P, as well as its corresponding sub-rectangles
in Rn+1. Indeed, divide all 2n+1 − 1 sub-rectangles of P with the bottom corner at x into two groups
depending on whether or not the edge pn+1 joining vertices x and (x̃, x′n+1) is contained in it. The first

AIMS Mathematics Volume 8, Issue 9, 20700–20717.
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two terms on the right-hand side of (4.3) consist of all 2n terms of (4.4) with integrals along sub-
rectangles containing the edge pn+1, and the last term on the right-hand side of (4.3) is identical with
the remaining 2n − 1 integrals in (4.4) along sub-rectangles which do not contain the edge pn+1. This
completes the proof by induction. �

Proof of Theorem 3.2. First, we prove the Theorem assuming that 1 ≤ p < ∞. The proof will be
pursued in four steps.

Step 1. Prove that for u ∈ S 1
p(Rn), each of the 2n−1 integrals on the right-hand side of (3.2) is finite,

and in particular, (3.4) is satisfied. Existence of the integral with k = n on the right hand side of (3.2)
follows from the definition of S 1

p(Rn) and Hölder inequality. We prove the existence of the remaining
2n − 2 trace integrals in (3.2) by mathematical induction and Sobolev trace embedding result. First, we
demonstrate that the claim is true if k = n − 1. Then we show that the claim is true for any k < n − 1,
provided it is true for k + 1. Indeed, if k = n − 1, for each of the n integrals we select a unique integer
j satisfying

j ∈ {1, ..., n} ∩ {i1, ..., ik}
c, (4.5)

and define a multi-index s = (s1, ..., sn) ∈ Zn
+, where si = δi j is a Kronecker symbol. We have

∂n−1u
∂xi1 · · · ∂xin−1

∈ Ws
p(P). (4.6)

Note that (n − 1)-rectangle Pi1···in−1 is a boundary of P on the hyperplane η j = x j. Existence of the trace

∂n−1u
∂xi1 · · · ∂xin−1

∈ Lp(Pi1···in−1) (4.7)

is a consequence of the Sobolev trace embedding result:

Ws
p(P) ↪→ Lp(Pi1···in−1). (4.8)

For completeness, we present a proof of (4.8). Consider a function

ζ(η) = 1 −
η j − x j

x′j − x j
, (4.9)

which satisfy

0 ≤ ζ ≤ 1,
∣∣∣∣ ∂ζ
∂η j

∣∣∣∣ ≤ 1
x′j − x j

, η ∈ P. (4.10)

Assuming that u ∈ S C1(P), we have∫
Pi1 ...in−1

∣∣∣∣ ∂n−1u(η)
∂xi1 · · · ∂xin−1

∣∣∣∣p dηi1 · · · dηin−1

=

∫
Pi1 ...in−1

ζ
∣∣∣∣ ∂n−1u(η)
∂xi1 · · · ∂xin−1

∣∣∣∣p dηi1 · · · dηin−1
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= −

∫
Pi1 ...in−1

x′j∫
x j

∂

∂x j

(
ζ
∣∣∣∣ ∂n−1u(η)
∂xi1 · · · ∂xin−1

∣∣∣∣p) dη j dηi1 · · · dηin−1

= −

∫
Pi1 ...in−1

x′j∫
x j

[ ∂ζ
∂x j

∣∣∣∣ ∂n−1u(η)
∂xi1 · · · ∂xin−1

∣∣∣∣p + ζp
∣∣∣∣ ∂n−1u(η)
∂xi1 · · · ∂xin−1

∣∣∣∣p−1

× sign
( ∂n−1u(η)
∂xi1 · · · ∂xin−1

) ∂nu(η)
∂xi1 · · · ∂xik∂x j

]
dη j dηi1 · · · dηin−1 (4.11)

If p > 1, by using Young’s inequality and (4.10), from (4.11) it follows∥∥∥∥ ∂n−1u(η)
∂xi1 · · · ∂xin−1

∥∥∥∥
Lp(Pi1 ···in−1 )

