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Abstract: This paper considers the local stabilization problem for a hyperchaotic finance system by
using a time-delayed feedback controller based on discrete-time observations. The quadratic system
theory is employed to represent the nonlinear finance system and a piecewise augmented discontinuous
Lyapunov-Krasovskii functional is constructed to analyze the stability of the closed-loop system. By
further incorporating some advanced integral inequalities, a stabilization criterion is proposed by means
of the feasibility of a set of linear matrix inequalities under which the hyperchaotic finance system can
be asymptotically stabilized for any initial condition satisfying certain constraint. As the by-product,
a simplified criterion is also obtained for the case without time delay. Moreover, the optimization
problems with respect to the domain of attraction are specially discussed, which are transformed into
the minimization problems subject to linear matrix inequalities. Finally, numerical simulations are
provided to illustrate the effectiveness of the derived results.
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Notations:

The superscript “T” refers to the matrix transpose. The matrix P > 0 (P ≥ 0) means that P is positive
definite (positive semi-definite). “ ∗ ” is the symmetric terms in a matrix. W[α, β) is the space of vector
functions φ defined over [α, β] that are absolutely continuous with a finite lims→β−φ(s) and square
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integrable derivatives. The norm of W[α, β) is defined as

∥ϕ∥W = maxs∈[α,β)∥φ(s)∥ +
[ ∫ β

α

∥φ̇(s)∥ds
]1/2
.

1. Introduction

Over the past two decades, finance systems have been extensively studied due to their
sophisticated dynamical behaviors such as the chaos and the bifurcation [1–6]. Note that the chaotic
characteristics of finance systems could induce the potential uncertainties of the macroeconomic
operation. Therefore, in the past decade or so, the stabilization and synchronization problems for the
chaotic finance systems have become the most concerned research topics [7–11]. In particular,
various control schemes have been adopted to achieve the effective stabilization and synchronization.
For instance, in [12–15], the delayed control scheme has been utilized to stabilize the chaotic and
hyperchaotic finance systems and, in [16, 17], the adaptive controllers have been proposed to realize
desirable control and synchronization performance for the finance systems. In [18, 19], the adaptive
sliding control strategy has been employed to stabilize the fractional-order finance systems. In [20], a
resilient guaranteed cost controller has been designed to control the chaotic finance system. Also, the
impulsive controller and intermittent controller have been designed in [21, 22], respectively.

In the literature [23], the control scheme based on discrete-time observations (DTOs) has been
proposed to stabilize the continuous-time stochastic differential equations with Markov chain.
Compared with the continuous-time control, such a control scheme costs less as the system state is
only required to be observed at some discrete-time instants. The results in [23] have been further
improved in [24] by using some new techniques and, in [25, 26], the time delay has been taken into
account in the DTOs-based control scheme. Note that the control setting proposed in [19–22] is
essentially the same as the sampled-data control encountered in engineering control systems [27, 28].
For the sampled-data control, it is worth pointing out that the discontinuous Lyapunov-Krasovskii
(L-K) functionals and the Wirtinger’s inequality have been developed in [28] to establish more
effective stabilization conditions for linear control systems under a sampled-data controller with the
transmission delay.

So far, most existing literature with respect to the control of finance systems have been based on
continuous-time controllers. In addition, discontinuous control schemes have been proposed in [21,22]
to address the synchronization problem for chaotic and hyperchaotic finance systems. However, to our
knowledge, the DTOs-based control strategy has not been adopted to discuss the finance systems,
not mention to the time delay is involved. In fact, the DTOs-based control is more realistic for finance
systems since the financial policies are generally implemented for a period of time and then updated on
the basis of the current economic situation. In addition, the time delay of policy implementation is often
unavoidable. Thus, the time delay should be considered in designing controller. Unfortunately, the
existing results concerning the DTOs-based time-delayed feedback can be only applicable for nonlinear
control systems subject to the rigorous linear growth conditions [25, 26]. Note that the sampled-data
control with transmission delay in [28] is similar to the DTOs-based time-delayed control. However,
it is worth mentioning that the results in [28] are only concerned with linear systems, which are no
longer applicable for chaotic finance systems due to the existence of nonlinear characteristics.

Inspired by the aforementioned discussions, the paper is devoted to considering the stabilization
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problem for a hyperchaotic finance system via a time-delayed feedback controller based on DTOs. By
incorporating the quadratic system theory, a piecewise augmented discontinuous L-K functional, and
some advanced inequalities, a local stabilization criterion is first established by means of linear matrix
inequalities (LMIs). As the by-product, a simplified criterion is also provided in the case of no time
delay. Moreover, the optimization problems are given to derive the larger domain of attraction (DOA).
Finally, simulations show the availability of the derived results. The novelties of the paper are given as
below:

1) The DTOs-based time-delayed control scheme is proposed, for the first time, to stabilize the
hyperchaotic finance system.

