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Abstract: The subject matter described herein includes the analysis of the stress-strength reliability
of the system, in which the discrete strength of the system is impacted by two random discrete stresses.
The reliability function of such systems is denoted by R = P[Y < X < Z], where X is the strength
of the system and Y and Z are the stresses. We look at how X, Y and Z fit into a well-known discrete
distribution known as the geometric distribution. The stress-strength reliability of this form is not
widely studied in the current literature, and research in this area has only considered the scenario
when the strength and stress variables follow a continuous distribution, although it is essentially nil
in the case of discrete stress and strength. There are numerous applications wherein a system is
exposed to external stress, and its functionality depends on whether its intrinsic physical strength falls
within specific stress limits. Furthermore, the continuous measurement of stress and strength variables
presents inherent difficulties and inconveniences in such scenarios. For the suggested distribution,
we obtain the maximum likelihood estimate of the variable R, as well as its asymptotic distribution
and confidence interval. Additionally, in the classical setup, we find the boot-p and boot-t confidence
intervals for R. In the Bayesian setup, we utilize the widely recognized Markov Chain Monte Carlo
technique and the Lindley approximation method to find the Bayes estimate of R under the squared
error loss function. A Monte Carlo simulation study and real data analysis are demonstrated to show
the applicability of the suggested model in the real world.
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1. Introduction

In reliability theory, stress-strength models are one of the most attractive topics. There are several
applications, such as engineering, meteorology, quality control, and medicine, where the system is
subjected to external stress and its reliability is determined by its strength. Most of the work in the
statistical literature has been dedicated to the estimation of the reliability parameter of the form R =

P[Y < X], where X represents the strength of the system, Y is the stress imposed upon it, and R is
the stress-strength parameter. Many authors consider the estimation of R using various continuous
and discrete distributions; for a comprehensive review, see [1]. Other important studies in this context
include [2–10].

A different type of stress-strength model may occur in practice, in which the system’s strength is
impacted by two random stresses. In this context, the reliability measure is defined by R = P[Y <

X < Z], where X is the strength and Y and Z are the two stresses. For example, various types of
equipment fail to work effectively at high or low temperatures, and a person’s blood pressure has
systolic and diastolic pressure limits that should not be exceeded (see [11]). The existing literature
does not go into great detail about the stress-strength reliability, specifically on R = P[Y < X < Z].
Notable works in this field include the following: Singh [12] obtained the minimum variance unbiased,
maximum likelihood, and empirical estimates of R, when X, Y and Z are mutually independent
random variables from the normal distribution, Dutta et al. [13] considered the estimation of R, when
X, Y and Z are from an exponential distribution, and Ivshin [14] obtained the maximum likelihood
estimate (MLE) as well as the uniformly minimum variance unbiased estimate (UMVUE) of R under
the assumption that X, Y and Z are either uniform or exponential random variables with unknown
location meters. Guangming [15] constructed statistical inference for R using the nonparametric
normal approximation and the Jackknife empirical likelihood approach. Rasethuntsa [11] considered
the parametric estimation of R and its generalizations based on several one- and two-parameter
continuous distributions. Choudhary et al. [16] considered the problem of estimating R, when X,
Y and Z independently follow the Weibull distribution with different scale parameters and common
shape parameters.

The current literature exclusively revolves around the estimation of R = P[Y < X < Z] in the context
of continuous probability distributions. However, in real-life situations, there are several instances
when it is often difficult or inconvenient to measure the variables on a continuous scale (see [17, 18]).
In some real-life situations, stress and strength can have a discrete distribution. The estimation of
a stress-strength reliability R = P[Y < X < Z], when Y and Z are two discrete stresses acting on
a discrete strength, X, has yet to be addressed in the literature. This type of situation is commonly
encountered in practice. Some examples are developed below.

• In a demand-supply system, the minimum supply (Y), maximum supply (Z), and demand (X) can
be counted in terms of the number of items. In this case, as long as the demand lies between the
minimum supply and maximum supply, the demand-supply system can function by establishing
an equilibrium where the quantity demanded matches the quantity supplied.
• Another example of discrete stress and strength is seen in candidate interviews for employment.

Here, X represents the number of interviews an employer conducts to find a suitable candidate.
The minimum number of candidates required for the interview is denoted by Y , while Z represents
the maximum number of candidates attending the interviews. Optimizing the interview process
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is crucial, as it requires significant investment in terms of time, effort, and resources. Conducting
interviews for too few candidates is inefficient, while interviewing an excessive number leads
to resource waste. By establishing an optimal range between Y and Z, employers can strike a
balance that ensures efficient resource utilization while maintaining a robust selection process.

Therefore, the main objective of this article is to address the estimation problem of stress-strength
reliability in the form of R = P[Y < X < Z] within the context of discrete data. In our study,
we specifically focus on utilizing the geometric distribution. While there are various other discrete
distributions available, we have chosen the geometric distribution due to its simplicity, making it a
valuable tool for modeling scenarios where the occurrence of an event or failure is governed by a
constant probability. Thus, the core focus of this article is to address the estimation problem associated
with the stress-strength model denoted by R = P[Y < X < Z], where X, Y , and Z are independent
random variables that follow the geometric distribution.

If a random variable X has the geometric distribution with parameter θ, denoted as Geo(θ), then its
probability mass function (PMF) and cumulative distribution function (CDF) are given by, respectively,

P[X = x ; θ] = θ(1 − θ)x−1, x = 1, 2, 3, . . . ,∞ (1.1)

and

FX(x ; θ) = P[X ≤ x ; θ] = 1 − (1 − θ)x, x = 1, 2, 3, . . . ,∞, (1.2)

where 0 < θ < 1. The rest of the paper is organized into the following sections: In Section 2,
we derive an expression for the reliability function of the stress-strength model of the form P[Y <

X < Z]. The MLE of R and its corresponding asymptotic distribution are derived in Sections 3 and 4,
respectively. In Section 5, confidence intervals based on bootstrap samples are also obtained. In Section
6, Bayes estimates are constructed under a squared error loss function (SELF), assuming Beta and
Jeffreys priors, using the Lindley approximation and Markov Chain Monte Carlo (MCMC) methods.
In Section 7, a simulation study is carried out to compare the behavior of the obtained estimates.
Section 8 presents applications of the proposed model using real data sets with discussions of the
obtained results. Finally, concluding remarks are given in Section 9.

2. Derivation of R

Here, we derive the expression of the stress-strength reliability parameter R = P[Y < X < Z] when
the independent random variables X, Y and Z follow the geometric distributions Geo(θ1), Geo(θ2) and
Geo(θ3), respectively. By using the standard geometric series formula, we obtain

R = P [Y < X < Z] =

∞∑
k=1

P[X = k,Y < k,Z > k] =

∞∑
k=1

P[X = k].P[Y < k].P[Z > k]

=

∞∑
k=1

θ1(1 − θ1)k−1.(1 − (1 − θ2)k−1).(1 − θ3)k

= θ1 (1 − θ3)
∞∑

k=1

(1−θ1)k−1(1 − θ3)k−1(1 − (1 − θ2)k−1)

AIMS Mathematics Volume 8, Issue 9, 20679–20699.



20682

= θ1 (1 − θ3)
∞∑

k=1

[{(1−θ1)(1 − θ3)}k−1 − {(1 − θ1)(1 − θ2)(1 − θ3)}k−1]

= θ1(1 − θ3)
[

1
1 − (1 − θ1) (1 − θ3)

−
1

1 − (1 − θ1) (1 − θ2) (1 − θ3)

]
.

Finally, we get

R =
θ1θ2(1 − θ1)(1 − θ3)2

(θ1 + θ3 − θ1θ3)(θ1 + θ3 − θ1θ3 + θ2(1 − θ1)(1 − θ3))
. (2.1)

Some remarks are formulated below.