≤ C
∥∥∥∥ ∂n−1u(η)
∂xi1 · · · ∂xin−1

∥∥∥∥
Ws

p(P)
, (4.12)

where C = max(p − 1 + |x′j − x j|
−1; 1). If p = 1, (4.12) follows directly from (4.10) and (4.11). In

general, we can approximate u ∈ S 1
p(Rn) with the sequence uε = u ∗ φε ∈ C∞loc(R

n), where φε is a
standard rescaled mollifier, and derive (4.12) for uε . Since uε converges to u in the norm given on the
right-hand side of (4.12), it is so in the norm of the left-hand side as well, and passing to the limit
as ε → 0, (4.12), (4.8) and (4.7) follow. Hence, n relations of (3.4) with k = n − 1 are established.
Next, we prove that the claim is true for k if it is so for k + 1. For any of the

(
n
k

)
integrals in (3.2)

along the k-dimensional prism Pi1···ik we select any integer j satisfying (4.5), and define a multiindex
s = (s1, ..., sk+1) ∈ Zk+1

+ , where si = δi j is a Kronecker symbol. Noting that Pi1···ik+1 is invariant with
respect to permutations of the multi-index i1 · · · ik+1, and due to the induction assumption we have

∂ku
∂xi1 · · · ∂xik

∈ Ws
p(Pi1···ik j). (4.13)

k-rectangle Pi1···ik is a boundary of (k + 1)-rectangle Pi1···ik j on the hyperplane x j = const. Sobolev trace
embedding result implies:

Ws
p(Pi1···ik j) ↪→ Lp(Pi1···ik), (4.14)

The proof of (4.14) is identical to the proof of (4.8). Hence, (3.4) is proved for all k-dimensional
integrals.

Step 2. In this step we prove that any u ∈ S 1
p(Rn) ∩ S C1

loc(R
n), p > 1 satisfies the estimate

|u(x) − u(x′)| ≤
[(

(1 + p)
1
p + |x − x′|

p−1
p
)n
− (1 + p)

n
p
]
‖u‖S 1

p(Rn), (4.15)

for all x, x′ ∈ Rn. Similarly, any u ∈ S 1
1(Rn) ∩ S C1

loc(R
n) satisfy the estimate

|u(x) − u(x′)| ≤ (3n − 2n)‖u‖S 1
1(Rn), (4.16)

for all x, x′ ∈ Rn. Note that the estimate (4.16) is a formal limit of the estimate (4.15) as p→ 1.
To prove (4.15) (or (4.16)) without loss of generality we can assume that xi < x′i , i = 1, n. Indeed, if

xi , x′i , i = 1, n, then we can transform the space via finitely many translations

ỹ : Rn → Rn, ỹi =

{
yi, if xi < x′i ,
−yi, if xi > x′i ,

(4.17)
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and note that the space S 1
p(Rn) is invariant under this transformation. Then we can apply (4.15) (or

(4.16)) to the ε-mollification of the transformed function ũ(x̃) = u(x̃), and passing to limit as ε → 0
deduce (4.15) (or (4.16)) for ũ. Applying inverse transformation of (4.17) implies (4.15) (or (4.16)) for
u. If, on the other side xi = x′i for some i, we can replace x′i with x′i + δ, prove (4.15) (or (4.16)) and
pass to limit as δ→ 0.

The proof of (4.15) and (4.16) under the assumption that xi < x′i , i = 1, n is based on the generalized
Newton-Leibniz formula (3.2). The following is the proof of the estimate (4.15). Let P be a n-
rectangle (3.1), and

P1 := {η ∈ Rn : xi ≤ ηi ≤ x′i + 1, i = 1, n}.

By using Hölder inequality the integral on the right-hand side of (3.2) with k = n is estimated as
follows ∣∣∣∣ ∫

P

∂nu(η)
∂x1 · · · ∂xn

dη
∣∣∣∣ ≤ |P| p−1

p

∥∥∥∥ ∂nu
∂x1 · · · ∂xn

∥∥∥∥
Lp(P)

, (4.18)

where |P| denotes volume of the n-rectangle P. For k = 1, ..., n − 1, estimation of any of the k-
dimensional integrals on the right-hand side of (3.2) will be pursued in n − k steps. Consider typical
k-dimensional integral in (3.2) along the k-rectangle Pi1···ik . The idea is based on successive application
of the trace embedding result (4.14) n − k times. First, we select any integer j from (4.5) and assign it
to the multi-index component ik+1. By using Hölder inequality we have∣∣∣∣ ∫