2) A piecewise augmented discontinuous L-K functional is constructed under which a novel local
stabilization criterion is obtained by means of LMIs.

3) The state evolution over the first time-interval is specifically considered in establishing the local
stabilization criterion.

2. Problem formulation

In [1,2], the authors have proposed a finance system containing three variables and nine independent
parameters. The finance system is composed of four sub-blocks (namely, labor force, production, stock
and money) and can be simplified as follows:

ż1(t) = z3(t) + (z2(t) − a)z1(t),
ż2(t) = 1 − bz2(t) − z2

1(t),
ż3(t) = −z1(t) − cz3(t),

(1)

where z1(t), z2(t) and z3(t) represent, respectively, the interest rate, the investment demand and the
price index; a, b and c denote, respectively, the saving amount, the cost per investment and the demand
elasticity of commercial markets.

In the literature [9], by introducing an additional variable z4(t) representing the average profit
margin, the system (1) has been modified as below:

ż1(t) = z3(t) + (z2(t) − a)z1(t) + z4(t),
ż2(t) = 1 − bz2(t) − z2

1(t),
ż3(t) = −z1(t) − cz3(t),
ż4(t) = −lz1(t)z2(t) − mz4(t),

(2)

where l and m are scalars. In [9], it has been shown that the finance system (2) displays the complicated
hyperchaotic phenomenon for the case that a = 0.9, b = 0.2, c = 1.5, l = 0.2 and m = 0.17. Under the
assumption that

∆ ≜ (abcm + bm + cl − cm)/(cl − cm) > 0,

it is easy to verify that the hyperchaotic system (2) has the following equilibrium points:(
0,

1
b
, 0, 0
)
,
(
±
√
∆,

acm + m
cm − cl

,∓

√
∆

c
,

√
∆(ac + 1)l
cl − cm

)
. (3)
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Denoting z(t) ≜ [z1(t) z2(t) z3(t) z4(t)]T and adding the feedback control u(t) into (2), we have

ż(t) = Az(t) + f (z(t)) + u(t), (4)

where

A =


−a 0 1 1
0 −b 0 0
−1 0 −c 0
0 0 0 −m

 , f (z(t)) =


z1(t)z2(t)
1 − z2

1(t)
0

−lz1(t)z2(t)

 .
In order to stabilize the continuous-time stochastic hybrid dynamical systems, in [23,24], Mao et al.

have proposed the following DTOs-based feedback controller:

u(t) = u(z([t/h]h), t), (5)

where h > 0 refers to the duration between two consecutive observations, [t/h] is the maximum integer
less than or equal to t/h. Considering that the time delay is often inevitable in data transmission,
in [25, 26], the controller (5) has been modified as

u(t) = u(z([t/h]h − η), t),

where η > 0 is a time delay.

Remark 1. Under the DTOs-based control scheme, it is seen from (5) that the only the state at the
discrete instants 0, h, 2h, · · · are needed in designing the controller. Compared with the feedback
control using the continuous-time state, it is clear that the DTOs-based scheme costs less. The
DTOs-based control is essentially the same as the sampled-data control in engineering
systems [27, 28].

In the paper, we will design the DTOs-based time-delayed feedback controller. Let sk ≜ kh (k =
0, 1, 2, · · · ) be the state observation instants and tk ≜ kh + η (k = 0, 1, 2, · · · ) be the updating instants of
control signals. Then, the DTOs-based time-delayed controller can be described as

u(t) = K(z(tk − η) − z∗), t ∈ [tk, tk+1), k = 0, 1, 2, · · · . (6)

Remark 2. In reality, the financial policies are generally implemented over a period of time and
then modified on the basis of the current economic situation. Moreover, the time delay of policy
implementation is often unavoidable. Compared with the continuous-time delayed feedback [9,12–15],
the DTOs-based delayed feedback might be more realistic in controlling the unstable finance systems.
Literature survey shows that, this paper is the first time to address the stabilization problem for the
unstable finance systems under a DTOs-based delayed control scheme.

