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1. Introduction

The geodesic among two points on a surface is located as the curve embedded in the surface that
relates the points with minimal distance [1, 2]. Geodesic also has been vastly utilized in different
industries, such as cutting and painting path, tent manufacturing, fiberglass tape windings in pipe
manufacturing, and textile manufacturing [3–7]. Generally, the study in geodesic concentrated on how
to find and describe geodesic on the given surfaces, and there were a lots of papers employing on such
a problem [8–10]. In the designing industry of garments, shoes, and so on, it is oftentimes wanted
for designers to establish a family of surfaces from a specific spatial geodesic curve, through which
they can choose those fulfilling the fashion tastes of customers. This may be considered as the reverse
problem of the above-mentioned. In [11], Wang et al. considered the problem of constructing a family
of surfaces from a specified spatial geodesic curve, through which each surface can be a nominee for
style designing. They proved the necessary and sufficient condition for the coefficients to be content
with both the geodesic and the isoparametric requirements. Stimulate by Wang et al. [11], researchers
obtained restrictions for a prescribed curve to be a distinct curve on designed surfaces [12–25].
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For the theory of space curves, the symmetrical relationship among the curves is an interesting
problem. Bertrand curve is one of the classical private curves. Two curves are named Bertrand pair
if there exists linearly relationship of their principal normal vectors at the corresponding points [1, 2].
The Bertrand curve can be considered as the generalization of the helix. The helix, as a specific type
of curve, has drawn the awareness of mathematicians as well as scientists because of its different
implementations, for example, clarification of DNA, carbon nano-tube, nano-springs, a-helices, the
geometrical shaping of linear chained polymers stabilized as helices and the eigenproblems interpreted
for collocation of molecules (see [26–29]). Moreover, the Bertrand curves perform special examples
of offset curves which are applied in computer-aided manufacture (CAM), and computer-aided design
(CAD) (see [30,31]). However, for our knowledge, there is no work to constructing surface family pair
interpolating curve pair to be geodesic curves in Euclidean 3-space E3. This work is intend to serve
such a need, we take into consideration Bertrand pair as geodesic curves to constructing surface family
pair in E3.

The major advantage of this work is to establish surface family pair from given Bertrand pair.
Hence, the sufficient and necessary conditions for the given Bertrand pair to be the geodesic pair
are given in details. As an application, some representative Bertrand pair are selected to form their
corresponding surface family pair that have such Bertrand pair as geodesic curves. We extended the
study to ruled surface family pair.

2. Preliminaries

The ambient space is the Euclidean space E3 and for our work we have used [1, 2] as general
references. A curve is regular if it confess a tangent line at each point of the curve. In the following,
all curves are supposed to be regular. Given a spatial curve α(s), which is expressed by arc length
parameter s. We assume

..
α(s) , 0 for all s ∈ [0, L], since this would give us a straight line. In this

paper,
.
α(s) and α

′

(r) indicate the derivatives of α with respect to arc-length parameter s and arbitrary
parameter r, respectively. For each point of α(s), the set {t(s), n(s), b(s)} is named the Serret-Frenet
frame on α(s), where t(s) =

.
α(s), n(s) =

..
α(s)/

∥∥∥ ..α(s)
∥∥∥ and b(s) = t(s) × n(s) are the unit tangent,

principal normal, and binormal vectors of the curve at the point α(s), respectively. The arc-length
derivative of the Serret-Frenet frame is governed by the relations [1]:

.

t
.
n
.

b

 =


0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0




t
n
b

 , (2.1)

where the curvature κ(s) and torsion τ(s) are specified by

κ(s) =
∥∥∥ ..α(s)

∥∥∥ , τ(s) =
det(

.
α(s),

..
α(s),

...
α(s))∥∥∥ ..α(s)

∥∥∥2 .

Although the parameter of arc-length is simple for analyzing, in the majority of practical situations,
the parameter of a given curve is commonly not in arc-length parametrization. We can represent the
given curve by employing arc-length representation. Given the curve

α(r) = (α1(r), α2(r), α3(r)), 0 ≤ r ≤ H,
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where the parameter r is not the arc-length. The synthesis of the Serret-Frenet frame are specified
by [1]:

t(r) =
α
′

(r)
‖α′(r)‖

, b(r) =
α
′

(r) × α
′′

(r)∥∥∥α′(r) × α
′′

(r)
∥∥∥ , n(r) = b(r) × t(r), (

d
dr

=′), (2.2)

and the Serret-Frenet formula are
t′(r)
n′(r)
b′(r)

