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Abstract: In this paper, we consider some boundary value problems composed by coupled systems of
second-order differential equations with full nonlinearities and general functional boundary conditions
verifying some monotone assumptions. The arguments apply the lower and upper solutions method,
and defining an adequate auxiliary, homotopic, and truncated problem, it is possible to apply
topological degree theory as the tool to prove the existence of solution. In short, it is proved that
for the parameter values such that there are lower and upper solutions, then there is also, at least,
a solution and this solution is localized in a strip bounded by lower and upper solutions. As far as
we know, it is the first paper where Ambrosetti-Prodi differential equations are considered in couple
systems with different parameters.
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1. Introduction

This paper focuses on the search for sufficient conditions to require nonlinearities in order to be able
to discuss, depending on the parameters, the existence of solutions for coupled systems of nonlinear
second-order differential equations, of the type
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{
u′′(x) + f (x, u(x), v(x), u′(x), v′(x)) = µ m(x),
v′′(x) + h(x, u(x), v(x), u′(x), v′(x)) = λ n(x),

(E)

for x ∈ [0, 1], with f , h : [0, 1] × R4 → R , m, n : [0, 1] → R+ continuous functions and µ, λ are real
parameter, along with boundary conditions

a1u(0) − b1u′(0) = A1,

c1u(1) + d1 u′(1) = B1,

a2v(0) − b2v′(0) = A2,

c2v(1) + d2v′(1) = B2,

(B)

where ai, bi, ci, di, Ai, Bi ∈ R, i = 1, 2, such that a2
i + bi > 0, c2

i + di > 0, for i fixed, and bi, di ≥ 0.
Coupled systems of second-order differential equations were studied by many authors, not only

from a mathematical point of view, as in, for example, [1–4], but also to model some real phenomena,
as, for instance, Lokta-Volterra models, reaction diffusion processes, prey-predator systems, Sturm-
Liouville problems, mathematical biology, chemical systems, as in [5–9]. Moreover, in the last few
years, fractional calculus has had an increasing application to several real processes, as in [10–12].

Ambrosetti-Prodi-type problems, introduced in [13, 14], have been applied to several types of
boundary conditions, as it can be seen in, for example: [15,16], to separated two-point and three-point
boundary value problems; [17, 18], for Neuman’s conditions; [19–24] to periodic solutions; [25], for
parametric problems with (p, q)-Laplace operator; [26], with asymptotic assumptions; [27], for
fractional Laplacian; [28], with asymptotic sign-changed nonlinearities, among others.

Motivated by these works, we consider for the first time, as far as we know, a coupled second-
order system composed of two Ambrosetti-Prodi-type differential equations together with two-point
boundary conditions. The arguments are based on the lower and upper solutions method [29–33],
which requires a new definition of lower and upper functions to overcome the couple variation on
the nonlinearities (see Definition 2.1). A Nagumo condition (see, for example, [34–36]) plays an
important role to control the first derivatives variation, and the theory of the topological degree (see,
for instance, [37, 38]) is the main tool to prove the existence of solution for the parameters’ values
such that there are lower and upper solutions for (E), (B). Therefore, the main result is an existence
and localization theorem, as it provides not only the existence of a solution, but also a range where the
solution varies.

The paper is organized as follows: Section 2 contains the functional framework, a definition of
upper-lower solutions, the Nagumo conditions and “a priori” estimates of the first derivative of the
unknown functions. In Section 3 we present an existence and location result and an example to show
the applicability of the main theorem. Section 4 applies our main result to a stationary version of the
model presented in [39,40] for complex interactions in social media, the mechanisms and dynamics of
information diffusion in online social networks.

2. Definitions and auxiliary results

In this section, some definitions and lemmas will be introduced for the subsequent analysis, we
consider the following functional framework.
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Let X = C1[0, 1] be the usual Banach space equipped with the norm ∥ · ∥C1 , defined by

∥ w∥C1 := max{∥ w∥, ∥ w′∥},

where
∥y1∥ := max

x∈[0,1]
|y1(x)|,

and X2 = C1[0, 1] ×C1[0, 1] with the norm

∥ (u, v)∥X2 = max{∥ u∥C1 , ∥ v∥C1}.