Let z∗ = [z∗1 z∗2 z∗3 z∗4]T be the unstable equilibrium point of the system (2). Then, it follows that

Az∗ + f (z∗) = 0. (7)

Moreover, using (4), (6) and (7), one has the closed-loop system

ė(t) =Āe(t) + Ke(tk − η) + f̄ (e(t)), t ∈ [tk, tk+1), k = 0, 1, 2, · · · , (8)
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where e(t) ≜ z(t) − z∗, Ā ≜ A + F0 and

F0 ≜


x∗2 x∗1 0 0
−2x∗1 0 0 0

0 0 0 0
−lx∗2 −lx∗1 0 0

 , f̄ (e(t)) ≜


e1(t)e2(t)
−e2

1(t)
0

−le1(t)e2(t)

 .
In particular, it is seen that the nonlinearity f̄ (e) can be explicitly formulated as

f̄ (e) =


eT F1

eT F2

eT F3

eT F4

 e ≜ F(e)e, (9)

where F3 = 04×4, F4 = −dF1 and

F1 =


0 1/2 0 0

1/2 0 0 0
0 0 0 0
0 0 0 0

 , F2 =


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Using (9), the system (8) can be modified as the following form:

ė(t) =[Ā + F(e)]e(t) + Ke(tk − η), t ∈ [tk, tk+1), k = 0, 1, 2, · · · . (10)

Denoting
τ(k) ≜ t − tk + η (tk ≤ t < tk+1),

it is obvious that η ≤ τ(t) ≤ h+ηwith τ̇(t) = 1 for t , tk. Furthermore, the system (10) can be described
as the time-varying delay system

ė(t) =[Ā + F(e)]e(t) + Ke(t − τ(t)), t ∈ [tk, tk+1), k = 0, 1, 2, · · · . (11)

Due to the existence of time delay, the control signals will be updated only when t ≥ t0 = η. In
this case, the system (4) should be specially handled within the time interval [0, η) in the framework of
local stabilization [29]. Here, we set u(t) = 0 within [0, η). Then, one has the open-loop system

ė(t) =[Ā + F(e)]e(t), t ∈ [0, η). (12)

The paper aims to design the DTOs-based time-delayed controller (6) such that the resulting closed-
loop system (10) is locally asymptotically stable and has a larger estimate of the DOA.

As in [29], it is assumed that the initial conditions of (12) is denoted by e(t) = e0, t ∈ [−η, 0]. Note
that the finance system (2) is a typical quadratic system [30–32]. For convenience of the subsequent
analysis, as in [15, 30], the following box is introduced:

Ω ≜ [−ε1, ε1] × [−ε2, ε2] × [−ε3, ε3] × [−ε4, ε4], (13)
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where ε j > 0 ( j = 1, 2, 3, 4) are some given scalars. The box Ω can be rewritten as follows:

Ω =
{
e : |γ je| ≤ ε j, j = 1, 2, 3, 4

}
= Co{υi, 1 ≤ i ≤ 16}, (14)

where γ j is the row vector whose i-th element is 1 and others are zero, “Co” is the convex hull and

υ1 = [−ε1,−ε2,−ε3,−ε4]T , υ2 = [ε1, ε2, ε3, ε4]T ,

υ3 = [−ε1,−ε2,−ε3, ε4]T , υ4 = [ε1, ε2, ε3,−ε4]T ,

υ5 = [−ε1,−ε2, ε3,−ε4]T , υ6 = [ε1, ε2,−ε3, ε4]T ,

υ7 = [−ε1, ε2,−ε3,−ε4]T , υ8 = [ε1,−ε2, ε3, ε4]T ,

υ9 = [ε1,−ε2,−ε3,−ε4]T , υ10 = [−ε1, ε2, ε3, ε4]T ,

υ11 = [−ε1,−ε2, ε3, ε4]T , υ12 = [ε1, ε2,−ε3,−ε4]T ,

υ13 = [−ε1, ε2,−ε3, ε4]T , υ14 = [ε1,−ε2, ε3,−ε4]T ,

υ15 = [−ε1, ε2, ε3,−ε4]T , υ16 = [ε1,−ε2,−ε3, ε4]T .

In addition, we define the ellipsoid E (P, ρ) described as

E (P, ρ) ≜
{
x : xT Px ≤ ρ, P > 0, ρ > 0}. (15)

Next, we will introduce two inequalities, which are of vital importance in establishing our results.

Lemma 1. [28] (Wirtinger inequality) Let x(t) ∈ W[a, b) and x(a) = 0. Then, for any n × n matrix
Z > 0, the following integral inequality holds:∫ b

a
xT (s)Zx(s) ds ≤

4(b − a)2

π2

∫ b

a
ẋT (s)Zẋ(s) ds.

Lemma 2. [33] (Wirtinger-based inequality) Let the differentiable vector function x(t), and the scalars
a and b (b > a) be given. Then, for any n × n matrix Z > 0, the following inequalities are true:

(b − a)
∫ b

a
xT (s)Zx(s) ds ≥

( ∫ b

a
x(s) ds

)T
Z
( ∫ b

a
x(s) ds

)
+ 3ΥT ZΥ,

where

Υ =

∫ b

a
x(s) ds −

2
b − a

∫ b

a

∫ b

θ

x(s) dsdθ.