 =


0 κ(r)

∥∥∥α′(r)
∥∥∥ 0

−κ(r)
∥∥∥α′(r)

∥∥∥ 0 τ(r)
∥∥∥α′(r)

∥∥∥
0 −τ(r)

∥∥∥α′(r)
∥∥∥ 0




t(r)
n(r)
b(r)

 . (2.3)

We utilize basic notification on Bertrand pair from [1, 2]. Let α(s), and α̂(s) be two curves in E3,
n(s) and n̂(s) are principal normal vectors of them respectively, the pair {α(s), α̂(s)} is named Bertrand
pair if n(s) and n̂(s) are linearly dependent at the corresponding points, α(s) is named the Bertrand
mate of α̂(s), and

α̂(s) = α(s) + f n(s), (2.4)

where f is a stationary. Therefore, the formulae the Serret-Frenet frame of α(s) with that of α̂(s) are
t̂
n̂
b̂

 =


cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ




t
n
b

 , (2.5)

where ψ is a constant angle.
We signalize a surface M by

M : y(s, t) = (y1 (s, t) , y2 (s, t) , y3 (s, t)) , (s, t) ∈ D ⊆ R2. (2.6)

If y j(s, t) =
∂y
∂ j , the surface normal is

N(s, t) = ys ∧ yt, (2.7)

which is orthogonal to each of the vectors ys and yt.

Remark 2.1. [1,2] A curve on a surface is a geodesic if and only if the principal normal vector of the
curve is everywhere parallel to surface normal

A curve α(s) on a surface y(s, t) is an isoparametric curve if it has a constant s or t-parameter value.
In other words, there exists a parameter t0 such that α(s) = y(s, t0) or α(t) = y(s0, t). Given a parametric
curve α(s), we call it an isogeodesic of the surface y(s, t) if it is both an geodesic and a parameter curve
on y(s, t).

3. Main results

This section presents a new approach for constructing surface family pair interpolating Bertrand
pair as mutual geodesic curves in E3. To do this, we take into account a Bertrand pair, such that the
surfaces tangent planes are coincident with the curves rectifying planes.
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Let α(s) be a curve with
∥∥∥ ..α(s)

∥∥∥ , 0, α̂(s) is Bertrand mate of α(s), and {̂κ(s), τ̂(s), t̂(s), n̂(s), b̂(s)}
is the Frenet-Serret apparatus of α̂(s) as in Eq (2.1). The surface family M interpolating α(s) can be
written as [1]:

M : y(s, t) = α(s) + a(s, t)t(s)+b(s, t)b(s), 0 ≤ t ≤ T, (3.1)

and the surface family M̂ interpolating α̂(s) is

M̂ : ŷ(s, t) = α̂(s) + a(s, t)̂t(s)+b(s, t)̂b(̂s), 0 ≤ t ≤ T. (3.2)

Here a(s, t), b(s, t) ∈ C1 are named marching-scale functions.
In order to obtain the M̂ interpolating α̂(s) as a mutual geodesic curve, according to Eqs (3.1)

and (3.2), we discuss what the marching-scale functions should satisfy. To do this, we have

ŷs(s, t) = (1 + as)̂t + (âκ − τ̂b)̂n + bsb̂,
ŷt(s, t) = at̂t+btb̂,

 (3.3)

and
N̂(s, t) := ŷs × ŷt =

(
âκ − τ̂b

)
bt̂t + [−(1 + as)bt + bsat] n̂−

(
âκ − τ̂b

)
atb̂. (3.4)

Since α̂(s) is an isoparametric on M, there exists a value t = t0 ∈ [0,T ] such that ŷ(s, t0) = α̂(s), that
is,

a(s, t0) = b(s, t0) = 0, as(s, t0) = bs(s, t0) = 0. (3.5)

Thus, when t = t0, i.e., over α̂(s), we have

N̂(s, t0) = −btn̂(s). (3.6)

Coincidence of the rectifying plane of α̂(s) with the tangent plane of the surface M̂ identifies the curve
as a geodesic curve. Then from Eqs (3.2)–(3.6), we get the following theorem.

Theorem 3.1. The surface family pair {M, M̂} interpolate Bertrand pair {α(s), α̂(s)} as mutual
geodesic curves if and only if

a(s, t0) = b(s, t0) = 0,
bt(s, t0) , 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L.

}
(3.7)

As in [8], for the intents of facilitation and inspection, we also address the case when the marching-
scale functions a(s, t), and b(s, t) can be display into two factors:

a(s, t) = l(s)A(t),
b(s, t) = m(s)B(t).

