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Abstract: In this paper, a novel event-triggered optimal control method is developed for nonlinear
discrete-time systems with constrained inputs. First, a non-quadratic utility function is constructed
to overcome the challenge caused by saturating actuators. Second, a novel triggering condition
is designed to reduce computational burden. Difference from other triggering conditions, fewer
assumptions are required to guarantee asymptotic stability. Then, the optimal cost function and control
law are obtained by constructing the action-critic network. Convergence analysis of the system is
provided in the consideration of the system state and neural network weight estimation errors. Finally,
the effectiveness and correctness of the proposed method are verified by two numerical examples.
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1. Introduction

Optimality is one of the most significant properties of a control system. Generally, the framework
of the Hamilton-Jacobi-Bellman (HJB) equation is applied to solve the optimal control problem.
Nevertheless, it is formidable to obtain its analytical solutions. Therefore, adaptive dynamic
programming (ADP) method have been widely used to approximate its numerical solutions [1–4].
With the deepening of the research, ADP has showed great development potential.

However, energy loss is the focus of today’s industrial development with the resource consumption
and increasing energy depletion. The event-triggered technique can greatly reduce the transmission and
update of information. As an advanced sampling method, the essence of the event-triggered mechanism
is to decide the controller update by choosing an appropriate triggering condition, which achieves the
purpose of saving energy [5–7]. Wang et al. designed a novel adaptive event-triggering condition,
solving the event-triggered control problem for discrete-time nonlinear systems [8]. Wei et al. studied
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the self-learning optimal regulation problem of discrete-time nonlinear systems based on events and
proved that a suitable triggering condition can ensure the stability of the system [9]. Event-triggered
control is also widely applied in tracking control problems [10–13] and other fields [14]. Hu et al.
developed an event-based approximate optimal tracking control problem of discrete-time nonlinear
systems [15]. Luo et al. introduced a novel event-triggered control policy and gave detail Lyapunov
analysis for continuous-time systems [16].

Besides, due to the wide existence of physical constraints, practical systems are inevitably subject
to saturation nonlinearities. Control constraints can easily damage the overall performance of the
system. Additionally, it is more difficult to design the controller than the general case. Therefore,
there is a great interest in the study of various systems with control constraints [17–19]. Ha et al.
solved the constrained control problem by minimizing a novel nonquadratic cost function [20]. Ha
et al. investigated an event-based controller for the near-optimal control policy of discrete-time systems
with constrained inputs [21]. For the asymmetric input constraint problem, Sun et al. developed an
event-triggered optimal control method [22]. Liu et al. designed a novel triggering condition with
simple form and few assumptions, solving the optimal control problem by using the heuristic dynamic
programming (HDP) algorithm [23]. Considering the constrained-input problem, Liao et al. proposed
an event-triggered dual heuristic dynamic programming (DHP) algorithm [24]. Mu et al. applied the
global dual heuristic dynamic programming (GDHP) algorithm to solve the event-triggered constraint
control of nonlinear discrete-time systems [25]. Compared with the HDP and DHP structures, the
action-dependent dual Heuristic programming (ADDHP) structure learns more system information,
which enables the ADDHP method to obtain better control performance. This has motivated our study.

Given that the ADDHP algorithm has many advantages, we investigated a novel event-triggered
control method using this algorithm. The main contributions of this paper are listed as follows:
(1) A novel triggering condition is designed, which can effectively reduce the number of events
occurring. Additionally, under this triggering condition, the stability of the system is proved with
fewer assumptions. Hence, the novel event-based ADDHP algorithm is more practical for application.
(2) The convergence for the cost function and control inputs is proved theoretically.
(3) In the action-critic network, the influence of the control input on the cost function is considered.
Thus, this method has a faster convergence rate and a higher approximate accuracy.

This paper is arranged as follows: Section 2 states the event-triggered constrained control problem.
A novel triggering condition and the stability analysis of the system are provided in Section 3. Section 4
briefly introduces the implementation of the ADDHP algorithm and analyzes the convergence of the
system states and neural network weights. In Section 5, two simulation examples are presented to
verify the correctness of the proposed algorithm. Finally, some conclusions and the prospects for the
future are given in Section 6.