Pi1 ···ik

∂ku(η)
∂xi1 · · · ∂xik

dηi1 · · · dηik

∣∣∣∣ ≤ |Pi1···ik |
p−1

p

∥∥∥∥ ∂ku
∂xi1 · · · ∂xik

∥∥∥∥
Lp(Pi1 ···ik )

. (4.19)

Consider a function
ζ(η) = 1 −

ηik+1 − xik+1

x′ik+1
− xik+1 + 1

, (4.20)

which satisfy

0 ≤ ζ ≤ 1,
∣∣∣∣ ∂ζ

∂ηik+1

∣∣∣∣ ≤ 1. (4.21)

We have∫
Pi1 ...ik

∣∣∣∣ ∂ku(η)
∂xi1 · · · ∂xik

∣∣∣∣p dηi1 · · · dηik =

∫
Pi1 ...ik

ζ
∣∣∣∣ ∂ku(η)
∂xi1 · · · ∂xik

∣∣∣∣p dηi1 · · · dηik

= −

∫
Pi1 ...ik

x′ik+1
+1∫

xik+1

∂

∂xik+1

(
ζ
∣∣∣∣ ∂ku(η)
∂xi1 · · · ∂xik

∣∣∣∣p) dηik+1 dηi1 · · · dηik

= −

∫
Pi1 ...ik

x′ik+1
+1∫

xik+1

[ ∂ζ

∂xik+1

∣∣∣∣ ∂ku(η)
∂xi1 · · · ∂xik

∣∣∣∣p + ζp
∣∣∣∣ ∂ku(η)
∂xi1 · · · ∂xik

∣∣∣∣p−1

× sign
( ∂ku(η)
∂xi1 · · · ∂xik

) ∂k+1u(η)
∂xi1 · · · ∂xik∂xik+1

]
dηik+1 dηi1 · · · dηik (4.22)
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By using Young’s inequality and (4.21), from (4.22) it follows

∫
Pi1 ···ik

∣∣∣∣ ∂ku(η)
∂xi1 · · · ∂xik

∣∣∣∣p dηi1 · · · dηik ≤

∫
Pi1 ···ik

x′ik+1
+1∫

xik+1

[∣∣∣∣ ∂k+1u(η)
∂xi1 · · · ∂xik∂xik+1

∣∣∣∣p
+ p

∣∣∣∣ ∂ku(η)
∂xi1 · · · ∂xik

∣∣∣∣p] dηik+1 dηi1 · · · dηik . (4.23)

From (4.19), (4.23) it follows that∣∣∣∣ ∫
Pi1 ···ik

∂ku(η)
∂xi1 · · · ∂xik

dηi1 · · · dηik

∣∣∣∣ ≤ |Pi1···ik |
p−1

p ×
(∥∥∥∥ ∂k+1u
∂xi1 · · · ∂xik+1

∥∥∥∥p

Lp(P1
i1 ···ik

)
+ p

∥∥∥∥ ∂ku
∂xi1 · · · ∂xik

∥∥∥∥p

Lp(P1
i1 ···ik

)

) 1
p
,

(4.24)

where P1
i1···ik

= Pi1···ik × (xik+1 , x
′
ik+1

+1) is a (k +1)-rectangle. This completes one out of n−k steps for the
estimation of the k-dimensional integral in (3.2) along the k-rectangle Pi1···ik . In the next step, we select
any integer j from (4.5) with k replaced with k+1 and assign it to multi-index component ik+2. Then for
each of the k +1-dimensional integrals on the right-hand side of (4.24) we derive the estimation similar
to (4.23), where Pi1···ik is replaced with (k + 1)-rectangle P1

i1···ik
, and integration interval (xik+1 , x

′
ik+1

+ 1)
is replaced accordingly with (xik+2 , x

′
ik+2

+ 1). Application of these estimations to the right-hand side
of (4.24) would complete the second out of n−k steps. By repeating the procedure after m = 1, ..., n−k
steps we derive the following estimate:∣∣∣∣ ∫