(3.8)

Here l(s), m(s), A(t) and B(t) are C1 functions are not identically vanish. Then, from Theorem 3.1, we
gain

Corollary 3.1. The surface family pair {M, M̂} interpolate Bertrand pair {α(s), α̂(s)} as mutual
geodesic curves if and only if

A(t0) = B(t0) = 0, l(s) = const. , 0, m(s) = const. , 0,
dB(t0)

dt = const. , 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L.

}
(3.9)
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In Eq (2.5), if ψ = 0 and ψ = π/2 then the pair {M, M̂} are named oriented pair, and right pair,
respectively. Further to acquire {M, M̂}, interpolate Bertrand pair {α(s), α̂(s)}, we can first design
the marching-scale functions in Eq (3.9), and then use them to Eqs (3.1) and (3.2) to derive the
parameterization. For suitability in practice, the a(s, t), and b(s, t) can be moreover constrained to
be in extra limited forms and still possess sufficient degrees of freedom to specify large family pair
interpolate Bertrand pair {α(s), α̂(s)} as mutual geodesic curves. Therefore, let us assume that a(s, t),
and b(s, t) can be displayed two different forms:
(1) If we choose 

a(s, t) =
p
Σ

k=1
a1kl(s)kA(t)k,

b(s, t) =
p
Σ

k=1
b1km(s)kB(t)k.

(3.10)

Thus, we can simply express the sufficient condition for which the {α(s), α̂(s)} are geodesic curves on
the surface family pair {M, M̂} as{

A(t0) = B(t0) = 0,
b11 , 0, m(s) , 0, and dB(t0)

dt = const. , 0,
(3.11)

where l(s), m(s), A(t), B(t) ∈ C1, ai j, bi j ∈ R (i = 1, 2; j = 1, 2, ..., p) and l(s), and m(s) are not
identically zero.
(2) If we choose 

a(s, t) = f (
p
Σ

k=1
a1klk(s)Ak(t)),

b(s, t) = g(
p
Σ

k=1
b1kmk(s)Bk(t)),

(3.12)

then {
A(t0) = B(t0) = f (0) = g(0) = 0,
b11 , 0, dB(t0)

dt = const , 0, m(s) , 0, g
′

(0) , 0,
(3.13)

where l(s), m(s), A(t), B(t) ∈ C1, ai j, bi j ∈ R (i = 1, 2; j = 1, 2, ..., p) and l(s), and m(s) are not
identically zero.

Now, we are dealing with and constructing some representative examples to verify the approach.
They also serve to confirm the correctness of the formulae obtained above.

Example 3.1. If q0 = (0, 0, 0), q1 = (0, 1, 1) and q2 = (1, 2, 0) are points in the Euclidean 3-space E3,
then the quadratic Bézier curve can be specified as

α(r) = b0(r)q0 + b1(r)q1 + b2(r)q2, 0 ≤ r ≤ 1,

where
b0(r) = (1 − r)2, b1(r) = 2r(1 − r), b2(r) = r2,

are the blending functions of the curve α(r). It is easy to show that

κ(r) =
1
2

√
6

5r2 − 4r + 2
, τ(r) = 0.
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After simple computation, we get

t(r) =
(r, 1, 1 − 2r)

ρ
, n(r) =

(2(1 − r), 2 − 5r,−(2 + r))
√

6ρ
, b(r) = (−

2
√

6
,

1
√

6
,−

1
√

6
),

where ρ(r) =
√

5r2 − 4r + 2. Choosing a(r, t) = −4rt, b(r, t) = −t, γ , 0, and t0 = 0. Obviously,
Eq (3.9) is satisfied, and the parametric surface specified by Eq (3.1) is

M : y(r, t) =
(
r2, 2r, 2r − 2r2

)
+ t (−4r, 0,−1)


r
ρ

1
ρ

1−2r
ρ

2(1−r)
√

6ρ
2−5r
√

6ρ
−(2+r)
√

6ρ

− 2
√

6
1
√

6
− 1
√

6

 .
Let f =

√
6 in Eq (2.7), we get

α̂(r) = (r2 −
2r
ρ
, 2r −

(2 − 5r)
ρ

, 2r(1 − r) −
(2 + r)
ρ

).