2. Problem description

Consider the following nonlinear discrete-time system with constrained inputs:

x (k + 1) = F (x (k) , u (k)) , k = 0, 1, 2, · · · , (2.1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input, F (·, ·) is an unknown system
function. Ωu =

{
u (k)

∣∣∣u (k) = [u1 (k) , u2 (k) , · · · , um (k)]T
∈ Rm,

∣∣∣u j (k)
∣∣∣ ≤ ū j, j = 1, 2, · · · ,m

}
, where ū j
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is the saturation level of the jth actuator. The origin x (k) = 0 is the unique equilibrium point of the
system (2.1) under u (k) = 0, i.e., F (0, 0) = 0.

Assumption 1. [23] System (2.1) is controllable and observable, unknown system function F : Rn ×

Rm → Rn is Lipschitz continuous.

Assumption 1 implies that there exists a continuous state feedback control policy u (k) =

µ (x (k)) , µ : Rn → Rm that can stabilize system (2.1) to the equilibrium point.
In the event-triggered control, we define a monotone increasing time sequence {ki}

∞
i=0 as sampling

sequence. When the triggering condition is satisfied, the control input keeps constant during the time
interval [ki, ki+1) by involving a zero-order hold (ZOH). Therefore, the feedback control law can be
expressed as

u (x (k)) = µ (x (ki)) . (2.2)

Due to a gap or difference between the sampling state x (ki) and the current state x (k), then the
triggering error is described as

e (k) = x (ki) − x (k) . (2.3)

Only when e (k) = 0, i.e., x (k) = x (ki) , i = 0, 1, 2, · · · , the current status is marked as the sampling
status and transferred to the controller to update the system control law. The control law can be
rewritten as u (x (k)) = µ (x (k) + e (k)), so system (2.1) can be rewritten as

x (k + 1) = F (x (k) , µ (x (k) + e (k))) . (2.4)

The utility function is described as

U (x (k) , µ (x (ki))) = xT (k) Qx (k) + T (µ (x (ki)))

= xT (k) Qx (k) + 2
∫ µ(x(ki))

0
tanh−T

(
Ū−1v

)
ŪRdv,

(2.5)

where Q ∈ Rn×n and R are symmetric positive definite matrices, T (µ (x (ki))) is a positive non-quadratic
function and can ensure that the control input µ (x (ki)) does not exceed the constraint boundary. Ū ∈
Rm×m is a constant diagonal matrix by Ū = diag {ū1, ū2, · · · , ūm}.

The purpose of optimal control is to search for an optimal control strategy µ∗ (x (ki)) to minimize
the cost function:

J(x(k)) =

∞∑
i=k

U(x(i), µ(x(ki))). (2.6)

For the cost function J(x(k)), its Hamiltonian function is expressed as

H (x, µ,∇J) = U(x(i), µ(x(ki))) + ∇JT (x) F (x, u) , (2.7)

where ∇J (·) = ∂J (·)/∂x (·). According to Bellman’s optimality principle, the optimal cost function
J∗ (x (ki)) can be gained by solving the following HJB equation:

min
µ∈Ωu

H (x, µ,∇J∗) = 0, (2.8)

where ∇J∗ (0) = 0, the optimal control law can be expressed as

µ∗ (x (ki)) = arg min
µ∈Ωu

H (x, µ,∇J∗) . (2.9)

In the following section, we will prove that the system is asymptotically stable under the designed
triggering condition.
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3. Triggering condition and stability analysis

Design the triggering condition in the following form:

‖e (k)‖ ≤ eT =

√
1 − αC2

2C2 ‖x (ki)‖ , (3.1)

where C ∈
(
0, 1

/√
α
)

and α ∈
(
2, 1

/
C2

)
are normal numbers. The triggering threshold eT is not unique,

which is influenced by the system sampling status x (ki) and the designed constants α and C. Then the
next triggering point can be achieved by

ki+1 = inf {k |‖e (k)‖ > eT , k > ki } . (3.2)

For discrete-time systems, the minimal inter-sample time is bounded by a nonzero positive constant,
then Zeno behavior can be eliminated.

Remark 1. The threshold has a similar form to that proposed in [23]. This paper introduces the
parameter α that interacts with C. By adjusting these two parameters, the novel triggering condition
can achieve higher resource utilization efficiency. It will be shown in the simulation example later.
Compared with [24] and [25], the triggering condition designed in this paper is easy to implement and
requires fewer assumptions.