• The stress-strength reliability parameter R is in a closed form, and it is a function of θ1, θ2 and θ3.
• To make inferences on R, provided the estimates hold the invariance property, we simply need to

estimate the parameters θ1, θ2 and θ3, and plug in these estimated values in Eq (2.1).
• As the strength parameter θ1 increases, R first increases and then decreases for the fixed values of

the stress parameters θ2 and θ3.
• As the stress parameter θ2 increases, R increases for the fixed values of strength parameter θ1 and

stress parameter θ3. On the other hand, when the stress parameter θ3 increases, R decreases for
the fixed values of strength parameter θ1 and stress parameter θ2.

A graphical depiction of the stress-strength reliability parameter R for different values of θ1, θ2, and
θ3 is given in Figures 1–3. It is evident that, with varying values of the parameters, the stress-strength
reliability parameter R can take a variety of values, exhibiting different concave and convex shapes in
terms of multidimensional function.

(a) a (b) b (c) c

Figure 1. 3D plots of R for a fix value of (a) θ3 = 0.1, (b) θ3 = 0.5, (c) θ3 = 0.95.
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(a) a (b) b (c) c

Figure 2. 3D plots of R for a fix value of (a) θ1 = 0.1, (b) θ1 = 0.5, (c) θ1 = 0.95.

(a) a (b) b (c) c

Figure 3. 3D plots of R for a fix value of (a) θ2 = 0.1, (b) θ2 = 0.5, (c) θ2 = 0.95.

3. Maximum likelihood estimation

In this section, we find the MLE of R. To acheive this aim, we must first derive the MLEs of
θ1, θ2 and θ3. Let x = (x1, x2, . . . , xn1), y = (y1, y2, . . . , yn2) and z = (z1, z2, . . . , zn3) be random samples
drawn from the following geometric distributions Geo(θ1), Geo(θ2) and Geo(θ3), respectively. Then
the likelihood function of the observed sample is

L(x, y, z, θ1, θ2, θ3) = θ1
n1(1 − θ1)

n1∑
i=1

(xi−n1)
θ2

n2(1 − θ2)

n2∑
j=1

(y j−n2)
θ3

n3(1 − θ3)
n3∑

k=1
(zk−n3)

. (3.1)

The log-likelihood function is given by

l = log L(x, y, z, θ1, θ2, θ3)

= n1 log θ1 +

n1∑
i=1

(xi − n1) log(1 − θ1) + n2 log θ2 +

n2∑
j=1

(y j − n2) log(1 − θ2) + n3 log θ3

+

n3∑
k=1

(zk − n3) log(1 − θ3), (3.2)
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where x̄, ȳ and z̄ are the means of the random samples x, y and z.
The MLEs of θ1, θ2 and θ3 are the values θ̂1, θ̂2 and θ̂3 that maximize the likelihood function. Formally,
these MLEs are the components of the following vector:

θ̂1, θ̂2, θ̂3 = arg max
θ1,θ2,θ3

L(x, y, z, θ1, θ2, θ3).

Now, we know that the argmax of a function is the same as the argmax of the log of the function.
Therefore, we use the following normal equations in order to calculate the MLEs of θ1, θ2 and θ3:

∂l
∂θ1

= 0,
∂l
∂θ2

= 0,
∂l
∂θ3

= 0.

Upon solving the above normal equation, we get

θ̂1 =
1
x̄
, θ̂2 =

1
ȳ
, θ̂3 =

1
z̄
.

After obtaining the MLEs of θ1, θ2 and θ3 using the invariance property, the MLE of R can be derived
as

R̂ =
(x̄ − 1) (z̄ − 1)2

(x̄ + z̄ − 1) ((ȳ − 1) (x̄ + z̄ − 1) + x̄ z̄)
.

4. Asymptotic distribution and confidence interval for R

In this section, we first derive the asymptotic distribution of R̂. Then, based on it, we will derive the
confidence interval for R. This can be easily followed by the following two theorems:

Theorem 1. Suppose that the ratios n1
n2

and n1
n3

converge to the numbers p and q, respectively, as
n1, n2, n3 → ∞. Then we have(√

n1

(
θ̂1 − θ

)
,
√

n2

(
θ̂2 − θ

)
,
√

n3

(
θ̂3 − θ

)) D
−−−→
n→∞

N3 [0, J (θ1, θ2, θ3)] ,

where

J (θ1, θ2, θ3) =


θ1

2 (1 − θ1) 0 0
0 pθ2

2 (1 − θ2) 0
0 0 qθ3

2 (1 − θ3)

 .
Proof. First of all, it is clear that

E
[
−
∂2l
∂θ1

]
=

n1

θ1
2 (1 − θ1)

; E
[
−
∂2l
∂θ2

]
=

n2

θ2
2 (1 − θ2)

; E
[
−
∂2l
∂θ3

]
=

n3

θ3
2 (1 − θ3)

.

From the asymptotic normality of the MLE (see [19]), we have

√
n1

(
θ̂1 − θ

) D
−−−−→
n1→∞

N
(
0, θ1

2 (1 − θ)
)
,

√
n2

(
θ̂2 − θ

) D
−−−−→
n2→∞

N
(
0, θ2

2 (1 − θ2)
)
,
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and
√

n3

(
θ̂3 − θ

) D
−−−−→
n3→∞

N
(
0, θ3

2 (1 − θ3)
)
.

Then
√

n1

(
θ̂2 − θ

) D
−−−−→
n1→∞

N
(
0, pθ2

2 (1 − θ2)
)
,

√
n1

(
θ̂3 − θ

) D
−−−−→
n1→∞

N
(
0, qθ3

2 (1 − θ3)
)
.

Hence the theorem is proved by the independence of θ̂1, θ̂2, θ̂3. �

Theorem 2. Suppose that the ratios n1
n2

and n1
n3

converge to p and q, respectively, as n1, n2, n3 → ∞,

then
√

n1

(
R̂ − R

) D
−→ N (0, B), where B = bJ (θ1, θ2, θ3) b′ and b =

(
∂R
∂θ1

∂R
∂θ2

∂R
∂θ3

)
.

Proof. Using Theorem 1, one can readily prove this result. �

Now, the variance B can be estimated by using the empirical Fisher information matrix and the
MLEs of θ1, θ2 and θ3. Thus, we can construct an asymptotic confidence interval for R asR̂ − Zγ

√
B̂
n1
, R̂ + Zγ

√
B̂
n1

 ,
where Zγ is the 100 × (1 − γ/2)th percentile of a standard normal distribution and B̂ is the plug in
estimate of B.

5. Bootstrap confidence interval for R

The classical bootstrap methods based on resampling to construct approximate confidence intervals
are a better choice when it is hard to figure out the exact sampling distribution of MLE. Following the
concepts of [20,21], we propose the percentile bootstrap-p (boot-p) and bootstrap-t (boot-t) confidence
intervals based on the bootstrapping method.

The algorithm can be described as follows:

(1) Generate samples x = (x1, x2, . . . , xn1), y = (y1, y2, . . . , yn2) and z = (z1, z2, . . . , zn3) of size n1, n2

and n3 from the geometric distributions Geo(θ1), Geo(θ2) and Geo(θ3), respectively.

(2) Generate bootstrap samples x∗ = (x∗1, x
∗
2, . . . , x

∗
n1

), y∗ = (y∗1, y
∗
2, . . . , y

∗
n2

), and z∗ = (z∗1, z
∗
2, . . . , z

∗
n2

),
and obtain bootstrap estimates θ̂∗1, θ̂∗2, θ̂∗3 and R̂∗ of θ1, θ2, θ3 and R, respectively.

(3) Repeat step 2 B times and obtain the bootstrap estimates θ̂∗1:κ, θ̂
∗
2:κ, θ̂

∗
3:κ and R̂∗κ, κ = 1, 2, . . . , B.