Pi1 ···ik

∂ku(η)
∂xi1 · · · ∂xik

dηi1 · · · dηik

∣∣∣∣ ≤ |Pi1···ik |
p−1

p ×
[ m∑

j=0

(
m
j

)
p j

∥∥∥∥ ∂k+m− ju
∂xi1 · · · ∂xik+m− j

∥∥∥∥p

Lp(Pm
i1 ···ik

)

] 1
p
, (4.25)

where
Pm

i1···ik = Pi1···ik × (xik+1 , x
′
ik+1

+ 1) × · · · × (xik+m , x
′
ik+m

+ 1),

be a (k + m)-rectangle. Let us prove the estimation (4.25) by induction. If m = 1, the estimation (4.25)
coincides with (4.24). Prove that (4.25) is true for m + 1 if it is so for any m < n − k. Each of the
k + m-dimensional integrals on the right-hand side of (4.25) satisfy the following estimate

∫
Pm

i1 ···ik

∣∣∣∣ ∂k+m− ju(η)
∂xi1 · · · ∂xik+m− j

∣∣∣∣p dηi1 · · · dηik+m ≤

∫
Pm

i1 ···ik

x′ik+1+m
+1∫

xik+1+m

[∣∣∣∣ ∂k+1+m− ju(η)
∂xi1 · · · ∂xik+m− j∂xik+1+m− j

∣∣∣∣p
+ p

∣∣∣∣ ∂k+m− ju(η)
∂xi1 · · · ∂xik+m− j

∣∣∣∣p] dηik+1+m dηi1 · · · dηik+m . (4.26)

Using (4.26), we have
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m∑
j=0

(
m
j

)
p j

∥∥∥∥ ∂k+m− ju
∂xi1 · · · ∂xik+m− j

∥∥∥∥p

Lp(Pm
i1 ···ik

)

≤

m∑
j=0

(
m
j

)
p j

[∥∥∥∥ ∂k+1+m− ju
∂xi1 · · · ∂xik+1+m− j

∥∥∥∥p

Lp(Pm+1
i1 ···ik

)
+ p

∥∥∥∥ ∂k+m− ju
∂xi1 · · · ∂xik+m− j

∥∥∥∥p

Lp(Pm+1
i1 ···ik

)

]
=

m∑
j=0

(
m
j

)
p j

∥∥∥∥ ∂k+1+m− ju
∂xi1 · · · ∂xik+1+m− j

∥∥∥∥p

Lp(Pm+1
i1 ···ik

)

+

m+1∑
j=1

(
m

j − 1

)
p j

∥∥∥∥ ∂k+1+m− ju
∂xi1 · · · ∂xik+1+m− j

∥∥∥∥p

Lp(Pm+1
i1 ···ik

)
. (4.27)

Since (
m
j

)
+

(
m

j − 1

)
=

(
m + 1

j

)
, j = 1, ...,m,

from (4.27) it follows

m∑
j=0

(
m
j

)
p j

∥∥∥∥ ∂k+m− ju
∂xi1 · · · ∂xik+m− j

∥∥∥∥p

Lp(Pm
i1 ···ik

)
≤

m+1∑
j=0

(
m + 1

j

)
p j

∥∥∥∥ ∂k+m+1− ju
∂xi1 · · · ∂xik+1+m− j

∥∥∥∥p

Lp(Pm+1
i1 ···ik

)
, (4.28)

which completes the proof of (4.25) by mathematical induction. By choosing m = n − k in (4.25), we
derive an upper bound of the right-hand side by replacing the integration domain with Rn:∣∣∣∣ ∫

Pi1 ···ik

∂ku(η)
∂xi1 · · · ∂xik

dηi1 · · · dηik

∣∣∣∣ ≤ |Pi1···ik |
p−1

p
[ n−k∑

j=0

(
n − k

j

)
p j

] 1
p
‖u‖S 1

p(Rn)

≤ |x − x′|
k(p−1)

p (1 + p)
n−k

p ‖u‖S 1
p(Rn). (4.29)