3. Main results

Here, we will consider the stabilization problem for the hyperchaotic finance system (2) in a local
framework by using a piecewise discontinuous L-K functional and the quadratic system theory.

Theorem 1. Let the scalars h > 0, η > 0, ε j > 0 ( j = 1, 2, 3, 4), α > 0 and δ , 0 be given. The
hyperchaotic finance system (2) is asymptotically stabilized for all initial conditions e0 satisfying the
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constraint V(0) ≤ e−αη via the controller (6) with the gain K = X−1Y , if there exist 8 × 8 matrix
P = (Pi j)2×2 > 0, and 4 × 4 matrices X, Y , Q > 0, R > 0, S > 0, Z > 0, such that the LMIs

Φ
vi
11 Φ12 Φ13 Y Φ

vi
15

∗ Φ22 Φ23 (π2/4)R 0
∗ ∗ Φ33 0 PT

12
∗ ∗ ∗ −(π2/4)R δYT

∗ ∗ ∗ ∗ Φ55


< 0, i = 1, 2, . . . , 16, (16)


Φ̂

vi
11 Φ12 Φ̂13 0 Φ

vi
15

∗ Φ̂22 Φ23 0 0
∗ ∗ Φ̂33 0 PT

12
∗ ∗ ∗ −h2R 0
∗ ∗ ∗ ∗ Φ55


≜ Φ̂(vi) < 0, i = 1, 2, . . . , 16, (17)

[
P11 + 2ηZ − S P12 − 2Z

∗ P22 + Q/η + (2/η)Z

]
≥ 0, (18)

γT
j γ j ≤ ε

2
jS , j = 1, 2, 3, 4, (19)

are satisfied, where

Φ
υi
11 =X[Ā + F(υi)] + [Ā + F(υi)]T XT + P12 + PT

12 + Q − 4Z, Φ12 = −P12 − 2Z,

Φ13 =P22 + (6/η)Z, Φvi
15 = P11 − X + δ[Ā + F(υi)]T XT ,

Φ22 = − Q − 4Z − (π2/4)R, Φ23 = (6/η)Z − P22,

Φ33 = − (12/η2)Z, Φ55 = η
2Z + h2R − δ(X + XT ),

Φ̂
υi
11 = − αP11 + Φ

υi
11, Φ̂13 = −αP12 + Φ13,

Φ̂22 = − Q − 4Z, Φ̂33 = −αP22 + Φ33.

Proof. Construct a piecewise augmented discontinuous L-K functional

V(t) =

V0(t), t ∈ [0, t0) (t0 = η),
V0(t) + VR(t), t ∈ [tk, tk+1), k = 0, 1, 2, · · · ,

(20)

where

V0(t) =ϑT (t)Pϑ(t) +
∫ t

t−η
eT (s)Qe(s)ds + η

∫ 0

−η

∫ t

t+θ
ėT (s)Zė(s)dsdθ + h2

∫ t

t−η
ėT (s)Rė(s)ds,

VR(t) =h2
∫ t−η

tk−η
ėT (s)Rė(s)ds −

π2

4

∫ t−η

tk−η
βT (s, tk)Rβ(s, tk)ds, t ∈ [tk, tk+1), k = 0, 1, 2, · · · ,

with

ϑ(t) =
[
eT (t)

∫ t

t−η
eT (s)ds

]T
, β(s, tk) = x(s) − x(tk − η) and P > 0, Q > 0, R > 0, Z > 0.

Using Lemma 1 (Wirtinger inequality), it can be seen that VR(t) ≥ 0. Moreover, noting VR(tk) = 0,
it follows that limt→t−k

V(t) ≥ V(tk). In addition, one can see that V(t) is continuous at t = t0.

AIMS Mathematics Volume 8, Issue 9, 20510–20529.
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By some calculations, we have

V̇(t) = 2ϑT (t)Pϑ̇(t) + eT (t)Qe(t) − eT (t − η)Qe(t − η)

+ ėT (t)(η2Z + h2R)ė(t) − η
∫ t

t−η
ėT (s)Zė(s)ds − (π2/4)

× βT (t − η, tk)Rβ(t − η, tk), t ∈ [tk, tk+1), k = 0, 1, 2, · · · . (21)

Using Lemma 2 and denoting

ϖ(t) ≜ e(t) + e(t − η) − (2/η)
∫ t

t−η
e(s)ds,

it follows that

−η

∫ t

t−η
ėT (s)Zė(s)ds ≤ −[e(t) − e(t − η)]T Z[e(t) − e(t − η)] − 3ϖT (t)Zϖ(t). (22)

Using the closed-loop system (10), it is seen that

(Ā + F(e))e(t) + Ke(tk − η) − ė(t) = 0, t ∈ [tk, tk+1).