(i) Percentile bootstrap (boot-p) confidence interval: Let
{
R̂∗(1) 6 R̂∗(2) 6 . . . 6 R̂∗(B)

}
denote the

ordered values of estimates
{
R̂∗1, R̂∗2, . . . , R̂

∗
B

}
. Also, let R̂∗(τ) denote the τth percentile of the

ordered values of estimates
{
R̂∗1, R̂∗2, . . . , R̂

∗
B

}
. The 100 × (1 − γ) % boot-p confidence interval

for R is given by (
R̂∗(γ/2), R̂∗(1− γ/2)

)
.
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(ii) Student t bootstrap (boot-t) confidence interval: Let ¯̂R∗ and V
(
R̂∗

)
be the mean and sample

variance of
{
R̂∗1, R̂∗2, . . . , R̂

∗
B

}
. Then, compute bootstrap pivots as t̂ ∗κ =

R̂∗κ−
¯̂R∗

√
V(R̂∗)

, κ = 1, 2, . . . , B.

Let t̂∗(τ) denote the τth percentile of the ordered values
{
t̂∗1, t̂∗2, . . . , t̂

∗
B

}
. The 100 × (1 − γ) %

boot-t confidence interval for R is given by(
R̂ − t̂∗(γ/2)

√
V

(
R̂∗

)
, R̂ + t̂∗(γ/2)

√
V

(
R̂∗

))
.

6. Bayesian estimation

6.1. Methodology

The Bayesian methods permit us to incorporate and use information beyond that contained in
experimental data. Given a statistical model for the experimental data, the Bayesian method mandates
an additional probability model for all the involved unknown parameters. Our approach is to model
this uncertainty about the parameters using a prior distribution. Informative priors are used if one has
adequate information about the parameters; otherwise, it is preferable to use noninformative priors.
We here consider both informative priors and non-informative Jeffreys prior.
Case 1: Let the unknown parameters θ1, θ2 and θ3 have independent prior distributions, BetaI (a1, b1) ,
BetaII (a2, b2) and BetaIII (a3, b3), with the following probability density functions, respectively:

f1 (θ1, a1, b1) =
1

B (a1, b1)
θ1

a1−1(1 − θ1)b1−1; a1, b1 > 0, θ1 ∈ [0, 1], (6.1)

f2 (θ2, a2, b2) =
1

B (a2, b2)
θ2

a2−1(1 − θ2)b2−1; a2, b2 > 0, θ2 ∈ [0, 1], (6.2)

f3 (θ3, a3, b3) =
1

B (a3, b3)
θ3

a3−1(1 − θ3)b3−1; a3, b3 > 0, θ3 ∈ [0, 1], (6.3)

where (a1, b1, a2, b2, a3, b3) are positive and known, and are called hyper-parameters, and B(a, b)
denotes the standard beta function. Then the joint prior distribution is given by

g (θ1, θ2, θ3) =
1

B (a1, b1) B (a2, b2) B (a3, b3)
.θ1

a1−1(1 − θ1)b1−1θ2
a2−1(1 − θ2)b2−1θ3

a3−1(1 − θ3)b3−1.

(6.4)

Now, using the Bayes Theorem, the joint posterior distribution of (θ1, θ2, θ3) is

π1
(
θ1, θ2, θ3|x, y, z

)
=

L
(
x, y, z; θ1, θ2, θ3

)
.g (θ1, θ2, θ3)∫

θ1

∫
θ2

∫
θ3

L
(
x, y, z; θ1, θ2, θ3

)
.g (θ1, θ2, θ3) dθ1, dθ2, dθ3

.

Using Eqs (3.1) and (6.4), we get

π1
(
θ1, θ2, θ3|x, y, z

)
=K1.θ1

n1+a1−1(1 − θ1)b1+n1 x̄−n1−1θ2
n2+a2−1(1 − θ2)b2+n2ȳ−n2−1θ3

n3+a3−1

× (1 − θ3)b3+n3 z̄−n3−1, (6.5)
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where K1 is the normalizing constant given by

K1 =
1

B (n1 + a1, b1 + n1(x̄ − 1)) B (n2 + a2, b2 + n2(ȳ − 1)) B (n3 + a3, b3 + n3(z̄ − 1))
.

Finally, the joint posterior distribution can be written as

π1
(
θ1, θ2, θ3|x, y, z

)
=̃ BetaI (n1 + a1, b1 + n1(x̄ − 1)) × BetaII (n2 + a2, b2 + n2(ȳ − 1))

× BetaIII (n3 + a3, b3 + n3(z̄ − 1)) .

In Bayesian inference, a loss function plays a crucial role in selecting the optimal estimate of the
parameters of interest from the posterior distribution. In this study, we consider the SELF, which
accords equal weight to overestimation and underestimation. The Bayes estimates of θ1, θ2, θ3 and R
under the SELF are given by

θ∗1,sel f =

∞∫
0

∞∫
0

∞∫
0

θ1. π1
(
θ1, θ2, θ3|x, y, z

)
dθ1dθ2dθ3,

θ∗2,sel f =

∞∫
0

∞∫
0

∞∫
0

θ2. π1
(
θ1, θ2, θ3|x, y, z

)
dθ1dθ2dθ3,

θ∗3,sel f =

∞∫
0

∞∫
0

∞∫
0

θ3. π1
(
θ1, θ2, θ3|x, y, z

)
dθ1dθ2dθ3,

θ∗R,sel f =

∞∫
0

∞∫
0

∞∫
0

R. π1
(
θ1, θ2, θ3|x, y, z

)
dθ1dθ2dθ3.

Case 2: When we don’t have adequate prior knowledge about the parameters, we can execute a
Bayesian inference using the non-informative prior distribution. Here, we take into account the Jeffreys
prior, which describes the type of prior knowledge that would make the data as posterior as possible.
We find the Jeffreys prior for θi by taking J(θi) ∝

√
|I(θi)|, where

I(θi) = E
(
−∂2 log L
∂θi

2

)
=

n
θi

2(1 − θi)
; i = 1, 2, 3.

Now, the Jeffreys prior for (θ1, θ2, θ3) is given by ξ(θ1, θ2, θ3) ∝
√
|I(θ1, θ2, θ3)|, where

I(θ1, θ2, θ3) =


n

θ1
2(1−θ1)

0 0
0 n

θ2
2(1−θ2)

0
0 0 n

θ3
2(1−θ3)

 .
Finally, we have

ξ(θ1, θ2, θ3) ∝ θ−1
1 θ−1

2 θ−1
3 (1 − θ1)−

1
2 (1 − θ2)−

1
2 (1 − θ3)−

1
2 ; θ1, θ2, θ3 ∈ [0, 1].
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Now, under the Jeffreys prior, the joint posterior distribution of (θ1, θ2, θ3) is given by

π2
(
θ1, θ2, θ3|x, y, z

)
= K2.θ1

n1−1(1 − θ1)n1 x̄−n1−
1
2 θ2

n2−1(1 − θ2)n2ȳ−n2−
1
2 θ3

n3−1(1 − θ3)n3 z̄−n3−
1
2 , (6.6)

where K2 is the normalizing constant given by

K2 =
1

B
(
n1, n1(x̄ − 1) + 1

2

)
B

(
n2 + a2, n2(ȳ − 1) + 1

2

)
B

(
n3 + a3, n3(z̄ − 1) + 1

2

) .
The joint posterior distribution can be rewritten as

π2
(
θ1, θ2, θ3|x, y, z

)
=̃BetaI

(
n1, n1(x̄ − 1) +

1
2

)
.BetaII

(
n2, n2(ȳ − 1) +

1
2

)
.BetaIII

(
n3, n3(z̄ − 1) +

1
2

)
.

Now, we can compute the Bayes estimates of θ1, θ2, θ3 and R under the SELF in the same way we did
in Case 1.