Note that the estimation (4.29) holds for k=n as well in view of (4.18). By using (4.29) from the
generalized Newton-Leibniz formula (3.2) it follows the estimate

|u(x′) − u(x)| ≤
n∑

k=1

n∑
i1,...,ik=1
i1<...<ik

|x − x′|
k(p−1)

p (1 + p)
n−k

p ‖u‖S 1
p(Rn)

=

n∑
k=1

(
n
k

)
|x − x′|

k(p−1)
p (1 + p)

n−k
p ‖u‖S 1

p(Rn)

=
[ n∑

k=0

(
n
k

)
|x − x′|

k(p−1)
p (1 + p)

n−k
p − (1 + p)

n
p
]
‖u‖S 1

p(Rn)

=
[(

(1 + p)
1
p + |x − x′|

p−1
p
)n
− (1 + p)

n
p
]
‖u‖S 1

p(Rn), (4.30)

which proves the desired estimate (4.15). The proof of the estimate (4.16) is almost identical to the
proof of (4.15).

Step 3. In this step we prove
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• the uniform C0,1− 1
p (Rn)-estimate for any u ∈ S 1

p(Rn) ∩ S C1
loc(R

n), 1 < p < ∞;
• the uniform C0(Rn)-estimate for any u ∈ S 1

1(Rn) ∩ S C1
loc(R

n).

Assume p > 1 and fix x, x′ ∈ Rn such that |x − x′| ≤ 1. From (4.15) it follows that

|u(x) − u(x′)| ≤
[(

(1 + p)
1
p + |x − x′|

p−1
p
)n
− (1 + p)

n
p
]
‖u‖S 1

p(Rn)

=

n∑
k=1

(
n
k

)
|x − x′|

k(p−1)
p (1 + p)

n−k
p ‖u‖S 1

p(Rn)

=

n∑
k=1

(
n
k

)
|x − x′|

(k−1)(p−1)
p (1 + p)

n−k
p ‖u‖S 1

p(Rn)|x − x′|
p

p−1

≤

n∑
k=1

(
n
k

)
(1 + p)

n−k
p ‖u‖S 1

p(Rn)|x − x′|
p

p−1

=
[ n∑

k=0

(
n
k

)
(1 + p)

n−k
p − (1 + p)

n
p
]
‖u‖S 1

p(Rn)|x − x′|
p

p−1

=
[(

1 + (1 + p)
1
p
)n
− (1 + p)

n
p
]
‖u‖S 1

p(Rn)|x − x′|
p

p−1 . (4.31)

Hence, we have

sup
|x−x′ |≤1

x,x′

|u(x) − u(x′)|

|x − x′|
p

p−1
≤

[(
1 + (1 + p)

1
p
)n
− (1 + p)

n
p
]
‖u‖S 1

p(Rn). (4.32)

Now fix x ∈ Rn. By using (4.32) and Hölder inequality we deduce

|u(x)| ≤
∮

|y−x|≤1

|u(x) − u(y)| dy +

∮
|y−x|≤1

|u(y)| dy

≤
[(

1 + (1 + p)
1
p
)n
− (1 + p)

n
p
]
‖u‖S 1

p(Rn) + Γ
− 1

p
n ‖u‖Lp(Rn)

≤
[(

1 + (1 + p)
1
p
)n
− (1 + p)

n
p + Γ

− 1
p

n

]
‖u‖S 1

p(Rn). (4.33)

where Γn is a volume of the unit ball in Rn. Hence, we have

‖u‖C0(Rn) ≤
[(

1 + (1 + p)
1
p
)n
− (1 + p)

n
p + Γ

− 1
p

n

]
‖u‖S 1

p(Rn). (4.34)

From (4.34) it follows that

sup
|x−x′ |≥1

|u(x) − u(x′)|

|x − x′|
p

p−1
≤ 2‖u‖C0(Rn) ≤ 2

[(
1 + (1 + p)

1
p
)n
− (1 + p)

n
p + Γ

− 1
p

n

]
‖u‖S 1

p(Rn). (4.35)

From (4.32) and (4.35) we deduce the following Hölder seminorm estimate for u:

[u]
C0,1− 1

p (Rn)
≤ 2

[(
1 + (1 + p)