To apply the lower and upper solutions method, depending on the values of the parameters µ and λ, we
introduce a new type of lower and upper definition:

Definition 2.1. Let ai, bi, ci, di, Ai, Bi ∈ R, such that a2
i + bi > 0, c2

i + di > 0 and bi, di ≥ 0, for i = 1, 2.
A pair of functions (γ1, γ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is a lower solution of problem (E)-(B) if, for

all x ∈ [0, 1], 
γ′′1 (x) + f (x, γ1(x), γ2(x), γ′1(x), z1) ≥ µ m(x),∀z1 ∈ R,

γ′′2 (x) + h(x, γ1(x), γ2(x), y1, γ
′
2(x)) ≥ λ n(x),∀y1 ∈ R,

(2.1)

and
a1γ1(0) − b1γ

′
1(0) ≤ A1,

c1γ1(1) + d1γ
′
1(1) ≤ B1,

a2γ2(0) − b2γ
′
2(0) ≤ A2,

c2γ2(1) + d2γ
′
2(1) ≤ B2.

(2.2)

A pair of functions is an upper solution of problem (E)-(B) if the reversed inequalities are verified.

The so-called Nagumo condition establishes an “a priori” estimation for the first derivatives of the
solutions of (E), provided that they satisfy adequate bounds, and is adapted here for coupled systems.

Definition 2.2. Let γi(x), Γi(x), i = 1, 2, be continuous functions such that

γ1(x) ≤ Γ1(x), γ2(x) ≤ Γ2(x), ∀x ∈ [0, 1],

and consider the sets

S = {(x, y0, z0, y1, z1) ∈ [0, 1] × R4 : γ1(x) ≤ y0 ≤ Γ1(x), γ2(x) ≤ z0 ≤ Γ2(x)}. (S)

The continuous functions f , h : [0, 1] × R4 → R satisfy a Nagumo-type condition relative to the
intervals [γ1(x),Γ1(x)] and [γ2(x),Γ2(x)], for all x ∈ [0, 1] , if there are k1, k2 , such that

k1 := max{Γ1(1) − γ1(0),Γ1(0) − γ1(1)}, (2.3)

k2 := max{Γ2(1) − γ2(0),Γ2(0) − γ2(1)}, (2.4)

and continuous positive functions φ, ψ : [0,+∞)→ (0,+∞), verifying∫ +∞

k1

ds
φ(s)

= +∞,

∫ +∞

k2

ds
ψ(s)

= +∞. (N1)

such that
| f (x, y0, z0, y1, z1)| ≤ φ(|y1|), ∀(x, y0, z0, y1, z1) ∈ S ,
|h(x, y0, z0, y1, z1)| ≤ ψ(|z1|), ∀(x, y0, z0, y1, z1) ∈ S .

(N2)
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The priori estimates for the first derivatives are given by the next lemma.

Lemma 2.1. Suppose that the continuous functions f , h : [0, 1] × R4 → R satisfy a Nagumo type
condition relative to the intervals [γ1(x),Γ1(x)] and [γ2(x),Γ2(x)], for all x ∈ [0, 1].

Then for every solution (u, v) ∈ (C2[0, 1])2 of (E) verifying

γ1(x) ≤ u(x) ≤ Γ1(x) and γ2(x) ≤ v(x) ≤ Γ2(x), ∀x ∈ [0, 1], (2.5)

there are N1,N2 > 0 (depending only on the parameters µ and λ and the functions m, n,
γ1, Γ1, γ2, Γ2, φ and ψ), such that

∥u′∥ ≤ N1 and ∥v′∥ ≤ N2. (2.6)