Since the Bayes estimates defined above in both Cases 1 and 2 cannot be obtained analytically,
we adopt the advanced MCMC method and the ordinary Lindley approximation method for Bayesian
computation. In the following subsections, these methods are discussed in detail.

6.2. Markov Chain Monte Carlo method

In this section, we discuss the MCMC method, which enables the simulation of direct draws from
the complex posterior distribution of interest. One of the attractive methods for setting up an MCMC
algorithm is Gibbs sampling, which was introduced by [22]. The Gibbs sampler is used in situations in
which it is not possible to take a sample from a multivariate posterior, but it is possible to take a sample
from a conditional distribution for each parameter.
Case 1: In the case of Beta informative priors, the full conditional posterior distributions of the
parameters are

π11
(
θ1|x

)
∝ Beta (n1 + a1, b1 + n1(x̄ − 1)) ,

π12
(
θ2|y

)
∝ Beta (n2 + a2, b2 + n2(ȳ − 1)) ,

π13
(
θ3|z

)
∝ Beta (n3 + a3, b3 + n3(z̄ − 1)) .

We can see that the full conditional distributions are in standard distributional forms. Therefore, the
Gibbs sampler algorithm consists of the following steps:

(1) Generate θ1
1 from π11

(
θ1|x

)
.

(2) Generate θ1
2 from π12

(
θ2|y

)
.

(3) Generate θ1
3 from π13

(
θ3|z

)
.

(4) Repeat steps 1–3, M times. We omit the first N burn-in draws and record the sequence (
θN+1

1 , θN+1
2 , θN+1

3

)
,(

θN+2
1 , θN+2

2 , θN+2
3

)
, . . . ,

(
θM

1 , θ
M
2 , θ

M
3

) to avoid the effects of the starting values of the parameters.

(5) Put the generated values of θ1, θ2 and θ3 in the expression of R given in Eq (2.1).
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(6) The Bayes estimate of R, say, R∗ under the SELF is R∗ = 1
M−N

M∑
i=N+1

Ri.

(7) Let R(N+1) < R(N+2) < . . . < R(M) be the ordered values of the draws RN+1, RN+2, . . . , RM. Then,
using the method proposed by [23], the (1 − γ) × 100% highest posterior density (HPD) interval
for R can be constructed as

(
RN+i∗ , RN+i∗+[(1−γ)(M−N)]

)
, where i∗ is chosen so that

RN+i∗+[(1−γ)(M−N)] − RN+i∗ = min
N6i6(M−N)−[(1−γ)(M−N)]

(
RN+i+[(1−γ)(M−N)] − RN+i

)
.

Case 2: Under the Jeffreys prior, the full conditional distributions of parameters are in standard
distributional forms. Therefore, using a similar algorithm as we have done in Case 1, we can obtain
the required Bayes estimate and HPD interval for R.

6.3. The Lindley approximation

In this section, we consider the Lindley approximation technique ( [24]) to calculate the approximate
Bayes estimate of R. Consider that the posterior expectation is expressible in the form of the ratio of
integrals as given below:

R∗(Θ|data) =

∫
Θ

R(Θ) exp
[
log L(Θ) + ρ(Θ)

]
d(Θ)∫

Θ

exp
[
log L(Θ) + ρ(Θ)

]
d(Θ)

, (6.7)

where Θ = (θ1, θ2, θ3), R(Θ) is the parametric function of interest, log L(Θ) is the log-likelihood
function, and ρ(Θ) is the log of the joint prior distribution of Θ. Equation (6.7) can be approximated as

R∗(Θ|data) ≈ R +
1
2

p∑
i=1

p∑
j=1

(Ri j + 2Riρ j)σi j +
1
2

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

Li jkRlσi jσkl. (6.8)

The Bayes estimate of the stress-strength parameter R for the Beta informative priors under the SELF
is

R∗ � R +
1
2

[
(R11 + 2R1ρ1)σ11 + (R22 + 2R2ρ2)σ22 + (R33 + 2R3ρ3)σ33

]
+

1
2

(
L111R1σ

1
11 + L222R2σ

2
22 + L333R3σ

2
33

)
. (6.9)

We have

R =
θ1θ2(1 − θ1)(1 − θ3)2

(θ1 + θ3 − θ1θ3)(θ1 + θ3 − θ1θ3 + θ2(1 − θ1)(1 − θ3))
=
α

β
,

where

R1 =
βα1 − αβ1

β2 , R2 =
βα2 − αβ2

β2 , R3 =
βα3 − αβ3

β2 , R11 =
β(βα11 − αβ11) − 2β1(βα1 − αβ1)

β3 ,

R22 =
β(βα22 − αβ22) − 2β1(βα2 − αβ2)

β3 , R33 =
β(βα33 − αβ33) − 2β1(βα3 − αβ3)

β3 ,

α1 = θ2(1 − 2θ1)(1 − θ3)2, α2 = θ1(1 − θ1)(1 − θ3)2, α3 = −2θ1θ2(1 − θ1)(1 − θ3),
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α11 = −2θ2(1 − θ3)2, α22 = 0, α33 = 2θ1θ2(1 − θ1), β1 = (1 − θ3)(θ2 + 2(θ1 + θ3 − θ1θ3)(1 − θ2),

β11 = 2(1 − θ2)(1 − θ3)2, β2 = (θ1 + θ3 − θ1θ3)(1 − θ1)(1 − θ3), β22 = 0,

β3 = (1 − θ1)(2(θ1 + θ3 − θ1θ3)(1 − θ2) + θ2), β33 = −2θ1(1 − θ1)(1 − θ2),

σ11 =
∂2l
∂θ2

1

= −
n1

θ2
1

−
n1(x̄ − 1)
(1 − θ1)2 , L111 =

∂3l
∂θ3

1

=
2n1

θ3
1

−
2n1(x̄ − 1)
(1 − θ1)3 , σ22 =

∂2l
∂θ2

2

= −
n2

θ2
2

−
n2(ȳ − 1)
(1 − θ2)2 ,

L222 =
∂3l
∂θ3

2

=
2n2

θ3
2

−
2n2(ȳ − 1)
(1 − θ2)3 , σ33 =

∂2l
∂θ2

3

= −
n3

θ2
3

−
n3(z̄ − 1)
(1 − θ3)2 , L333 =

∂3l
∂θ3

3

=
2n3

θ3
3

−
2n3(z̄ − 1)
(1 − θ3)3 .

From Eq (6.5), the log of the joint prior distribution of Θ is given by

ρ(Θ) = (a1 − 1) log θ1 + (b1 − 1) log(1 − θ1) + (a2 − 1) log θ2 + (b2 − 1) log(1 − θ2) + (a3 − 1) log θ3 + (b3 − 1) log(1 − θ3),

ρ1 = a1−1
θ1
−

b1−1
1−θ1

; ρ2 = a2−1
θ2
−

b2−1
1−θ2

.

For the Jeffreys prior, we obtain the same results as with the informative case, by taking ai = 0 and
bi = 1

2 ; i = 1, 2, 3. Therefore, the Lindley approximation of R, given Jeffreys prior under the SELF, is

R′∗ � R+
1
2

(
(R11 + 2R1ρ

′
1)σ11 + (R22 + 2R2ρ

′
2)σ22 + (R33 + 2R3ρ

′
3)σ33

)
+

1
2

(
L111R1σ

1
11 + L222R2σ

2
22 + L333R3σ

2
33

)
, (6.10)

where
ρ′1 = −

1
θ1

+
1

2(1 − θ1)
, ρ′2 = −

1
θ2

+
1

2(1 − θ2)
, ρ′3 = −

1
θ3

+
1

2(1 − θ3)
.