Via Eq (2.5), we find

t̂ =


t11

t12

t13

 =


r
ρ

cosψ − 2
√

6
sinψ

1
ρ

cosψ + 1
√

6
sinψ

1−2r
ρ

cosψ + 1
√

6
sinψ

 ,

b̂ =


b11

b12

b13

 =


− r
ρ

sinψ − 2
√

6
cosψ

− 1
ρ

sinψ + 1
√

6
cosψ

−
(1−2r)
ρ

sinψ + 1
√

6
cosψ

 .
Then, we have

M̂ : ŷ(r, t) = (r2 −
2r
ρ
, 2r +

2 − 3r
ρ

, 2r − 2r2 −
(2 + r)
ρ

) + t (−4r, 0,−1)


t11 t12 t13

0 1 0
b11 b12 b13

 .
For β = γ = −1 the oriented pair, and the right pair, respectively, are shown in Figures 1 and 2,
where 0 ≤ r ≤ 1, and −15 ≤ t ≤ 15.

Figure 1. Oriented pair {M, M̂} with α̂(r) blue, and α(r) green.
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Figure 2. Right pair {M, M̂} with α̂(r) blue, and α(r) green.

Example 3.2. Given a helix

α(s) =
1
√

2
(cos s, sin s, s) , 0 ≤ s ≤ 2π.

The Serret-Frenet frame is

t(s) =
1
√

2
(− sin s, cos s, 1), n(s) = (− cos s,− sin s, 0),b(s) =

1
√

2
(sin s,− cos s, 1).

Then, the parametric surface defined by Eq (3.1) is

M : y(s, t) =
1
√

2
(cos s, sin s, s) + (a(s, t), 0, b(s, t))


− sin s
√

2
cos s
√

2
1
√

2
− cos s − sin s 0
sin s
√

2
− cos s
√

2
1
√

2

 .
Let f =

√
2 in Eq (2.7), we get

α̂(s) =
1
√

2
(− cos s,− sin s, s) , 0 ≤ s ≤ 2π.

Via Eq (2.5), we find

t̂ =


t11

t12

t13

 =


1
√

2
(− cosψ + sinψ) sin s

1
√

2
(cosψ − sinψ) cos s

1
√

2
(cosψ + sinψ)

 ,

b̂ =


b11

b12

b13

 =


1
√

2
(sinψ + cosψ) sin s

1
√

2
(− sinψ − cosψ) cos s

1
√

2
(cosψ − sinψ)

 .
Then, we have

M̂ : ŷ(s, t) =
1
√

2
(− cos s,− sin s, s) + (a(s, t), 0, b(s, t))


t11 t12 t13

− cos s − sin s 0
b11 b12 b13

 .
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If a(s, t) = sin t, b(s, t) = 1 − cos t, t0 = 0, the oriented pair, and the right pair, respectively, are shown
in Figures 3 and 4, where 0 ≤ s, t ≤ 2π.

Figure 3. Oriented pair {M, M̂} with α̂(s) blue, and α(s) green.

Figure 4. Right pair {M, M̂} with α̂(s) blue, and α(s) green.

Example 3.3. Let
α(s) = (cos s, sin s, 0) , 0 ≤ s ≤ 2π.

Then,
t(s) = (− sin s, cos s, 0), n(s) = (− cos s,− sin s, 0),b(s) = (0, 0, 1).

Then, the surface specified by Eq (3.1) is

M : y(s, t) = (cos s, sin s, 0) + (a(s, t), 0, b(s, t))


− sin s cos s 0
− cos s − sin s 0
0 0 1

 .
Let f = 2 in Eq (2.7), we get

α̂(s) = (− cos s,− sin s, 0) , 0 ≤ s ≤ 2π.

Similarly, we find

t̂(s) = (− cosψ sin s, cosψ cos s, sinψ), b̂(s) = (sinψ sin s,− sinψ cos s, cosψ),
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and

M̂ : ŷ(s, t) = (− cos s,− sin s, 0) + (a(s, t), 0, b(s, t))


t11 t12 t13

− cos s − sin s 0
b11 b12 b13

 .
If we choose

a(s, t) = (1 + sin t) +
4
Σ

k=2
a1k(1 + sin t)k, b(s, t) = cos t +

4
Σ

k=2
b1k cosk t,

where t0 = 0, 3π
2 , a1k, b1k ∈ R, and 0 ≤ t ≤ 2π, then Eq (3.11) is satisfied. Therefore, the oriented pair,

and the right pair, respectively, are shown in Figure 5 and 6, where 0 ≤ s ≤ π, and 0 ≤ t ≤ 5.

Figure 5. Oriented pair {M, M̂} with α̂(s) blue, and α(s) green.