Proof. Let (u(x), v(x)) be a solution of (E) verifying (2.5). By the Mean Value Theorem, there are
x0, x1 ∈ [0, 1] such that

u′(x0) = u(1) − u(0) and v′(x1) = v(1) − v(0). (2.7)

If
|u′(x)| ≤ k1, ∀x ∈ [0, 1],

then it is enough to define N1 := k1 and the proof is complete.
Moreover, the case |u′(x)| > k1, ∀x ∈ [0, 1], is not possible. In fact, if u′(x) > k1, ∀x ∈ [0, 1], we

obtain, by (2.7), (2.5) and (2.3), the contradiction

u′(x0) = u(1) − u(0) ≤ Γ1(1) − γ1(0) ≤ k1.

If u′(x) < −k1, ∀x ∈ [0, 1], the contradiction is similar.
Consider Ni > ki, for each i = 1, 2, such that∫ N1

k1

ds
φ(s) + |µ|∥m∥

> 1,
∫ N2

k2

ds
ψ(s) + |λ|∥n∥

> 1, (N)

and assume that there are x2, x3 ∈ [0, 1] with x2 < x3, such that

u′(x2) ≤ k1 and u′(x3) > k1.

By continuity of u′(x), there exists x4 ∈ [x2, x3] such that u′(x4) = k1.
By a convenient change of variable and using (E) and (N2),∫ u′(x3)

u′(x4)

ds
φ(|s|) + |µ|∥m∥

=

∫ x3

x4

u′′(x)
φ(|u′(x)|) + |µ|∥m∥

dx

≤

∫ 1

0

|u′′(x)|
φ(|u′(x)|) + |µ|∥m∥

dx

≤

∫ 1

0

|µm(x) − f (x, u(x), v(x), u′(x), v′(x))|
φ(|u′(x)|) + |µ|∥m∥

dx,

≤

∫ 1

0

|µ|∥m∥ + | f (x, u(x), v(x), u′(x), v′(x))|
φ(|u′(x)|) + |µ|∥m∥

dx,
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≤

∫ 1

0

|µ|∥m∥ + φ(|u′(x)|)
φ(|u′(x)|) + |µ|∥m∥

dx = 1,

and by (N) ∫ u′(x3)

u′(x4)

ds
φ(|s|) + |µ|∥m∥

≤ 1 <
∫ N1

k1

ds
φ(|s|) + |µ|∥m∥

.

Therefore u′(x3) < N1, and as x3 is taken arbitrarily, then u′(x) < N1, for the values of x whenever
u′(x) > k1.

The case for x2 > x3 follows similar arguments.
The other possible case where

u′(x2) > −k1 and u′(x3) < −k1,

can be proved by the previous techniques. Therefore ∥u′∥ ≤ N1.
By a similar method, it can be shown that ∥v′∥ ≤ N2.

Remark 2.1. From the previous demonstration, it follows that N1 and N2 can be considered
independently of µ and λ, since µ and λ belong to a bounded set.

3. Main result

The first theorem is an existence and localization result:

Theorem 3.1. Let f , h : [0, 1]×R4 → R be continuous functions. If there are lower and upper solutions
of (E)-(B), (γ1, γ2) and (Γ1,Γ2), respectively, according Definition 2.1, such that

γi(x) ≤ Γi(x), i = 1, 2, ∀x ∈ [0, 1], (3.1)

and f and h verify Nagumo conditions as in Definition 2.2, relative to the intervals [γ1(x),Γ1(x)]
and [γ2(x),Γ2(x)], for all x ∈ [0, 1] , with

f (x, y0, z0, y1, z1) nondecreasing in z0, (3.2)

for x ∈ [0, 1] , ∀z1 ∈ R,

min
{

min
x∈[0,1]

γ′1(x), min
x∈[0,1]
Γ′1(x)

}
≤ y1 ≤ max

{
max
x∈[0,1]

γ′1(x), max
x∈[0,1]
Γ′1(x)

}
,

and
h(x, y0, z0, y1, z1) nondecreasing in y0,

for x ∈ [0, 1] , ∀y1 ∈ R,

min
{

min
x∈[0,1]

γ′2(x), min
x∈[0,1]
Γ′2(x)

}
≤ z1 ≤ max

{
max
x∈[0,1]

γ′2(x), max
x∈[0,1]
Γ′2(x)

}
.