Then, for any scalar δ , 0, we have the following zero equation:

2[eT (t) + δėT (t)]X[(Ā + F(e))e(t) + Ke(tk − η) − ė(t)] = 0, t ∈ [tk, tk+1), k = 0, 1, 2, · · · . (23)

Adding the left-hand side of (23) to V̇(t) and using (22), one obtains

V̇(t) ≤ 2ϑT (t)Pϑ̇(t) + eT (t)Qe(t) − eT (t − η)Qe(t − η) + ėT (t)(η2Z + h2R)ė(t)
− (π2/4)βT (t − η, tk)Rβ(t − η, tk) − [e(t) − e(t − η)]T Z[e(t) − e(t − η)]
− 3ϖT (t)Zϖ(t) + 2[eT (t) + δėT (t)]X[(Ā + F(e))e(t) + Ke(tk − η) − ė(t)]
= ξT (t)Φ(e)ξ(t), t ∈ [tk, tk+1), k = 0, 1, 2, · · · , (24)

where

ξ(t) =
[
eT (t)eT (t − η)

∫ t

t−η
eT (s)dseT (tk − η)ėT (t)

]T
and

Φ(e) =


Φ11(e) Φ12 Φ13 XK Φ15(e)
∗ Φ22 Φ23 (π2/4)R 0
∗ ∗ Φ33 0 PT

12
∗ ∗ ∗ −(π2/4)R δ(XK)T

∗ ∗ ∗ ∗ Φ55


,

with

Φ11(e) =P12 + PT
12 + X[Ā + F(e)] + [Ā + F(e)]T XT + Q − 4Z,

Φ15(e) =P11 − X + δ[Ā + F(e)]T XT .
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Denote Y ≜ XK and notice that Φ(e) is affine about the states e j, j = 1, 2, 3, 4. Then, it can be seen
that, if the LMIs (16) holds, the relation Φ(e) < 0 is ensured on Ω. Moreover, on the box Ω, we get

V̇(t) < 0, t ∈ [tk, tk+1), k = 0, 1, 2, · · · . (25)

Using the open-system system (12), we have

2[eT (t) + δėT (t)]X[(Ā + F(e))e(t) − ė(t)] = 0, t ∈ [0, η).

Similarly, within the first time-interval [0, η), we can obtain

V̇(t) ≤ 2ϑT (t)Pϑ̇(t) + eT (t)Qe(t) − eT (t − η)Qe(t − η) + ėT (t)(η2Z + h2R)ė(t)
− h2ėT (t − η)Rė(t − η) − [e(t) − e(t − η)]T Z[e(t) − e(t − η)]
− 3ϖT (t)Zϖ(t) + 2[eT (t) + δėT (t)]X[(Ā + F(e))e(t) − ė(t)]
− αϑT (t)Pϑ(t) + αϑT (t)Pϑ(t)

= ξ̂T (t)Φ̂(e)ξ̂(t) + αϑT (t)Pϑ(t), t ∈ [0, η), (26)

where

ξ̂(t) =
[
eT (t)eT (t − η)

∫ t

t−η
eT (s)dsėT (t − η)ėT (t)

]T
and

Φ̂(e) =


Φ̂11(e) Φ12 Φ̂13 0 Φ15(e)
∗ Φ̂22 Φ23 0 0
∗ ∗ Φ̂33 0 PT

12
∗ ∗ ∗ −h2R 0
∗ ∗ ∗ ∗ Φ55


,

with
Φ̂11(e) = −αP11 + Φ11(e), Φ̂13 = −αP12 + Φ13,

Φ̂22 = −Q − 4Z, Φ̂33 = −αP22 + Φ33.

If the LMIs (17) are satisfied, the matrix inequality Φ̂(e) < 0 can be guaranteed on the box Ω. Then,
one can obtain from (26) that

V̇(t) ≤ αϑT (t)Pϑ(t) ≤ αV(t), t ∈ [0, η).

Moreover, it follows that

V(t) ≤ eαtV(0) ≤ eαηV(0), t ∈ [0, η). (27)

Noting that limt→t−k
V(t) ≥ V(tk), and using (25) and (27), it can be seen that

V(t) ≤ V(η) ≤ eαηV(0), t ≥ η. (28)
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On the other hand, noting (20) and using Jensen integral inequalities [34], we have

V(t) ≥ϑT (t)Pϑ(t) +
∫ t

t−η
eT (s)Qe(s)ds + η

∫ 0

−η

∫ t

t+θ
ėT (s)Zė(s)dsdθ

≥ϑT (t)Pϑ(t) +
1
η

( ∫ t

t−η
e(s)ds

)T
Q
( ∫ t

t−η
e(s)ds

)
+

2
η

( ∫ 0

−η

∫ t

t+θ
ė(s)dsdθ

)T
Z
( ∫ 0

−η

∫ t

t+θ
ė(s)dsdθ

)
≥ϑT (t)(P + Ψ)ϑ(t), t ≥ 0, (29)

where the relation ∫ 0

−η

∫ t

t+θ
ė(s)dsdθ = ηe(t) −

∫ t

t−η
e(s)ds

is utilized, and

Ψ =

[
2ηZ −2Z
∗ Q/η + (2/η)Z

]
.