Definition 1. [23] There exist some κ∞ function α1, α2, α3 and a κ function β, which make the following
inequality hold:

α1 (‖x (k)‖) ≤ V (x (k)) ≤ α2 (‖x (k)‖) , (3.3)

V (F (x (k) , µ (x (k) + e (k)))) − V (x (k)) ≤ −α3 (‖x (k)‖) + β (‖e (k)‖) , (3.4)

then the function V : Rn → R is called an input-to-state stability (ISS) Lyapunov function.

Assumption 2. [25] There exists a normal number C ∈
(
0, 1

/√
α
)
, which makes the following

inequality hold:
F (x (k) , µ (x (k) + e (k))) ≤ C ‖x (k)‖ + C ‖e (k)‖ . (3.5)

Theorem 3.1. Suppose that Assumptions 1 and 2 hold and the triggering condition is determined
by (3.1), then the nonaffine system (2.4) is asymptotically stable.

Proof. Define the following Lyapunov function:

V (x (k + 1)) = xT (k + 1) Qx (k + 1) + T (µ (x (ki))) . (3.6)

For the case of k ∈ [ki, ki+1), the control law stored in ZOH updates the system. The Lyapunov
function is only related to the system state.

The first-order difference of V is

∆V (x (k + 1)) = xT (k + 1) Qx (k + 1) − xT (k) Qx (k)

= λmin (Q)
[
‖x (k + 1)‖2 − ‖x (k)‖2

]
.

(3.7)
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Define α3 (‖x (k)‖) = λmin (Q)
(
1 − 2C2

)
‖x (k)‖2 and β (‖e (k)‖) = λmin (Q) 2C2‖e (k)‖2, according to

Assumption 2 and the Cauchy-Schwarz inequality, we can deduce that

∆V (x (k + 1)) = λmin (Q)
[
(C ‖x (k)‖ + C ‖e (k)‖)2

− ‖x (k)‖2
]

≤ λmin (Q)
[(

2C2 − 1
)
‖x (k)‖2 + 2C2‖e (k)‖2

]
= −α3 (‖x (k)‖) + β (‖x (k)‖) .

(3.8)

According to Definition 1, V is an ISS Lyapunov function. Substitute the triggering condition
to (3.8), we can obtain

∆V (x (k + 1)) ≤ λmin (Q)
[(

2C2 − 1
)
‖x (k)‖2 +

(
1 − αC2

)
‖x (k)‖2

]
≤ λmin (Q) (2 − α) C2‖x (k)‖2.

(3.9)

Since α ∈
(
2, 1

/
C2

)
, then ∆V ≤ 0. Therefore, the system (2.4) based on events is asymptotically

stable. �

Remark 2. Compared with [24] and [25], this paper demonstrates stability with fewer conditions.
When the triggering condition is violated at the time instant k + 1, the system will work under the
updated control law, which is equivalent to the time-triggered control at k + 1. According to the
optimal control theory, stability can be guaranteed in this single instant.

4. Event-triggered control with the ADDHP technique

Utilizing the advantages of neural networks, three networks are established to approximate the
system dynamics, costate function and control law respectively. Moreover, the event-triggered
technique is introduced to lessen the communication bandwidth. The simple diagram of the ETOC
scheme is illustrated in Figure 1.

Figure 1. The diagram of the event-based ADDHP approach.

For simple representation, we define some notations before presenting the main results. The weight
matrix of the input-to-hidden layer is expressed as w, and the weight matrix of the hidden-to-output
layer is denoted as v. Set the activation function as ϑ (t) =

(
1 − e−t)/(1 + e−t), ζ and η represent the

approximation error and the learning rate respectively.
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4.1. Model network

The model network is employed to identify the system dynamics x(k + 1). Then x(k + 1) can be
represented as

x(k + 1) = wT
mϑm(σmk) + ζmk, (4.1)

where σmk = vT
mθk, θk =

[
xT (k) , uT (k)

]T
is the input vector. Considering that the optimal weight vector

wm is usually unknown, we approximate the optimal weight vector wm with ŵm, then the system state
can be estimated as

x̂(k + 1) = ŵT
mϑm(σmk). (4.2)