Then there is at least a pair (u(x), v(x)) ∈ (C2[0, 1])2 solution of (E)-(B) and, moreover,

γ1(x) ≤ u(x) ≤ Γ1(x), γ2(x) ≤ v(x) ≤ Γ2(x), ∀x ∈ [0, 1]. (3.3)
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Proof. Define the functions α, β : [0, 1] × R→ R given by

α(x, y0) =


Γ1(x) if y0 > Γ1(x)

y0 if γ1(x) ≤ y0 ≤ Γ1(x)
γ1(x) if y0 < γ1(x)

(3.4)

and

β(x, z0) =


Γ2(x) if z0 > Γ2(x)

y1 if γ2(x) ≤ z0 ≤ Γ2(x)
γ2(x) if z0 < γ2(x).

(3.5)

For θ, ϑ ∈ [0, 1], consider the truncated and perturbed auxiliary problem formed by the equations
u′′(x) + θ f (x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) = u(x) + θ [µ m(x) − α(x, u(x))]

v′′(x) + ϑ h(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) = v(x) + ϑ [λ n(x) − β(x, v(x))],
(3.6)

for x ∈]0, 1[, and the boundary conditions

u(0) = θ [A1 − a1α(0, u(0)) + b1u′(0) + α(0, u(0))],
u(1) = θ [B1 − c1α(1, u(1)) − d1u′(1) + α(1, u(1))],
v(0) = ϑ [A2 − a2β(0, v(0)) + b2v′(0) + β(0, v(0))],
v(1) = ϑ [B2 − c2β(1, v(1)) − d2v′(1) + β(1, v(1))]

(3.7)

where ai, bi, ci, di, Ai, Bi ∈ R, i = 1, 2, such that a2
i + bi > 0, c2

i + di > 0 and bi, di ≥ 0.Take ri > 0,
i = 1, 2, such that, ∀x ∈ [0, 1],

−ri < γi(x) ≤ Γi(x) < ri,

µ m(x) − f (x, γ1(x), β(x, v(x)), 0, v′(x)) − r1 − γ1(x) < 0,
µ m(x) − f (x,Γ1(x), β(x, v(x)), 0, v′(x)) + r1 − Γ1(x) > 0, (3.8)
λ n(x) − h(x, α(x, u(x)), γ2(x), u′(x), 0) − r2 − γ2(x) < 0,
λn(x) − h(x, α(x, u(x)),Γ2(x), u′(x), 0) + r2 − Γ2(x) > 0,

and
|Ai − aiΓi(0) + Γi(0)| < ri, |Ai − aiγi(0) + γi(0)| < ri,

|Bi − ciΓi(1) + Γi(1)| < ri, |Bi − ciγi(1) + γi(1)| < ri.
(3.9)

Claim 1. Every solution (u(x), v(x)) of the problems (3.6) and (3.7) verifies

|u(x)| < r1 and |v(x)| < r2, ∀x ∈ [0, 1],

independently of θ, ϑ ∈ [0, 1] .Assume, by contradiction, that there exist θ ∈ [0, 1], (u(x), v(x)) solution

of (3.6) and (3.7) and x ∈ [0, 1] such that |u(x)| ≥ r1.If u(x) ≥ r1, define

max
x∈[0,1]

u(x) := u(x0).
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For x0 ∈]0, 1[ and θ ∈]0, 1], u′(x0) = 0 and u′′(x0) ≤ 0. By (3.8), we have the following contradiction

0 ≥ u′′(x0)
= u(x0) + θ [µ m(x0) − α(x0, u(x0))] − θ f (x0, α(x0, u(x0)), β(x0, v(x0)), u′(x0), v′(x0))
= u(x0) + θ [µ m(x0) − Γ1(x0)] − θ f (x0,Γ1(x0), β(x0, v(x0)), 0, v′(x0))
≥ θ [µ m(x0) − f (x0,Γ1(x0), β(x0, v(x0)), 0, v′(x0)) + u(x0) − Γ1(x0)]
≥ θ [µ m(x0) − f (x0,Γ1(x0), β(x0, v(x0)), 0, v′(x0)) + r1 − Γ1(x0)] > 0.