Figure 6. Right pair {M, M̂} with α̂(s) blue, and α(s) green.

3.1. Ruled surface family pair with Bertrand pair as mutual geodesic curves

A ruled surface is a special surface created by a continuous movable of a line (ruling) on a curve,
which acts as the base curve. In this subsection, we will address the construction of ruled surface
family pair with Bertrand pair as mutual geodesic curves. For the ease of search, let us consider that
α̂(s) be a unit speed curve. Suppose that ŷ(s, t) is a ruled surface with the base α̂(s) and α̂(s) is also an
isoparametric curve of ŷ(s, t), then there exists t0 such that ŷ(s, t0) = α̂(s). This follows that the surface
can be specified as

M̂ : ŷ(s, t) − ŷ(s, t0) = (t − t0)̂e(s), with 0 ≤ s ≤ L, t, t0 ∈ [0,T ],

where ê(s) is a unit vector specify the orientation of the rulings. Via the Eq (3.2), we have

(t − t0)̂e(s) = a(s, t)̂t(s)+b(s, t)̂b(s), 0 ≤ s ≤ L, with t, t0 ∈ [0,T ], (3.14)

AIMS Mathematics Volume 8, Issue 9, 20546–20560.
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which is a system of two equations with two unknown functions a(s, t), and b(s, t). To solve the
functions a(s, t), and b(s, t) we have

a(s, t) = (t − t0) det(̂e, n̂, b̂),
b(s, t) = (t − t0) det(̂e, t̂, n̂).

(3.15)

Equation (3.15) is exactly the necessary and sufficient conditions for y(s, t) is a ruled surface.
First, we need to examine if α̂(s) is also geodesic on M̂ by employing the Theorem 3.1. It is apparent

that in this case, these follows that

det(̂e, t̂, n̂) , 0. (3.16)

Then, at any point on α̂(s), the ruling orientation ê should be in the rectifying plane. Also, the ê, and t̂
must not be parallel. This follows that

ê(s) = x(s)̂t(s) + y(s)̂b(s), 0 ≤ s ≤ L. (3.17)

Substituting Eq (3.17) into the Eq (3.15), we attain

t x(s) = a(s, t), and t y(s) = b(s, t), with y(s) , 0. (3.18)

Then, the ruled surface family with the mutual geodesic α̂(s) can be specified as

M̂ : ŷ(s, t) = α̂(s) + t (x(s)̂t(s) + y(s)̂b(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ T, (3.19)

where x(s), y(s) , 0, 0 ≤ s ≤ L, and 0 ≤ t ≤ T . However, the normal vector to M̂ along the curve α̂(s)
is

N̂(s, t0) = −y(s)̂n(s), (3.20)

which show that α̂(s) is a geodesic curve on M̂. Then the following theorem can be stated.

Theorem 3.2. The ruled surface family pair {M, M̂} interpolate Bertrand pair {α(s), α̂(s)} as mutual
geodesic curves if and only if there exist a parameter t0 ∈ [0,T ], and the functions x(s), y(s) , 0, so
that M̂ , and M, respectively, parametrized by Eq (3.19), and

M : y(s, t) = α(s) + t (x(s)t(s) + y(s)b(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ T. (3.21)

It must be pointed out in Eqs (3.19) and (3.21), there exist two geodesic curves crossing during
every point on the curves α̂(s)(α(s)) one is α̂ itself and the other is a line in the orientation ê(s) as given
in Eq (3.17). Every constituent of the isoparametric ruled surface family with the mutual geodesic α̂ is
established by two set functions x(s), y(s) , 0.

Example 3.4. In view of Example 3.1, for x(r) = y(r) = −1, the ruled oriented pair {M, M̂}, and the
ruled right pair {M, M̂}, respectively, are shown in Figures 7 and 8, where 0 ≤ r ≤ 1, and −15 ≤ t ≤ 15.
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Figure 7. Ruled oriented pair {M, M̂} with α̂(r) blue, and α(r) green.

Figure 8. Ruled right pair {M, M̂} with α̂(r) blue, and α(r) green.

Example 3.5. In view of Example 3.2, for x(s) = y(s) = 1, the ruled oriented pair {M, M̂}, and the
ruled right pair {M, M̂}, respectively, are shown in Figures 9 and 10, where 0 ≤ s ≤ 2π, and −1 ≤ t ≤ 1.

Figure 9. Ruled oriented pair {M, M̂} with α̂(r) blue, and α(r) green.