7. Simulation experiments

In this section, we conduct a vast simulation study to compare the performance of different
estimation procedures. For this purpose, we consider nine pairs of sample sizes, which are (n1, n2, n3) ∈
{(15, 15, 15), (15, 15, 30), (15, 30, 15), (30, 15, 15), (30, 30, 15), (30, 15, 30), (15, 30, 30), (30, 30,
30), (100, 100, 100)} with six different sets of parametric values, which are (θ1, θ2, θ3) ∈ {(0.5, 0.7, 0.4),
(0.5, 0.9, 0.2), (0.3, 0.7, 0.1), (0.1, 0.5, 0.03), (0.15, 0.8, 0.01), (0.04, 0.8, 0.001)}. These different sets
of parametric values are taken such that R takes a small, moderate, and high value. We simulate 1000
samples drawn from the following geometric distributions: Geo(θ1), Geo(θ2), and Geo(θ3) for each
combination of θ1, θ2, and θ3. Then, for efficiency analysis of the classical and Bayesian estimation
procedures, we compute the average estimate (AE) and root mean square error (RMSE) for point
estimates, whereas for interval estimates, we compute the average lower confidence limit (ALCL),
average upper confidence limit (AUCL), and coverage probability (CP).

In the classical estimation, we compute the MLEs, 95% ACI, boot-p, and boot-t intervals of the
stress-strength reliability parameter R. Under bootstrapping intervals, it is worthwhile to mention that
we use 3000 bootstrap samples. In the Bayesian paradigm, for the Beta informative prior, we define
the prior distributions by solving the prior moments equations, where the prior means are assumed to
be the true values of the parameters and the prior variance is 1. Thus, we obtain the Bayes estimates
and 95% HPD credible intervals of R under the Jeffreys and Beta priors. These Bayes estimates are
determined with the SELF through the Lindley approximation and MCMC approaches. By considering
the Bayes estimates with the MCMC method, we generate a Markov chain of length 11,000 parametric
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draws using the Gibbs algorithm discussed in the previous section. The first 1000 values are discarded
as burn-in-samples and, after convergence testing, these values are used to obtain Bayes estimates and
credible intervals with associated CP. All the calculations are done with the R software. In Figures 4
and 5, we present the results for the RMSE and average confidence length (ACL) for different values
of R at sample sizes of (n1, n2, n3) = (15, 15, 15), (30, 30, 30), and (100, 100, 100) for the purpose of
comparison of considered point and interval estimates.

(a) (b) (c)

Figure 4. RMSE of the estimates for varying value of R at (a) (n1, n2, n3) = (15, 15, 15),
(b)(n1, n2, n3) = (30, 30, 30), (c) (n1, n2, n3) = (100, 100, 100).

(a) (b) (c)

Figure 5. ACL of the estimates for varying value of R at (a) (n1, n2, n3) = (15, 15, 15),
(b)(n1, n2, n3) = (30, 30, 30), (c) (n1, n2, n3) = (100, 100, 100).

However, due to space constraints, the plots for the other combinations of (n1, n2, n3) are not
included. The outcomes of the simulation study are given in Tables 1 and 2. From these tables,
the following important conclusions can be drawn:

• The RMSE of all the estimates decreases with increasing sample size. This validates the
consistency property of the estimates.
• On the overall comparison, the Bayes estimate using the Lindley approximation method under

Beta priors demonstrates superior performance in terms of RMSE compared to all other
estimation methods. The second preferred estimation method is Bayesian estimation using the
MCMC method with Beta priors.
• For 0 < R < 0.25, the Bayes estimate obtained using the MCMC method under Jeffreys

prior outperforms the estimates obtained using the Lindley approximation under the Jeffreys
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prior and MLE.
• For 0.25 < R <1, the MLE works quite satisfactorily, better than the Bayes estimates with the

Lindley approximation and MCMC methods under Jeffreys prior.
• From Table 2, we may simply conclude that all confidence intervals perform well. Even with

small sizes, most of the confidence intervals computed here are able to sustain nominal levels.
• The HPD credible interval with Beta prior outperforms all other classical and credible intervals

in terms of the length of the intervals.
• The ACI, boot-p, and boot-t intervals show more or less the same behavior in terms of confidence

width, but the HPD credible interval with the Jeffreys prior performs superior to these classical
intervals.

Table 1. Average estimates (AEs) and RMSE for different methods with various sample sizes
and true R.

Parameter Sample Size MLE Lindley with Jeffreys Prior MCMC with Jeffreys Prior Lindley with Beta Prior MCMC with Beta Prior
(n1, n2, n3) AE RMSE AE RMSE AE RMSE AE RMSE AE RMSE

(0.5, 0.7, 0.4)

True R = 0.0989

(15, 15, 15) 0.0945 0.0364 0.0973 0.035 0.0971 0.035 0.0986 0.0254 0.0974 0.0278
(15, 15, 30) 0.0958 0.0269 0.0956 0.026 0.0984 0.026 0.097 0.0212 0.0968 0.0223
(15, 30, 15) 0.0915 0.0347 0.0954 0.0333 0.0942 0.0331 0.0972 0.0246 0.0955 0.0266
(30, 15, 15) 0.0931 0.0347 0.0966 0.0333 0.0958 0.0332 0.0972 0.0247 0.0963 0.0268
(30, 30, 15) 0.0945 0.0331 0.0989 0.0321 0.097 0.0317 0.0988 0.0243 0.0976 0.026
(30, 15, 30) 0.096 0.0255 0.0964 0.0248 0.0986 0.0245 0.0967 0.0205 0.0969 0.0214
(15, 30, 30) 0.0949 0.0276 0.0957 0.0267 0.0975 0.0264 0.0971 0.022 0.0964 0.023
(30, 30, 30) 0.0965 0.0249 0.0979 0.0244 0.099 0.024 0.0979 0.021 0.0977 0.0216

(100, 100, 100) 0.0981 0.014 0.0985 0.0139 0.1006 0.0136 0.0983 0.0133 0.0983 0.0133

(0.5, 0.9, 0.2)

True R = 0.25

(15, 15, 15) 0.2315 0.0559 0.2299 0.0543 0.2298 0.0544 0.2396 0.0402 0.237 0.0439
(15, 15, 30) 0.2321 0.0487 0.2286 0.0479 0.2304 0.0474 0.2384 0.0345 0.2362 0.0383
(15, 30, 15) 0.2318 0.0555 0.2325 0.0534 0.2301 0.054 0.239 0.0401 0.2368 0.0437
(30, 15, 15) 0.2373 0.0477 0.2357 0.0468 0.2352 0.0467 0.2422 0.0384 0.2411 0.0399
(30, 30, 15) 0.2362 0.0469 0.2371 0.0456 0.2341 0.0461 0.2403 0.0385 0.2395 0.0398
(30, 15, 30) 0.2392 0.04 0.2357 0.0401 0.237 0.0393 0.2417 0.0338 0.2411 0.0349
(15, 30, 30) 0.2364 0.0473 0.2352 0.0457 0.2345 0.0458 0.2406 0.0344 0.2391 0.0377
(30, 30, 30) 0.2392 0.0384 0.2382 0.038 0.2371 0.0377 0.2407 0.0333 0.2405 0.034

(100, 100, 100) 0.2473 0.0208 0.2469 0.0207 0.2445 0.0206 0.2471 0.02 0.2472 0.02