If the LMI (18) is true, then we can get from (29) that

V(t) ≥ eT (t)S e(t), t ≥ 0. (30)

In addition, it is seen from the LMIs (19) that

eTγTγe ≤ ε2
je

T S e, j = 1, 2, 3, 4.

For any e ∈ E (S , 1), we have

eTγTγe ≤ ε2
j (i.e., |γ je| ≤ ε j), j = 1, 2, 3, 4,

which implies that the following relation is true:

E (S , 1) ⊆ Ω. (31)

For any initial condition e0 satisfying the constraint V(0) ≤ e−αη, from (27), (28) and (30), we have

eT (t)S e(t) ≤ V(t) ≤ 1, t ≥ 0,

which means that the system state e(t) is evolved in the ellipsoid E (S , 1). Moreover, using (31), it is
seen that the system state e(t) will be evolved in the box Ω.

Then, noting (25) and using the relation limt→t−k
V(t) ≥ V(tk), one can conclude that the closed-loop

system (10) is asymptotically stable for all e0 satisfying the constraint V(0) ≤ e−αη. The proof is
completed. □

Remark 3. The proposed L-K functional (20) is continuous at the instant t = t0 and discontinuous at
the instants tk, k = 1, 2, · · · [28]. Moreover, the functional (20) is piecewise. Using the functional (20),
the local stability of the closed-loop system (10) can be rigorously analyzed by sufficiently considering
the evolution of the open-loop system (12) within the first time-interval [0, η).
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For the case that η = 0, one can select the simplified discontinuous L-K functional

V̌(t) = eT (t)Pe(t) + h2
∫ t

tk
ėT (s)Rė(s)ds

−
π2

4

∫ t

tk
[x(s) − x(tk)]T R[x(s) − x(tk)]ds, t ∈ [tk, tk+1), k = 0, 1, 2, · · · . (32)

Then, a simplified stabilization criterion is readily obtained as follows:

Corollary 1. Let the scalars h > 0, ε j > 0 ( j = 1, 2, 3, 4) and δ , 0 be given. The conclusion of
Theorem 1 holds for the case η = 0, if there exist matrices X, Y , P > 0, R > 0, such that the LMIs

Π
vi
11 Π12 Π

vi
13

∗ −(π2/4)R δYT

∗ ∗ Π33

 < 0, i = 1, 2, · · · , 16, (33)

γT
j γ j ≤ ε

2
j P, j = 1, 2, 3, 4, (34)

are satisfied, where
Π
υi
11 =X[Ā + F(υi)] + [Ā + F(υi)]T XT − (π2/4)R,
Π

vi
13 = − X + δ[Ā + F(υi)]T XT + P,

Π12 =Y + (π2/4)R, Π33 = h2R − δ(X + XT ).

Proof. Along the proof of Theorem 1, it is seen that

˙̌V(t) = 2eT (t)Pė(t) + h2ėT (t)Rė(t) − (π2/4)[x(t) − x(tk)]T

× R[x(t) − x(tk)] + 2[eT (t) + δėT (t)]X
× [(Ā + F(e))e(t) + Ke(tk) − ė(t)]
= ζT (t)Π(e)ζ(t), t ∈ [tk, tk+1), k = 0, 1, 2, · · · , (35)

where
ζ(t) =

[
eT (t) eT (tk) ėT (t)

]T
and

Π(e) =


Π11(e) Π12 Π13(e)
∗ −(π2/4)R YT

∗ ∗ Π33

 ,
with

Π11(e) = − (π2/4)R + X[Ā + F(e)] + [Ā + F(e)]T XT ,

Π13(e) =P − X + δ[Ā + F(e)]T XT .

From the LMIs (33), it is seen that Π(e) < 0 is ensured on the box Ω. Moreover, from (35), we have

˙̌V(t) < 0, t ∈ [tk, tk+1), k = 0, 1, 2, · · · . (36)
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In addition, it is inferred from the LMIs (34) that

E (P, 1) ⊆ Ω. (37)

For any e0 satisfying V̌(0) = eT
0 Pe0 ≤ 1, using (36) and (37), and noting V̌(t) ≥ eT (t)Pe(t), it is

inferred that the trajectory e(t) is contained in the box Ω. Moreover, using (36), it can be concluded
that the closed-loop system (10) is locally asymptotically stable, and this completes the proof. □

In the sequel, we will address the estimate of the DOA. Here, we employ the ellipsoid E (P, e−αη) as
the the estimate of the DOA [35, 36]. Note that

e(t) = e0 = 0, t ∈ [−η, 0].