The error function of the model network can be denoted as em = x̂(k + 1) − x(k + 1), the objective
performance function Em can be defined as

Em =
1
2

eT
mem. (4.3)

We apply the gradient descent algorithm to update ŵm:

ŵm(k+1) = ŵmk − ηm
∂Em

∂ŵmk
, (4.4)

∂Em

∂ŵmk
=
∂Em

∂em

∂em

∂x̂ (k + 1)
∂x̂ (k + 1)
∂ŵmk

= emϑm (σmk) . (4.5)

4.2. Critic network

The critic network is used to approximate the costate function, which can be described as

λ̂(i+1)(x (k + 1)) = ŵT
c ϑc(zc(k+1)), (4.6)

where zc(k+1) = vT
c πk+1, πk+1 =

[
x̂T (k + 1) , ûT (k + 1)

]T
represents the input vector, and λ̂ (x (k + 1)) =

∂Ĵ (x (k + 1))
/
∂x (k + 1), λ̂(x (k + 1)) is the estimation of λ(x (k + 1)).

We define the error function of the critic network as ec = λ̂(i+1)(x (k + 1)) − λ(i+1)(x (k + 1)). The
critic network is supposed to minimize the performance measure Ec = 1

2eT
c ec.

The weight tuning law is designed to obey a gradient-descent algorithm:

ŵc(k+1) = ŵck − ηc
∂Ec

∂ŵck
, (4.7)

∂Ec

∂ŵck
=
∂Ec

∂ec

∂ec

∂λ̂ (x (k + 1))
∂λ̂ (x (k + 1))

∂ŵck
= ecϑc

(
zc(k+1)

)
. (4.8)

4.3. Action network

The input of the action network is the sampling state x (ki), which is used to obtain the control law
µ (x (ki)). Then µ (x (ki)) can be estimated as

µ̂(x (ki)) = ŵT
aϑa(ςak), (4.9)
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where ςak = vT
a x (ki). Define the error function as ea = λ̂(i+1)(x (k + 1)) − JC, where JC = 0 expresses

the desired ultimate targets, and is set to 0, generally. Thus, the target performance measure can be
designed as Ea = 1

2eT
a ea.

According to the gradient-descent algorithm, the weights can be updated as

ŵa(k+1) = ŵak − ηa
∂Ea

∂ŵak
, (4.10)

∂Ea

∂ŵak
= eaŵT

c ϕ(k+1)vT
c ŵT

mψkvT
mρϑa (ςak) = ϑa (ςak) ŵT

c ϑc
(
zc(k+1)

)
ŵT

c ϕ(k+1)$, (4.11)

where $ = vT
c ŵT

mψkvT
mρ, ρ ∈ R(n+m)×m, ϕk+1 ∈ Rhc×hc , ψk ∈ Rhm×hm are represented as ρ =

[
0n×m

Im×m

]
,

ϕk+1 = 1
2


1 − ϑ2

c
(
zc(k+1),1

)
· · · 1 − ϑ2

c
(
zc(k+1), hc

)
...

. . .
...

1 − ϑ2
c
(
zc(k+1),1

)
· · · 1 − ϑ2

c
(
zc(k+1), hc

)
 , ψk = 1

2


1 − ϑ2

m
(
zmk,1

)
· · · 1 − ϑ2

m (zmk, hm)
...

. . .
...

1 − ϑ2
m
(
zmk,1

)
· · · 1 − ϑ2

m (zmk, hm)


respectively. $ will remain as a constant matrix after the model network is well-trained.

Remark 3. In the ADDHP algorithm, two action networks are constructed to approximate the control
laws at the time instants k and k + 1. The outputs of the second action network are used to approximate
the costate function. The effect of the control input on the costate function is considered, then the
ADDHP structure can learn more system information compared to HDP and DHP structure. Thus, the
proposed approach has a higher approximate accuracy and a faster convergence rate.

4.4. Convergence analysis

Assumption 3. Assume that:
(1)The activation function ϑ and the reconstruction error ζ are bounded, such that ‖ϑc‖ ≤

ϑcM, ‖ϑa‖ ≤ ϑaM, ‖ζck‖ ≤ ζcM, where ϑM, ζM are positive constants.
(2) The optimal weight vectors w and v are bounded, i.e., ‖w‖ < wM, ‖v‖ < vM, where wM, vM are

positive constants.