AIMS Mathematics Volume 8, Issue 9, 20546–20560.
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Figure 10. Ruled right pair {M, M̂} with α̂(r) blue, and α(r) green.

Example 3.6. In view of Example 3.3, for x(s) = y(s) = s, the ruled oriented pair {M, M̂}, and the ruled
right pair {M, M̂}, respectively, are shown in Figures 11 and 12, where 0 ≤ s ≤ 2π, and −1 ≤ t ≤ 1.

Figure 11. Ruled oriented pair {M, M̂} with α̂(r) blue, and α(r) green.

Figure 12. Ruled right pair {M, M̂} with α̂(r) blue, and α(r) green.

AIMS Mathematics Volume 8, Issue 9, 20546–20560.
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4. Conclusions

In this work, we constructed the surface family pair and ruled surface family pair having Bertrand
pair as mutual geodesic curve in Euclidean 3-space E3. Meanwhile, some curves are selected to
organize the surface family pair and ruled surface family pair which have the Bertrand pair {α̂(s), α(s)}
as mutual geodesic curves. Hopefully, these results will be advantageous to the work in computer-
aided manufacture and those exploring the manufacturing. There are several opportunities for further
work. The authors plans to register the study in different spaces and examining the classification of
singularities.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors would like to acknowledge the Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2023R337), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. M. Do Carmo, Differential geometry of curves and surfaces, Englewood Cliffs: Prentice-Hall,
1976.

2. M. Spivak, A comprehensive introduction to differential geometry, 2 Eds., Houston: Publish or
Perish, 1979.

3. R. Brond, D. Jeulin, P. Gateau, J. Jarrin, G. Serpe, Estimation of the transport properties
of polymer composites by geodesic propagation, J. Microsc., 176 (1994), 167–177.
http://dx.doi.org/10.1111/j.1365-2818.1994.tb03511.x

4. S. Bryson, Virtual spacetime: an environment for the visualization of curved
spacetimes via geodesic flows, Proceedings of Visualization, 1992, 291–298.
http://dx.doi.org/10.1109/VISUAL.1992.235196

5. R. Haw, An application of geodesic curves to sail design, Comput. Graph. Forum, 4 (1985), 137–
139. http://dx.doi.org/10.1111/j.1467-8659.1985.tb00203.x

6. R. Haw, F. Munchmeyer, Geodesic curves on patched polynomial surfaces, Comput. Graph. Forum,
2 (1983), 225–232. http://dx.doi.org/10.1111/j.1467-8659.1983.tb00151.x

7. P. Agarwal, S. Har-Peled, M. Sharir, K. Varadarajan, Approximating shortest
paths on a convex polytope in three dimensions, J. ACM, 44 (1997), 567–584.
http://dx.doi.org/10.1145/263867.263869

AIMS Mathematics Volume 8, Issue 9, 20546–20560.

http://dx.doi.org/http://dx.doi.org/10.1111/j.1365-2818.1994.tb03511.x
http://dx.doi.org/http://dx.doi.org/10.1109/VISUAL.1992.235196
http://dx.doi.org/http://dx.doi.org/10.1111/j.1467-8659.1985.tb00203.x
http://dx.doi.org/http://dx.doi.org/10.1111/j.1467-8659.1983.tb00151.x
http://dx.doi.org/http://dx.doi.org/10.1145/263867.263869


20559

8. R. Goldenberg, R. Kimmel, E. Rivlin, M. Rudzsky, Fast geodesic active contours, IEEE Trans.
Image Process., 10 (2001), 1467–1475. http://dx.doi.org/10.1109/83.951533

9. S. Har-Peled, Approximate shortest-path and geodesic diameter on convex polytopes in three
dimensions, Discrete Comput. Geom., 21 (1999), 217–231. http://dx.doi.org/10.1007/PL00009417

10. M. Novotni, R. Klein, Gomputing geodesic distances on triangular meshes, Journal of WSCG, 10
(2002), 341–347.

11. G. Wang, K. Tang, C. Tai, Parametric representation of a surface pencil with a common
spatial geodesic, Comput. Aided Design, 36 (2004), 447–459. http://dx.doi.org/10.1016/S0010-
4485(03)00117-9

12. H. Zhao, G. Wang, A new method for designing a developable surface utilizing
the surface pencil through a given curve, Prog. Nat. Sci., 18 (2008), 105–110.
http://dx.doi.org/10.1016/j.pnsc.2007.09.001

13. C. Li, R. Wang, C. Zhu, Design and G1 connection of developable surfaces
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