(0.3, 0.7, 0.1)
True R = 0.3968

(15, 15, 15) 0.3776 0.0585 0.3714 0.0594 0.3713 0.0594 0.3724 0.0514 0.3737 0.0525
(15, 15, 30) 0.3861 0.048 0.378 0.0491 0.3795 0.0486 0.3779 0.0426 0.3798 0.0434
(15, 30, 15) 0.38 0.0571 0.3767 0.0568 0.3736 0.0578 0.3765 0.0511 0.377 0.0519
(30, 15, 15) 0.3866 0.0552 0.3819 0.0551 0.3798 0.0555 0.3829 0.0473 0.3839 0.0487
(30, 30, 15) 0.3881 0.0511 0.3864 0.0505 0.3813 0.0515 0.3865 0.0459 0.3866 0.0465
(30, 15, 30) 0.3903 0.0443 0.3839 0.045 0.3834 0.0448 0.3843 0.0383 0.3858 0.0395
(15, 30, 30) 0.3852 0.0443 0.3801 0.0447 0.3786 0.0453 0.3793 0.0411 0.3802 0.0415
(30, 30, 30) 0.3876 0.0383 0.3842 0.0388 0.3808 0.0397 0.3843 0.0363 0.3846 0.0365

(100, 100, 100) 0.3927 0.022 0.3917 0.0221 0.3855 0.0239 0.3915 0.0216 0.3916 0.0217

(0.1, 0.5, 0.03)
True R = 0.5916

(15, 15, 15) 0.5787 0.0568 0.5691 0.059 0.5689 0.0592 0.5733 0.0491 0.5738 0.0505
(15, 15, 30) 0.5815 0.0425 0.5703 0.0464 0.5716 0.0456 0.5733 0.0398 0.5744 0.0403
(15, 30, 15) 0.5791 0.05 0.5722 0.0515 0.5692 0.0527 0.5755 0.0447 0.5754 0.0456
(30, 15, 15) 0.5799 0.0521 0.5739 0.0531 0.57 0.0547 0.5776 0.0444 0.5778 0.0457
(30, 30, 15) 0.5783 0.0515 0.5751 0.0516 0.5684 0.0543 0.5781 0.0449 0.5777 0.046
(30, 15, 30) 0.5848 0.043 0.5771 0.0448 0.5747 0.0454 0.5791 0.0384 0.5801 0.0391
(15, 30, 30) 0.5818 0.0401 0.5734 0.0428 0.5718 0.0432 0.5756 0.039 0.5759 0.0391
(30, 30, 30) 0.5846 0.0364 0.5796 0.0375 0.5745 0.0393 0.5812 0.0344 0.5813 0.0347

(100, 100, 100) 0.5902 0.0205 0.5886 0.0206 0.5798 0.0235 0.589 0.0202 0.589 0.0202

(0.15, 0.8, 0.01)
True R = 0.7583

(15, 15, 15) 0.7435 0.0417 0.7362 0.0449 0.7359 0.045 0.7446 0.031 0.7443 0.0336
(15, 15, 30) 0.7457 0.0404 0.7383 0.0431 0.7382 0.0432 0.7462 0.0285 0.7459 0.0316
(15, 30, 15) 0.743 0.0405 0.7384 0.0421 0.7354 0.0438 0.7448 0.031 0.7441 0.0332
(30, 15, 15) 0.7491 0.0321 0.7428 0.0349 0.7414 0.0354 0.7481 0.0269 0.7485 0.0278
(30, 30, 15) 0.7504 0.0294 0.7468 0.0306 0.7427 0.0325 0.7498 0.026 0.7499 0.0264
(30, 15, 30) 0.7495 0.0297 0.7431 0.0326 0.7419 0.0329 0.7481 0.0245 0.7485 0.0256
(15, 30, 30) 0.7474 0.0386 0.7427 0.0395 0.7398 0.0411 0.7482 0.0279 0.7476 0.0306
(30, 30, 30) 0.7511 0.0285 0.7474 0.0297 0.7434 0.0313 0.7502 0.0251 0.7503 0.0256

(100, 100, 100) 0.7565 0.0137 0.7554 0.0139 0.7489 0.0166 0.756 0.0133 0.756 0.0133

(0.04, 0.8, 0.001)
True R = 0.9261

(15, 15, 15) 0.9213 0.0135 0.9179 0.0154 0.9177 0.0155 0.9204 0.0113 0.9205 0.0117
(15, 15, 30) 0.9219 0.0121 0.9185 0.0139 0.9183 0.014 0.9211 0.0098 0.9211 0.0103
(15, 30, 15) 0.9215 0.0125 0.919 0.0137 0.9179 0.0145 0.9208 0.0109 0.9208 0.0112
(30, 15, 15) 0.9227 0.0108 0.9201 0.0122 0.9191 0.0127 0.922 0.0095 0.9221 0.0097
(30, 30, 15) 0.9232 0.0102 0.9216 0.011 0.9197 0.0121 0.9226 0.0094 0.9227 0.0095
(30, 15, 30) 0.9234 0.0093 0.9208 0.0106 0.9199 0.0111 0.9226 0.008 0.9227 0.0083
(15, 30, 30) 0.9224 0.0113 0.92 0.0124 0.9189 0.0131 0.9216 0.0096 0.9216 0.01
(30, 30, 30) 0.9235 0.0084 0.9219 0.0092 0.92 0.0103 0.9228 0.0079 0.9228 0.008

(100, 100, 10) 0.9255 0.0039 0.925 0.0041 0.9221 0.0057 0.9252 0.0039 0.9252 0.0039
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Table 2. Various interval estimates for R under a different set of parameters.
ACI Boot-p Intervals Boot-t Intervals MCMC Jeffreys Prior MCMC Beta Prior

Parameters (n1, n2, n3) ALCL AUCL CP ALCL AUCL CP ALCL AUCL CP ALCL AUCL CP ALCL AUCL CP

(0.5, 0.7, 0.4)

True R = 0.0989

(15, 15, 15) 0.0268 0.1626 0.886 0.0303 0.1591 0.911 0.0426 0.2178 0.974 0.0342 0.1632 0.899 0.0417 0.1598 0.951

(15, 15, 30) 0.0423 0.1494 0.929 0.0425 0.1468 0.924 0.0537 0.1762 0.948 0.046 0.1497 0.93 0.0511 0.1465 0.95

(15, 30, 15) 0.0083 0.1804 0.947 0.0308 0.1574 0.914 0.0437 0.2149 0.978 0.0352 0.1621 0.913 0.041 0.1563 0.957

(30, 15, 15) 0.0435 0.1428 0.811 0.0339 0.16 0.906 0.0431 0.209 0.976 0.0382 0.1672 0.917 0.0418 0.1569 0.952

(30, 30, 15) 0.03 0.1592 0.912 0.034 0.1575 0.916 0.0438 0.2054 0.978 0.0395 0.1655 0.923 0.0435 0.1576 0.964

(30, 15, 30) 0.0559 0.1362 0.861 0.048 0.1471 0.929 0.0551 0.1691 0.944 0.0497 0.1495 0.927 0.0524 0.145 0.952

(15, 30, 30) 0.0274 0.1626 0.949 0.0415 0.1421 0.912 0.0532 0.1706 0.974 0.0465 0.1459 0.935 0.0518 0.1447 0.941

(30, 30, 30) 0.0473 0.1457 0.929 0.0478 0.143 0.918 0.0555 0.1642 0.96 0.0524 0.1492 0.931 0.0542 0.1446 0.955

(100, 100, 100) 0.0707 0.1255 0.943 0.0715 0.126 0.954 0.0745 0.1309 0.957 0.0719 0.1261 0.933 0.0724 0.1255 0.956

(0.5, 0.9, 0.2)

True R = 0.25

(15, 15, 15) 0.1289 0.3341 0.934 0.1114 0.3151 0.891 0.1529 0.382 0.965 0.1308 0.3296 0.914 0.148 0.3297 0.949

(15, 15, 30) 0.1439 0.3203 0.924 0.1267 0.3044 0.902 0.1639 0.3514 0.953 0.1449 0.3158 0.914 0.1595 0.3145 0.955

(15, 30, 15) 0.1062 0.3574 0.954 0.1142 0.3186 0.901 0.1523 0.3795 0.959 0.1403 0.3381 0.925 0.1486 0.3287 0.956