Owing to ξck, ξak, ϕ(k+1) are only related to the weight w and the activation function ϑ, ξck and ξak

are defined in the process later. Based on Assumption 3, it is certain that ξck, ξak, ϕ(k+1) are bounded.
For simple representation, we apply ξcM, ξaM, ϕM represent the upper of ξck, ξak, ϕ(k+1) respectively.

Defined the weight estimation errors of the action and critic networks as w̃a = ŵa − wa and w̃c =

ŵc − wc respectively, which ŵ represents the estimation weight and w denotes the optimal weight.

Theorem 4.1. Supposed that Assumptions 1–3 hold and the triggering condition is determined by (3.1).
The weight-updating laws of NNs are regulated by (4.7) and (4.10) respectively. Then the system states
x(k) and the weight estimation errors w̃c and w̃a are uniformly ultimately bounded (UUB) under the
following conditions:

ηc <
1

2ϑcM
, ηa <

1
2ϑaM

, ‖x (k)‖ >

√
D2

M

λmin (Q) (α − 2) C2 , (4.12)

where D2
M = F2

M +
(
1 + 2ηcϑ

2
cM

)
ζ2

cM
.
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Proof. The situation that the event is triggered at the time k only needs to be considered. Because when
the event is not triggered, control law u(k) is not updated, then the associated weight vectors wc and wa

keep unchanged. Therefore, the Lyapunov function is only related to the system state. According to
Theorem 3.1, stability of the system can be guaranteed for all k.

Define the Lyapunov function in the following form:

V (x (k + 1)) = xT (k) x (k) +
1
ηc

tr
{
w̃T

c w̃c

}
+

1
ηa

tr
{
w̃T

a w̃a

}
. (4.13)

Let L1 = xT (k) x (k), L2 =
1
ηc

{
w̃T

c w̃c

}
, L3 =

1
ηa

{
w̃T

a w̃a

}
. The first-order difference of L1 has been

discussed in Theorem 3.1.
Based on the weight updating law, the weight estimation error of the critic network can be deduced

as
w̃c (k + 1) = ŵc (k+1) − wc = ŵc (k) − ηc

∂Ec

∂ŵck
− wc = w̃c (k) − ηcϑc

(
zc(k+1)

)
ec. (4.14)

Then the first-order difference of L2 can be denoted as

∆L2 =
1
ηc

tr
{
w̃T

c (k + 1) w̃c (k + 1) − w̃T
c (k) w̃c (k)

}
=

1
ηc

tr
{[

w̃c (k) − ηcϑc
(
zc(k+1)

)
ec

]T [
w̃c (k) − ηcϑc

(
zc(k+1)

)
ec

]
− w̃T

c (k) w̃c (k)
}

=
1
ηc

tr
{
−2ηcw̃T

c (k)ϑc
(
zc(k+1)

)
ec + η2

c
eT

c ϑ
T
c
(
zc(k+1)

)
ϑc

(
zc(k+1)

)
ec

}
= tr

{
−2w̃T

c (k)ϑc
(
zc(k+1)

)
ec + ηceT

c ϑ
T
c
(
zc(k+1)

)
ϑc

(
zc(k+1)

)
ec

}
.

(4.15)

The error function of the critic network is ec = w̃T
c ϑc

(
zc(k+1)

)
− ζck , let ξck = w̃T

c ϑc
(
zc(k+1)

)
.

Substituting them into the above formula and using the Cauchy-Schwartz inequality, Eq (4.15) can
be further derived as

∆L2 ≤ 2ηc

∥∥∥ξckϑc
(
zc(k+1)

)∥∥∥2
+ 2ηc

∥∥∥ζckϑc
(
zc(k+1)

)∥∥∥2
− 2‖ξck‖

2 + tr {2ξckζck}

≤ 2ηc

∥∥∥ξckϑc
(
zc(k+1)

)∥∥∥2
+ 2ηc

∥∥∥ζckϑc
(
zc(k+1)

)∥∥∥2
− ‖ξck‖

2 + ‖ζck‖
2

≤ −

(
1 − 2ηc

∥∥∥ϑc
(
zc(k+1)

)∥∥∥2
)
‖ξck‖

2 +

(
1 + 2ηc

∥∥∥ϑc
(
zc(k+1)

)∥∥∥2
)
‖ζck‖

2

≤ −
(
1 − 2ηcϑ

2
cM

)
ξ2

cM
+

(
1 + 2ηcϑ

2
cM

)
ζ2

cM
.