Then, we have

V(0) =ϑT (0)Pϑ(0) +
∫ 0

−η

eT (s)Qe(s)ds = eT
0Pe0, (38)

where
P ≜ P11 + ηP12 + ηPT

12 + η
2P22 + ηQ.

For any initial condition e0 belongs to E (P, e−αη), it is clear that the relation V(0) ≤ e−αη is guaranteed.
Let us introduce the following LMI:

eαηP ≤ pI (p > 0). (39)

Then, the optimization with respect to the ellipsoid E (P, e−αη) in Theorem 1 can be described as

Problem (1) min
P>0, Q>0, Z>0, R>0, S>0, X, Y, p>0

p, s.t.,

LMIs(16)–(19) and (39) hold.

For the case that η = 0, we introduce the following matrix inequality:

P ≤ pI (p > 0). (40)

The optimization problem about the estimate of the DOA (i.e., the ellipsoid E (P, 1)) is given as

Problem (2) min
P>0, R>0, X, Y, p>0

p, s.t.,

LMIs(33)–(34) and (40) hold.

Remark 4. In [25, 26], the DTOs-based time-delayed feedback has been proposed to stabilize the
stochastic hybrid differential equations. However, the nonlinearities in [25, 26] are assumed to satisfy
the rigorous linear growth conditions. It is obvious the results in [25, 26] cannot be applicable for the
finance system (2). In [27,28], the similar control scheme has been utilized to stabilize linear systems.

Again, it is seen that the results in [28] are no longer applicable for nonlinear system (2). Moreover,
different from the existing results, our obtained stabilization criteria are in a local framework. In
particular, the state evolution within [0, η) is specifically taken into account. It is obvious that the
proposed results in this paper are essentially the significant supplements of some existing ones.
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Remark 5. Over the past two decades, the fractional-order systems have become an extremely active
research field [37–39]. Different from the integer-order systems, the fractional-order systems can
possess memory. Note that some financial variables often possess very long memory. Therefore, it
has been identified that the fractional-order models should be more appropriate to describe the
dynamical behaviors in financial systems [3, 10, 18, 19]. As the further research topic, we would like
to address the local stabilization problem for fractional-order financial systems.

Remark 6. Over the past a decade or so, the event-triggered mechanisms have been extensively
employed in network-based control systems [40–44]. Under the event-triggered mechanisms, the
necessary data are released only when certain triggering condition is satisfied, thereby significantly
decreasing the usage of communication resources. It is obvious that the event-triggered mechanisms
can also be applicable to the finance system (2) under which the number of state observation and
control implementation can be greatly reduced, which is our further research topic.

4. Numerical simulations

In this section, we will demonstrate the feasibility of the obtained results via numerical simulations.
Here, we choose a = 0.9, b = 0.2, c = 1.5, l = 0.2 and m = 0.17. In Figure 1, we plot the phase
portraits of the finance system (2).
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Figure 1. Phase portraits of the finance system (2) (z1(0) = 1, z2(0) = 2, z3(0) = z4(0) = 0.5,
a = 0.9, b = 0.2, c = 1.5, l = 0.2, m = 0.17).

Figure 1 shows the hyperchaotic behaviour. From Figure 1, one can see that the finance system
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(2) displays the sophisticated hyperchaotic behaviour. Then, it is verified that the system (2) has three
unstable equilibrium points

P∗1 ≜ (0, 5, 0, 0), P∗2 ≜ (1.6660,−8.8778,−1.1107, 17.4004),

P∗3 ≜ (−1.6660,−8.8778, 1.1107, 17.4004).

First, we will be concerned with the case without time delay. For the equilibrium points P∗2 and P∗3,
letting ε1 = 7.3, ε2 = 13, ε3 = 10, ε4 = 12, h = 1 and δ = 0.05, and solving problem (2), one obtains

P =


0.0189 −0.0006 −0.0003 0.0008
−0.0006 0.0069 0.0002 0.0002
−0.0003 0.0002 0.0105 0.0020
0.0008 0.0002 0.0020 0.0085

 (P∗2),

K =


−0.0163 −0.0447 −0.1080 −0.0848
−0.0169 −0.1038 −0.0014 0.0137
−0.0712 −0.1684 −0.8149 −0.5191
−0.0167 0.0573 0.1448 −0.1120

 (P∗2),

P =


0.0189 0.0005 −0.0004 0.0008
0.0005 0.0070 −0.0006 −0.0003
−0.0004 −0.0006 0.0106 0.0021
0.0008 −0.0003 0.0021 0.0082

 (P∗3),

K =


−0.0168 −0.0192 −0.0983 −0.0949
0.0007 −0.1022 −0.0647 −0.0467
−0.0847 −0.2126 −0.7814 −0.5060
−0.0158 0.0288 0.1614 −0.0970

 (P∗3).