(30, 15, 15) 0.1625 0.312 0.868 0.1298 0.3086 0.891 0.1617 0.3583 0.958 0.1452 0.3246 0.926 0.159 0.3265 0.949

(30, 30, 15) 0.1463 0.3261 0.931 0.1357 0.3152 0.889 0.1643 0.3588 0.964 0.1531 0.3293 0.933 0.1585 0.3239 0.952

(30, 15, 30) 0.1747 0.3037 0.873 0.1533 0.3002 0.897 0.1788 0.3331 0.96 0.1626 0.311 0.942 0.173 0.311 0.953

(15, 30, 30) 0.1346 0.3383 0.955 0.132 0.3093 0.914 0.166 0.3504 0.954 0.1543 0.3212 0.933 0.1633 0.3165 0.941

(30, 30, 30) 0.1665 0.3119 0.938 0.1577 0.3038 0.89 0.179 0.331 0.944 0.1695 0.3126 0.93 0.1736 0.3093 0.943

(100, 100, 100) 0.2075 0.2871 0.94 0.2042 0.284 0.936 0.2104 0.2908 0.947 0.2072 0.2863 0.951 0.2086 0.2862 0.95

(0.3, 0.7, 0.1)

True R = 0.3968

(15, 15, 15) 0.2678 0.4874 0.934 0.2467 0.4704 0.908 0.286 0.5141 0.945 0.2627 0.4809 0.936 0.2735 0.4751 0.943

(15, 15, 30) 0.2936 0.4785 0.947 0.27 0.4597 0.927 0.2999 0.4877 0.945 0.2812 0.4653 0.937 0.2942 0.4643 0.939

(15, 30, 15) 0.2467 0.5133 0.975 0.2498 0.4665 0.906 0.2923 0.5096 0.957 0.2728 0.4801 0.937 0.2802 0.4753 0.948

(30, 15, 15) 0.3031 0.47 0.855 0.2647 0.4717 0.921 0.2925 0.5054 0.954 0.2781 0.4822 0.938 0.2899 0.4791 0.937

(30, 30, 15) 0.2915 0.4847 0.931 0.2695 0.4674 0.93 0.2996 0.5002 0.959 0.286 0.478 0.93 0.296 0.4783 0.954

(30, 15, 30) 0.3185 0.4622 0.898 0.2951 0.4625 0.936 0.3106 0.4816 0.943 0.3012 0.4694 0.942 0.3081 0.4634 0.937

(15, 30, 30) 0.281 0.4895 0.985 0.2771 0.4565 0.935 0.3105 0.4835 0.957 0.2935 0.4646 0.953 0.2993 0.4606 0.951

(30, 30, 30) 0.311 0.4643 0.959 0.2974 0.4537 0.937 0.3164 0.4731 0.962 0.3099 0.4624 0.936 0.3116 0.4581 0.947

(100,100, 100) 0.3512 0.4343 0.949 0.3493 0.4327 0.94 0.3551 0.4384 0.953 0.3516 0.4343 0.943 0.3508 0.4325 0.955

(0.1, 0.5, 0.03)

True R = 0.5916

(15, 15, 15) 0.4738 0.6835 0.943 0.4449 0.6619 0.927 0.4764 0.6885 0.956 0.46 0.6744 0.94 0.4731 0.6716 0.948

(15, 15, 30) 0.4972 0.6659 0.96 0.4793 0.6521 0.94 0.4979 0.6649 0.941 0.4818 0.6576 0.958 0.4913 0.6541 0.961

(15, 30, 15) 0.4475 0.7106 0.994 0.4476 0.6536 0.919 0.4839 0.6821 0.949 0.4672 0.669 0.949 0.4795 0.6687 0.968

(30, 15, 15) 0.4986 0.6612 0.895 0.4542 0.6658 0.947 0.479 0.6891 0.965 0.4677 0.6741 0.93 0.4812 0.6726 0.971

(30, 30, 15) 0.4814 0.6752 0.947 0.4591 0.6581 0.916 0.4886 0.6831 0.941 0.4801 0.6717 0.943 0.4854 0.6683 0.976

(30, 15, 30) 0.5173 0.6522 0.889 0.4929 0.656 0.951 0.504 0.6666 0.954 0.496 0.6599 0.962 0.5024 0.6556 0.959

(15, 30, 30) 0.4837 0.68 0.993 0.4843 0.6439 0.937 0.5083 0.6592 0.97 0.4907 0.6507 0.953 0.4988 0.6501 0.952

(30, 30, 30) 0.5115 0.6577 0.954 0.499 0.6471 0.946 0.515 0.6598 0.959 0.5068 0.6536 0.948 0.5095 0.6516 0.965

(100,100, 100) 0.5509 0.6294 0.942 0.5466 0.6257 0.941 0.5513 0.6297 0.946 0.5486 0.6271 0.947 0.5499 0.6275 0.961

(0.15, 0.8, 0.01)

True R = 0.7583

(15, 15, 15) 0.6692 0.8179 0.957 0.631 0.7943 0.878 0.6701 0.8146 0.948 0.6565 0.8082 0.96 0.6767 0.8075 0.944

(15, 15, 30) 0.6754 0.816 0.957 0.6395 0.7936 0.916 0.6713 0.8103 0.92 0.665 0.8053 0.964 0.6823 0.8039 0.967

(15, 30, 15) 0.6651 0.8209 0.974 0.6398 0.7955 0.923 0.6772 0.8141 0.946 0.6732 0.8097 0.956 0.6792 0.8054 0.973

(30, 15, 15) 0.6934 0.8048 0.926 0.6701 0.7953 0.928 0.693 0.8091 0.942 0.6784 0.8036 0.952 0.692 0.8023 0.961

(30, 30, 15) 0.6954 0.8054 0.959 0.6765 0.7936 0.924 0.6982 0.8064 0.949 0.6918 0.8028 0.95 0.6972 0.8009 0.963

(30, 15, 30) 0.6957 0.8033 0.947 0.6768 0.7914 0.942 0.693 0.8013 0.927 0.6854 0.8004 0.956 0.696 0.7975 0.965

(15, 30, 30) 0.6783 0.8165 0.972 0.6454 0.7926 0.928 0.6761 0.8078 0.947 0.675 0.8037 0.964 0.6878 0.8026 0.971

(30, 30, 30) 0.7005 0.8016 0.948 0.6848 0.7906 0.941 0.6999 0.7995 0.938 0.6975 0.7977 0.949 0.7018 0.7964 0.969

(100,100, 100) 0.7297 0.7833 0.954 0.7248 0.7794 0.945 0.7285 0.7821 0.943 0.7283 0.7817 0.95 0.7295 0.7818 0.958

(0.04, 0.8, 0.001)

True R = 0.9261

(15, 15, 15) 0.8978 0.9448 0.969 0.8805 0.9366 0.901 0.8972 0.9419 0.934 0.8903 0.9416 0.959 0.8979 0.9414 0.961

(15, 15, 30) 0.9006 0.9432 0.979 0.8865 0.9361 0.929 0.9 0.94 0.927 0.8945 0.9394 0.969 0.9008 0.9393 0.975

(15, 30, 15) 0.8953 0.9476 0.984 0.8833 0.9363 0.898 0.8991 0.9413 0.931 0.8944 0.9411 0.964 0.8991 0.941 0.977

(30, 15, 15) 0.9049 0.9404 0.927 0.893 0.9371 0.924 0.9029 0.9412 0.927 0.8976 0.9405 0.946 0.9028 0.9403 0.971

(30, 30, 15) 0.9049 0.9415 0.947 0.8962 0.9369 0.913 0.9056 0.9408 0.941 0.9014 0.9396 0.956 0.9046 0.9399 0.969

(30, 15, 30) 0.9073 0.9395 0.93 0.8987 0.936 0.934 0.9056 0.9387 0.913 0.9005 0.9383 0.966 0.9059 0.9383 0.953