(4.16)

The weight estimation error of the action network can be described as

w̃a (k + 1) = w̃a (k) − ηaϑa (ςak) ŵT
c ϑc

(
zc(k+1)

)
ŵT

c ϕ(k+1)$. (4.17)

The first-order difference of L3 can be denoted as

∆L3 =
1
ηa

tr
{
w̃T

a (k + 1) w̃a (k + 1) − w̃T
a (k) w̃a (k)

}
=

1
ηa

tr
{∥∥∥w̃a (k) − ηaϑa (ςak) ŵT

c ϑc
(
zc(k+1)

)
ŵT

c ϕ(k+1)$
∥∥∥2
− ‖w̃a (k)‖2

}
≤ tr

{
−2w̃a (k)ϑa (ςak) ŵT

c ϑc
(
zc(k+1)

)
ŵT

c ϕ(k+1)$
}

+ ηa

∥∥∥ϑa (ςak) ŵT
c ϑc

(
zc(k+1)

)
ŵT

c ϕ(k+1)$
∥∥∥2
.

(4.18)
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Define ξak = w̃T
aϑa (ςak), Ξ1 = tr

{
−2w̃a (k)ϑa (zak) ŵT

c ϑc
(
zc(k+1)

)
ŵT

c ϕ(k+1)$
}

and Ξ2 =

ηa

∥∥∥ϑa (ςak) ŵT
c ϑc

(
zc(k+1)

)
ŵT

c ϕ(k+1)$
∥∥∥2

, then we can easily deduce that

Ξ1 =
∥∥∥ŵT

c ϑc
(
zc(k+1)

)
− ŵT

c ϕ(k+1)$ξak

∥∥∥2
−

∥∥∥ŵT
c ϕ(k+1)$ξak

∥∥∥2
−

∥∥∥ŵT
c ϑc

(
zc(k+1)

)∥∥∥2

≤
∥∥∥ŵT

c ϕ(k+1)$
∥∥∥2
‖ξak‖

2 +
∥∥∥ŵT

c ϑc
(
zc(k+1)

)∥∥∥2

≤
1
2
‖ξak‖

4 +
1
2

∥∥∥ŵT
c ϕ(k+1)$

∥∥∥4
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(4.19)

Ξ2 ≤ −

[∥∥∥ŵT
c ϕ(k+1)$

∥∥∥2
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(4.20)
Combined (4.18) and (4.19) with (4.20), ∆L3 satisfies

∆L3 ≤ −
[
1 − ηa‖ϑa (ςak)‖2

] ∥∥∥ŵT
c ϕ(k+1)$

∥∥∥2∥∥∥ŵT
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(
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2
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]
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cM
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M$
2ϑ2
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(4.21)

where F2
M defines as

F2 =
1
2
‖ξak‖
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4
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(4.22)

Based on (3.9), (4.16) and (4.21), we can conclude that

∆L ≤ −λmin (Q) (α − 2) ‖x (k)‖2 −
(
1 − 2ηcϑ

2
cM

)
ξ2

cM
−

[
1 − ηaϑ

2
aM

]
w4

cM
ϕ2

M$
2
Mϑ

2
cM

+ D2
M. (4.23)

According to (4.12), then the derivative of V is negative. �

Remark 4. In this section, it is proved that the system states and the estimation errors of the neural
network weights are uniformly ultimately bounded (UUB). It implies that the cost function and control
law can converge to the neighborhoods of the optimal. The convergence of the system is demonstrated
theoretically. Hence, the proposed method in this paper is more effective.