If θ = 0, the contradiction arises from

0 ≥ u′′(x0) = u(x0) ≥ r1 > 0.

If x0 = 0, then
max
x∈[0,1]

u(x) := u(0),

and u′(0+) = u′(0) ≤ 0. By (3.7) and (3.9), we have

r1 ≤ u(0) = θ [A1 − a1α(0, u(0)) + b1u′(0) + α(0, u(0))]
= θ [A1 − a1Γ1(0) + b1u′(0) + Γ1(0)] ≤ θ [A1 − a1Γ1(0) + Γ1(0)]
≤ |A1 − a1Γ1(0) + Γ1(0)| < r1.

If x0 = 1 a contradiction is obtained analogously.
Then u(x) < r1 for x ∈ [0, 1] and regardless of θ. The other possible case where

u(x) > −r1, for x ∈ [0, 1],

can be proved by similar techniques.
Therefore |u(x)| < r1 for all x ∈ [0, 1], regardless of θ .
By a similar method, it can be proved that |v(x)| < r2 for all x ∈ [0, 1] regardless of ϑ.

Claim 2. For every solution (u(x), v(x)) of the problems (3.6) and (3.7),

|u′(x)| < N1 and |v′(x)| < N2, ∀x ∈ [0, 1],

independently of θ, ϑ ∈ [0, 1], with N1 and N2 given by Lemma 2.1.

Define the continuous functions Fθ,Hϑ : [0, 1] × R4 → R, by

Fθ(x, y0, z0, y1, z1) := θ f (x, α(x, y0), β(x, z0), y1, z1) − y0 + θ α(x, y0),

and
Hϑ(x, y0, z0, y1, z1) := ϑ h(x, α(x, y0), β(x, z0), y1, z1) − z0 + ϑ β(x, z0),

with y0 ∈ [−r1, r1] and z0 ∈ [−r2, r2].
As the functions f , h : [0, 1] × R4 → R satisfy a Nagumo-type condition relative to the

intervals [γ1(x),Γ1(x)] and [γ2(x),Γ2(x)], then

|Fθ(x, y0, z0, y1, z1)| ≤ | f (x, α(x, y0), β(x, z0), y1, z1)| + |y0| + |α(x, y0)|
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≤ φ(|y1|) + 2r1,

and

|Hϑ(x, y0, z0, y1, z1)| ≤ |h(x, α(x, y0), β(x, z0), y1, z1)| + |z0| + |β(x, z0)|
≤ ψ(|z1|) + 2r2.

Therefore for continuous positive functions φ∗, ψ∗ : [0,+∞)→ (0,+∞), given by

φ∗(|y1|) := φ(|y1|) + 2r1 and ψ∗(|z1|) := ψ(|z1|) + 2r2,

then, clearly, Fθ and Hϑ satisfy Nagumo conditions in the sets

E = {(x, y0, z0, y1, z1) ∈ [0, 1] × R4 : |y0| ≤ r1, |z0| ≤ r2},

and, by (N1), we have ∫ N1

k1

ds
φ∗(s)

=

∫ N1

k1

ds
φ(s) + 2r1

> 1,

and ∫ N2

k2

ds
ψ∗(s)

=

∫ N2

k2

ds
ψ(s) + 2r2

> 1.

Therefore, by Lemma 2.1,

|u′(x)| < N1 and |v′(x)| < N2, ∀x ∈ [0, 1],

independently of θ, ϑ ∈ [0, 1].