(15, 30, 30) 0.9007 0.9441 0.982 0.889 0.9355 0.912 0.9018 0.9391 0.926 0.8982 0.9386 0.965 0.9026 0.9387 0.967

(30, 30, 30) 0.9079 0.9391 0.963 0.902 0.9356 0.929 0.9084 0.9382 0.929 0.9055 0.9376 0.953 0.9074 0.9374 0.966

(100,100, 100) 0.9175 0.9335 0.962 0.9161 0.9325 0.956 0.9175 0.9333 0.961 0.9165 0.9328 0.939 0.9172 0.933 0.965
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8. Applications

For the purpose of illustration in this part, we analyze two real datasets. The first dataset contains
the observed lifetimes of steel specimens tested at 14 different stress levels. [25] originally presented
this dataset, which was later analyzed by [26]. To demonstrate our theoretical results, we use lifetimes
under 33 and 32 stress levels as the stress variables Z and Y , respectively, and lifetimes at 32.5 stress
levels as the strength variable X. The datasets are represented in Table 3. The second dataset is related
to post-weld treatments for improving the fatigue life of welded joints, originally studied by [27]. The
post-weld treatments involve burr grinding (BG) and TIG dressing, represented by the variables X and
Z, respectively. The main objective of the study is to determine a suitable post-weld treatment for mass
production of crane components. The dataset allows us to determine whether BG and TIG dressing
treatments led to improved fatigue strength compared to the as-welded (AW) condition, denoted by
Y , and to identify the order of these improvements, if any. The fatigue strength data, indicating the
number of cycles to failure for each test specimen under AW, BG, and TIG conditions, is given in
Table 3. Similar to the assumption made by [11] , the data points for stresses below 500 MPa are
discarded in the case of the AW. This ensures fair comparisons by considering only high stress ranges.
Additionally, for the second dataset, the values are discretized to the nearest integer, as the models used
are discrete.

Table 3. Values of the datasets I and II.

Dataset I

Stress Level 32 (Y)
1144, 231, 523, 474, 4510, 3107, 815, 6297, 1580, 605, 1786, 206, 1943, 935, 283, 1336, 727,

370, 1056, 413, 619, 2214, 1826, 597

Stress Level 32.5 (X) 4257, 879, 799, 1388, 271, 308, 2073, 227, 347, 669, 1154, 393, 250, 196, 548, 475, 1705, 2211, 975, 2925

Stress Level 33 (Z) 184, 241, 273, 1842, 371, 830, 683, 1306, 562, 166, 981, 1867, 493, 418, 2978, 1463, 2220, 312, 251, 760

Dataset II

AW (Y) 12, 15, 19, 20, 26, 28, 35, 43, 48, 58, 78, 96

BG (X) 25, 25, 39, 44, 100, 72, 102, 74, 76, 144, 172

TIG (Z) 84, 93, 156, 352, 666, 91, 112, 179, 136, 36, 94, 48, 44

First, we want to see whether a geometric distribution can be used to fit each data set separately.
For this purpose, we use the Kolmogorov-Smirnov (K-S) statistic with its associated p-value. The K-S
goodness-of-fit statistics and MLE-based parameter estimates of the models’ parameters are shown
on Table 4. The high p-values associated with the K-S test show that the geometric distribution is a
reasonable fit for these datasets. This is further supported by the fitted versus empirical CDF plots
shown in Figures 6 and 7.

Table 4. K-S statistics with associated p-values for datasets I and II.

Dataset Variables Model Estimate K-S statistic p-value

Dataset I
Stress Level 32 (Y) Geometric (θ2) θ2 = 0.0011 0.1368 0.7092

Stress Level 32.5 (X) Geometric (θ1) θ1 = 0.0009 0.1629 0.6062
Stress Level 33 (Z) Geometric (θ3) θ3 = 0.0007 0.1668 0.577

Dataset II
AW (Y) Geometric (θ2) θ2 = 0.0251 0.2629 0.3196
BG (X) Geometric (θ1) θ1 = 0.0126 0.2716 0.3913
TIG (Z) Geometric (θ3) θ3 = 0.0062 0.2011 0.6001
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Figure 6. Empirical versus fitted CDFs plots for dataset I.

Figure 7. Empirical versus fitted CDFs plots for dataset II.

For both of the considered datasets, under the classical viewpoint, we compute the MLE along with
standard error (SE), 95% ACI, boot-p, and boot-t confidence intervals for stress-strength reliability
R = P[Y < X < Z]. In the Bayesian study, since we need to specify the prior distributions and we have
no prior information about the unknown parameters for the given data, we assume the Jeffreys prior
for the parameters involved in the model. Using the Jeffreys prior, we obtain the Bayes estimates of R
using the Lindley approximation with SELF. Under MCMC methods, we generate a Markov chain with
M = 11, 000 observations. The first 1,000 observations are discarded to remove the effect of starting
values. To determine the convergence of the generated chain of R, we plot the MCMC iteration,
posterior density, and auto-correlation plots in Figures 8 and 9 for datasets I and II, respectively. These
figures indicate that the MCMC chain converges on its stationary distribution. Then, using the posterior
samples, we obtain the Bayes estimates of R under the SELF. We also provide the 95% HPD credible
interval for R. The various point estimates of R are reported in Table 5, whereas the confidence intervals
are given in Table 6.
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Table 5. Point estimates of R under datasets I and II.

Dataset
Classical Bayesian

MLE SE Lindley Estimate MCMC
Estimate PSE

Dataset I 0.1185 0.0334 0.1210 0.1201 0.0314
Dataset II 0.3795 0.0703 0.3702 0.3693 0.0686

Table 6. Various confidence intervals for R under datasets I and II.
Dataset Method Confidence interval Width

Dataset I

ACI [0.0530, 0.1840] 0.1309
Boot-p [0.0587, 0.1801] 0.1214
Boot-t [0.0689, 0.2096] 0.1406
HPD [0.0617, 0.1830] 0.1212

Dataset II

ACI [0.2416, 0.5173] 0.2757
Boot-p [0.2220, 0.5048] 0.2828
Boot-t [0.2509, 0.5504] 0.2995
HPD [0.2322, 0.5002] 0.2680

Figure 8. MCMC diagnostic plots for R under dataset I.

Figure 9. MCMC diagnostic plots for R under dataset II.
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As seen in Tables 5 and 6, all the estimation procedures perform pretty effectively. Additionally, the
Bayesian estimation with Jeffreys prior through the MCMC method works better than other estimates
in terms of standard error for both datasets. Under interval estimation, the HPD interval for R has the
smallest length among the ACI, boot-p, and boot-t intervals for both datasets. For dataset II, the results
suggest that there was some improvement in fatigue strength from the AW treatment to the BG and TIG
treatments, with the TIG treatment being the strongest. This is consistent with the findings in [27].

9. Conclusions

In this article, we analyzed a stress-strength model of the type P[Y < X < Z], where X is the
discrete strength of the subjacent system and Y and Z are the two discrete stresses that are applied to
it. The analysis was carried out by assuming that X, Y and Z are from the geometric distribution. The
methods of maximum likelihood estimation and bootstrapping were used in the classical setup. The
Bayes estimates were obtained under the consideration of the squared error loss function, assuming
Beta informative and Jeffreys non-informative priors. The Bayes estimates and HPD intervals were
computed using MCMC and the Lindley approximation method. An extensive simulation study was
presented to compare the performance of different estimates. Based on a simulation study, it is
recommended to use the Bayes estimate with the Lindley approximation method under the Beta priors
for point estimation and the Bayes credible interval with the MCMC method under the Beta priors for
interval estimation of R in practice. Finally, the fitting capability of the proposed model was analyzed
using two real datasets. The proposed stress-strength system model may be used to examine various
types of censored data and different discrete distributions as part of a future course of study.
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