5. Simulation

Example 1. Consider the following mass-spring-damper system [23]: ẋ1 = x2,

ẋ2 = −
b
m

x2 −
k
m

x1 +
F
m
,

(5.1)

where m = 1kg and b = 3N∆s/m are mass and the drag force of the body. k = 9N/m is the linear
spring constant. The control law u(k) of the system is the force F from outside. Choose the initial state
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vector as x (0) = [−0.5, 0.5]T , the constants α = 2.5 and C = 0.3. Based on the Euler method, the
system can be discrete as

{
x1 (k + 1) = 0.0099x2 (k) + 0.9996x1 (k) ,
x2 (k + 1) = −0.0887x1(k) + 0.97x2 (k) + 0.0099u (k).

(5.2)

Set the control constraints as
∣∣∣u j

∣∣∣ < 0.1. Considering that u is one-dimensional, then the control
constraint is designed as |u| < 0.1. Let the parameters Q = I2 and R = I, which I2 and I represent the
identity matrix with appropriate dimensions. We choose three-layer neural networks to implement the
algorithm. For model networks, 500 data samples are used to train and another 500 samples to test its
performance. Then we train the critic network and action network for 500 iterations to make sure the
given accuracy ε = 10−5 is reached. In the training process, the learning rate is ηm = ηc = ηa = 0.05.

Moreover, in order to make comparisons with the event-triggered HDP algorithm proposed in [23],
we also present the controller designed by the event-based HDP algorithm. Then, we apply the
optimal control laws designed by event-based ADDHP and HDP techniques to the system 500 times,
respectively. The state curves by using these two methods are shown in Figures 2 and 3. It is evident
that the proposed method converges faster and performs better than the HDP algorithm based on the
event-triggered control. The corresponding control curves are shown in Figure 4. Apparently, the
control law is updated only when the triggering condition is violated. As displayed in Figure 4, it can
be seen from the simulation results that the controller derived by the event-based ADDHP algorithm
can reduce the number of controller updates and converge faster while ensuring system performance.
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Figure 2. The trajectories of the current angle x1.
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Figure 3. The trajectories of the angular velocity x2.
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Figure 4. The trajectories of the control input u(k).

Example 2. Consider the discrete-time nonlinear system:
x1 (k + 1) = x1 (k) + 0.1x2 (k),
x2 (k + 1) = −0.17 sin(x1 (k)) + 0.98x2 (k) + 0.1u1 (k),
x3 (k + 1) = 0.1x1 (k) + 0.2x2 (k) + x3 (k) cos(u2 (k)),

(5.3)

where the state vector is x (k) = [x1 (k) , x2 (k) , x3 (k)]T and the control input is u (k) = [u1 (k) , u2 (k)]T .
The weight matrices of the utility function are set as Q = I3,R = 0.01I2. The constraint boundary is
set as 3.

The learning rates and other relevant parameters of the model component are chosen the same
as Example 1, but with the structure 5-8-3. We apply the developed algorithm to train the critic
network (5-8-3) and the action network (3-8-2). The initial weights of these two networks are selected
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the same as that in Example 1. Here, the initial state vector is chosen as x (k) = [0.5, 0.5, 0.5]T . For
adopting the event-based mechanism, we set the parameters of the threshold as α = 3,C = 0.2. Then,
the state trajectories of the developed method and the event-triggered HDP algorithm are shown in
Figures 5–7. The corresponding control curves are shown in Figures 8 and 9. Remarkably, an evident
improvement of the resource utilization has been obtained under event-driven formulation. From these
results, we observe that the system performance can be maintained while the control efficiency has
been signally enhanced, which demonstrates the effectiveness of the event-driven ADDHP approach.
Moreover, the convergence rate of the system is faster than the event-driven HDP algorithm.
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Figure 5. The trajectories of the system state x1.
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Figure 6. The trajectories of the system state x2.
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Figure 7. The trajectories of the system state x3.
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Figure 8. The trajectories of the control input u1.
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Figure 9. The trajectories of the control input u2.
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6. Conclusions

In this paper, a novel event-triggered control method has been studied for discrete-time nonlinear
systems with constrained input. A novel triggering condition is designed with a simpler form and
fewer assumptions. Moreover, it also proves that the states and the estimation errors of the neural
network weights are uniformly ultimately bounded. The simulation example emphasizes that the
proposed method can cut computational burden while ensuring system performance. However, due
to the complexity of the actual system, the full state feedback is infeasible. Therefore, other feedback
control methods will need to be further studied in the future.
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