1
p
)n
− (1 + p)

n
p + Γ

− 1
p

n

]
‖u‖S 1

p(Rn). (4.36)

Finally, (4.34), (4.36) imply the following Hölder norm estimate for u ∈ S 1
p(Rn)∩S C1

loc(R
n), 1 < p < ∞:

‖u‖
C0,1− 1

p (Rn)
≤ 3

[(
1 + (1 + p)

1
p
)n
− (1 + p)

n
p + Γ

− 1
p

n

]
‖u‖S 1

p(Rn). (4.37)
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If p = 1 from the estimate (4.16) with the similar argument as in (4.33) we derive the following
C0(Rn)-estimate for any u ∈ S 1

1(Rn) ∩ S C1
loc(R

n):

‖u‖C0(Rn) ≤
[
3n − 2n + Γ−1

n

]
‖u‖S 1

1(Rn). (4.38)

Step 4. We complete the proof of the embedding (3.3) by using estimates (4.37), (4.38) and smooth
approximation of elements of S 1

p(Rn). Given u ∈ S 1
p(Rn), 1 ≤ p < ∞, we select a sequence vm ∈ C∞0 (Rn)

such that
‖vm − u‖S 1

p(Rn) → 0, as m→ ∞. (4.39)

For example, the sequence vm can be given explicitly as in [11] (Lemma 23):

vm(x) = u
1
m (x)η

( x
m

)
,

where u
1
m = u ∗ φ

1
m ∈ C∞loc(R

n) ∩ S 1
p(Rn) is the 1

m -mollification of u, φ
1
m is a standard rescaled mollifier,

η ∈ C∞0 (Rn) be a compactly supported function which equals 1 near the origin. If p > 1, then by
applying the estimate (4.37) to vm, we have

‖vm‖C0,1− 1
p (Rn)
≤ 3

[(
1 + (1 + p)

1
p
)n
− (1 + p)

n
p + Γ

− 1
p

n

]
‖vm‖S 1

p(Rn). (4.40)

Equivalently, we have

‖vm − vl‖C0,1− 1
p (Rn)
≤ 3

[(
1 + (1 + p)

1
p
)n
− (1 + p)

n
p + Γ

− 1
p

n

]
‖vm − vl‖S 1

p(Rn), (4.41)

for all m, l ≥ 1, whence there exists a function u∗ ∈ C0,1− 1
p (Rn) such that

‖vm − u∗‖C0,1− 1
p (Rn)
→ 0, as m→ ∞. (4.42)

From (4.39) it follows that u∗ = u, a.e. on Rn, so that u∗ is in the equivalency class of u. Passing to
limit as m→ ∞, from (4.40) it also follows that

‖u∗‖C0,1− 1
p (Rn)
≤ 3

[(
1 + (1 + p)

1
p
)n
− (1 + p)

n
p + Γ

− 1
p

n

]
‖u‖S 1

p(Rn). (4.43)

which proves the bounded embedding (3.3). Step 1 of the proof implies that the traces of u∗
satisfy (3.4), and each of them is an Lp-limit of the corresponding sequence of traces of vm. Therefore,
writing (3.2) for vm, and passing to limit as m→ ∞, it follows that u∗ satisfies the generalized Newton-
Leibniz formula (3.2).

Proof in the case p = 1 is identical by using an estimate (4.38). This completes the proof of the
theorem in the case 1 ≤ p < ∞.

Assume that p = ∞. In this case, the embedding (3.3) is not new, and it is contained in the well-
known fact that [2]

W1
∞(Rn) ↪→ C0,1(Rn).

Since S 1
∞(Rn) is a subspace of W1

∞(Rn), its elements are bounded and Lipschitz continuous functions
and the embedding (3.3) holds. The assertion that u satisfies (3.2) follows from the proof given for the
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case p < ∞. It only remains to show that (3.4) holds with p = ∞. Note that from the given proof
it follows that (3.4) holds for any p < ∞. In particular for the smoothing sequence uε = u ∗ φε ∈
S 1
∞(Rn) ∩ C∞loc(R

n) all the traces indicated on the left hand side of (3.4) are uniformly bounded in
L∞(Pi1···ik), and converge to corresponding traces of u in Lp(Pi1···ik) with any 1 < p < ∞. Such limits
are also limits in the sense of distributions. Since L∞(Pi1···ik) is a dual space of L1(Pi1···ik), distributional
limit of the sequence bonded in L∞(Pi1···ik) remains in L∞(Pi1···ik). Therefore, (3.4) holds with p = ∞.
Theorem is proved. �

Corollaries 3.1, 3.2 and 3.3 are the direct consequence of the Theorem 3.2 due to the fact that if
u ∈ S k

p(Rn), then all the weak partial derivatives of order k−1 are elements of S 1
p(Rn), and if u ∈ S k

p(Rn)
the indicated partial derivative on the left hand side of (3.6) is an element of S 1

p(Rn). The bounded
embedding (3.7) is a direct consequence of (3.5) and the definition of the space S 1

p(Q). The compact
embedding (3.8) follows from (3.7) and Arzela-Ascoli’s theorem.

The following remarks are added following on the recommendation of the reviewer:

Remark 4.1. Reviewer of the paper writes: The techniques used to prove the Theorem 3.2 are nice
alternative to Fourier-based methods. The results of Theorem 3.2 and Corollary 3.1 are new if p = 1. If
1 < p < ∞, the results can be derived from the known embedding results of Besov and Triebel-Lizorkin
spaces as follows: The theorem on page 104 in [7] tells us that S m

p W(Rn) = S m
p,2F(Rn) if m ∈ N and

1 < p < ∞. By Proposition 1.15 in [9] we have S m
p,2(Rn) ↪→ S m

p,max (p,2)B(Rn) ↪→ S m
p,∞B(Rn). Next, by

the theorem on p.131 in [7] we have S m
p,∞B(Rn) ↪→ S m−1/p

∞,∞ B(Rn). The latter space S m−1/p
∞,∞ B(Rn) is a

dominating mixed smoothness type Hölder-Zygmund space and sometimes denoted by S m−1,1−1/pC(Rn).
Either way, relying on Theorem 3.1 from [12] we get the embedding S m−1,1−1/pC(Rn) ↪→ Bm−1/p

∞,∞ (Rn) =

Cm−1,1−1/p(Rn), where the last equality is a classical result (see e.g., [13]). In summary, we have the
embedding S m

p W(Rn) ↪→ Cm−1,1−1/p(Rn). Regarding the assertion on traces, the cases with p = 1,∞
are novel in the literature. But the cases 1 < p < ∞ are contained in Lemma 4.1 of [14].

Remark 4.2. The task of embedding large subspaces of the Sobolev spaces Wm
p into Lebesgue spaces

Lq is touched on e.g., in [15] or [6].

5. Conclusions

The concept of Sobolev spaces became a trailblazing idea in many fields of mathematics. The goal
of this paper is to gain insight into the embedding of the Sobolev spaces into Hölder spaces-a very
powerful concept that reveals the connection between weak differentiability and integrability (or weak
regularity) of the function with its pointwise regularity. It is well-known that the embedding of the
Sobolev space of weakly differentiable functions into Hölder spaces holds if the integrability exponent
is higher than the space dimension. Otherwise speaking, one can trade one degree of weak regularity
with an integrability exponent higher than the space dimension to upgrade the pointwise regularity to
Hölder continuity. In this paper, the embedding of the Sobolev functions into the Hölder spaces is
expressed in terms of the minimal weak differentiability requirement independent of the integrability
exponent. Precisely, the question asked is what is the minimal weak regularity degree of Sobolev
functions which upgrades the pointwise regularity to Hölder continuity independent of the integrability
exponent. The paper presents proof of the embedding of the Sobolev spaces with dominating mixed
smoothness into Hölder spaces. The new method of proof is based on the generalization of the

AIMS Mathematics Volume 8, Issue 9, 20700–20717.
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Newton-Leibniz formula to the n-dimensional rectangle and inductive application of the Sobolev trace
embedding results. Counterexamples demonstrate that in terms of minimal weak regularity degree the
Sobolev spaces with dominating mixed smoothness present the largest class of weakly differentiable
functions which preserve generalized Newton-Leibniz formula, and upgrades the pointwise regularity
to Hölder continuity.
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