Claim 3. The problems (3.6) and (3.7), for θ = 1 and ϑ = 1, has at least one solution (u, v).

Define the operators
L : (C2([0, 1]))2 → (C2([0, 1]))2 × R4,

given by
L(u, v) = (u′′ − u, v′′ − v, u(0), u(1), v(0), v(1)),

and
N(θ,ϑ) : (C1([0, 1]))2 → (C2([0, 1]))2 × R4,

given by
N(θ,ϑ)(u, v) = (X,Y, Aθ, Bθ, Aϑ, Bϑ),

being
X := −θ f (x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) + θ [µ m(x) − α(x, u(x))],

Y := −ϑ h(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) + ϑ [λ n(x) − β(x, v(x))],

Aθ := θ [A1 − a1α(0, u(0)) + b1u′(0) + α(0, u(0))],
Bθ := θ [B1 − c1α(1, u(1)) − d1u′(1) + α(1, u(1))],
Aϑ := ϑ [A2 − a2β(0, v(0)) + b2v′(0) + β(0, v(0))],
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and
Bϑ := ϑ [B2 − c2β(1, v(1)) − d2v′(1) + β(1, v(1))].

Since L is invertible, we define the completely continuous operator

T : (C2([0, 1]))2 → (C2([0, 1]))2,

given by
T(θ,ϑ)(u, v) = L−1N(θ,ϑ)(u, v).

For M := max{r1, r2,N1,N2} consider the set

Ω = {(u, v) ∈ C2([0, 1]) : ∥(u, v)∥ < M}.

By Claims 1 and 2, for all θ, ϑ ∈ [0, 1], the degree d(I−T(θ,ϑ),Ω1, 0) is well defined, and, by homotopy
invariance,

d(I − T(0,0),Ω, 0) = d(I − T(1,1),Ω, 0).

As the equation (u, v) = T(0,0)(u, v) admits only the null solution, then, by degree theory,

d(I − T(0,0),Ω, 0) = ±1,

and, in particular, the equation (u, v) = T(1,1)(u, v) has at least one solution.
That is, the problem is composed of the equations

u′′(x) + f (x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) = u(x) + µ m(x) − α(x, u(x)),

v′′(x) + h(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) = v(x) + λ n(x) − β(x, v(x)),
(3.10)

and the boundary conditions

u(0) = A1 − a1α(0, u(0)) + b1u′(0) + α(0, u(0)),
u(1) = B1 − c1α(1, u(1)) − d1u′(1) + α(1, u(1)),
v(0) = A2 − a2β(0, v(0)) + b2v′(0) + β(0, v(0)),
v(1) = B2 − c2β(1, v(1)) − d2v′(1) + β(1, v(1))

(3.11)

has at least one solution (u1(x), v1(x)) in Ω1.
Claim 4. The functions u1(x) and v1(x) are a solution of the initial problem (E), (B).

In fact, if the pair (u1(x), v1(x)) ∈ (C2[0, 1])2 is a solution of (3.10) and (3.11), it will be also a
solution of the initial problems (E) and (B), provided that

γ1(x) ≤ u1(x) ≤ Γ1(x), γ2(x) ≤ v1(x) ≤ Γ2(x), ∀x ∈ [0, 1].

Suppose, by contradiction, that there exists x ∈ [0, 1] such that u1(x) > Γ1(x), and define

max
x∈[0,1]

[u1(x) − Γ1(x)] := u1(x1) − Γ1(x1) > 0.