Using the above parameters, we plot the state evolutions of the error system (8) for the case η = 0.
In the simulation, we choose e0 = [6, 5, 3, 1]T ∈ E (P, 1). From Figures 2 and 3, it is seen that our
proposed DTOs-based time-delayed feedback scheme can stabilize the unstable hyperchaotic finance
system. Figure 2 shows that the error state converges to the origin. Figure 3 shows that the error state
converges to the origin.
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Figure 2. State evolutions of the error system (8) for P∗2 (η = 0, e0 = [6, 5, 3, 1]T , a = 0.9,
b = 0.2, c = 1.5, l = 0.2, m = 0.17).
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Figure 3. State evolutions of the error system (8) for P∗3 (η = 0, e0 = [6, 5, 3, 1]T , a = 0.9,
b = 0.2, c = 1.5, l = 0.2, m = 0.17).

Next, we will consider the case with time delay. Letting ε1 = 7.2, ε2 = 12, ε3 = 17, ε4 = 100,
η = 0.5, h = 1, α = 0.16 and δ = 0.05, and solving the optimization problem (1), we have

P =


0.0198 −0.0005 −0.0004 0.0022
−0.0005 0.0070 0.0000 0.0002
−0.0004 0.0000 0.0041 0.0026
0.0022 0.0002 0.0026 0.0145

 (P∗2),

K =


−0.0014 −0.0423 0.0167 0.0017
0.0013 −0.0449 0.0195 0.0162
−0.1249 −0.1160 −0.0299 −0.6415
0.0043 0.0354 −0.0119 0.0154

 (P∗2),

P =


0.0198 0.0005 −0.0003 0.0022
0.0005 0.0070 −0.0003 −0.0003
−0.0003 −0.0003 0.0040 0.0027
0.0022 −0.0003 0.0027 0.0143

 (P∗3),

K =


0.0002 0.0186 0.0140 0.0058
−0.0049 −0.0374 −0.0290 −0.0350
−0.1064 −0.1831 −0.1534 −0.6036
0.0015 0.0191 0.0161 0.0131

 (P∗3).

Using the above obtained parameters, the state evolutions of the error system (8) are plotted in
Figures 4 and 5, where the initial condition is selected as e0 = [6, 4, 3, 1]T ∈ E (P, e−αη). Figures 4
and 5 show again that our proposed control scheme can effectively stabilize the unstable hyperchaotic
finance system. However, compared with the case without time delay, it is seen that from Figures 4
and 5 that the convergence rate of the error system (8) becomes slower due to the existence of time
delay. Figure 4 shows that the error state converges to the origin. Figure 5 shows that the error state
converges to the origin.
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Figure 4. State evolutions of the error system (8) for P∗2 (η = 0.5, e0 = [6, 4, 3, 1]T , a = 0.9,
b = 0.2, c = 1.5, l = 0.2, m = 0.17).
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Figure 5. State evolutions of the error system (8) for P∗3 (η = 0.5, e0 = [6, 4, 3, 1]T , a = 0.9,
b = 0.2, c = 1.5, l = 0.2, m = 0.17).

In solving problems (1) and (2), we employ the “mincx” solver involved in LMI toolbox in
MATLAB to numerically solve the minimization problem of a linear objective function subject to
LMI constraints [45]. In the simulation, we utilize the Euler method, where the step size is selected
as 0.01.

5. Conclusions

In the paper, we have investigated the local stabilization design for a hyperchaotic finance system
via the time-delayed feedback based on DTOs. By incorporating quadratic system theory, a piecewise
augmented discontinuous L-K functional, and two advanced inequalities, a local stabilization criterion
has been obtained in the framework of LMIs. In the case of no time delay, the corresponding result is
also proposed. Then, the optimization problems have been provided to estimate the DOA as large as
possible. The feasibility of proposed results has been illustrated by simulation results. The proposed
techniques in this paper can be extended to the synchronization control problem [8, 10, 46].
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However, it is worth mentioning that the obtained results in this paper are conservative to a certain
extent. As the further improvement direction, we can employ the more effective Bessel-Legendre
inequality to deal with the time delay [47]. In addition, we can the design the nonlinear feedback
controller to reduce the potential conservatism [32]. On the other hand, the time delay might be time-
varying [48,49]. Moreover, the external disturbances might be inevitable in the finance system [15,50].
As the further research topic, it is also interesting to address the local stabilization problem for the
hyperchaotic finance system subject to external disturbances and time-varying delay.
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