If x1 ∈]0, 1[ then
u′1(x1) = Γ′1(x1) and u′′1 (x1) ≤ Γ′′1 (x1),
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and we have, by Definition 2.1, the following contradiction

0 ≥ u′′1 (x1) − Γ′′1 (x1)
= − f (x1, α(x1, u1(x1)), β(x1, v1(x1)), u′1(x1), v′1(x1)) + u(x1) + µ m(x1) − α(x1, u1(x1)) − Γ′′1 (x1)
= − f (x1,Γ1(x1), β(x1, v1(x1)),Γ′1(x1), v′1(x1)) + u(x1) + µ m(x1) − Γ1(x1) − Γ′′1 (x1)
≥ − f (x1,Γ1(x1),Γ2(x1),Γ′1(x1), v′1(x1)) + u(x1) + µ m(x1) − Γ1(x1) − Γ′′1 (x1)
> − f (x1,Γ1(x1),Γ2(x1),Γ′1(x1), v′1(x1)) + µ m(x1) − Γ′′1 (x1) ≥ 0.

For x1 = 0,
max
x∈[0,1]

[u1(x) − Γ1(x)] := u1(0) − Γ1(0) > 0

and
u′1(0+) − Γ′1(0+) = u′1(0) − Γ′1(0) ≤ 0.

By the boundary conditions (3.11) and Definition 2.1, this contradiction is obtained

Γ1(0) < u1(0) = A1 − a1α(0, u(0)) + b1u′(0) + α(0, u(0))
= A1 − a1Γ1(0) + b1u′(0) + Γ1(0)
≤ −b1Γ

′
1(0) + b1u′(0) + Γ1(0)

= b1[u′(0) − Γ′1(0)] + Γ1(0) ≤ Γ1(0).

So, x1 , 0 and by a similar method it is shown that x1 , 1. Therefore

u1(x) ≤ Γ1(x),∀x ∈ [0, 1].

Defining
min

x∈[0,1]
[u1(x) − γ1(x)] := u1(x2) − γ1(x2) < 0,

it can be proved that u1(x) ≥ γ1(x), for all x ∈ [0, 1], by an analogous process.
Using the same technique, it can be shown that

γ2(x) ≤ v1(x) ≤ Γ2(x), ∀x ∈ [0, 1].

So, (u1(x), v1(x)) is a solution of (E)-(B), for the values of µ, λ ∈ R, such that there are lower and upper
solutions according to Definition 2.1.

Example 3.1. Consider the system
u′′(x) − sin

(
π
2 u(x)

)
+

x
2

v(x) − u′(x) +
1

v′2(x) + 1
= µ

v′′(x) + eu(x)−1 − v(x) + cos
(
π
2 u′(x)

)
− v′(x) = λ,

(3.12)

for x ∈ [0, 1], and µ, λ are real parameter, along with boundary conditions

u(0) = 0,
u(1) + u′(1) = 1,

v(0) = 0,
v(1) + v′(1) = 1.

(3.13)
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The functions γ1, γ2,Γ1,Γ2 : [0, 1]→ R, given by

γ1(x) = −x, γ2(x) = −x − 1,
Γ1(x) = x, Γ2(x) = x + 1,

are, respectively, lower and upper solutions of (3.12) and (3.13) for µ and λ such that

µ ∈ [0, 1] and λ ∈

[
1
e
− 1,

1
e
+ 1

]
.

The functions
f (x, y0, z0, y1, z1) = − sin

(
π

2
y0

)
+

x
2

z0 − y1 +
1

z2
1 + 1

and
h(x, y0, z0, y1, z1) = ey0−1 − z0 + cos

(
π

2
y1

)
− z1

are continuous and satisfy the Nagumo conditions (N1) and (N2). By Theorem 3.1, the problems (3.12)
and (3.13) has at least one solution (u1(x), v1(x)), which verifies

−x ≤ u1(x) ≤ x and − x − 1 ≤ v1(x) ≤ x + 1, ∀x ∈ [0, 1].

Figures 1 and 2 show the admissible region for solution (u1(x), v1(x)).

Figure 1. Localization of u1.
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Figure 2. Localization of v1.

4. Application to the diffusion of information in social media

In [39, 40], the authors study the process of disseminating information in social media to obtain,
mathematical predictability in news dissemination to increase the efficiency of the distribution of
positive information and, at the same time, reduce information unwanted. In short, it is considered a
model to describe the flow of information, based on two similar news sources, that spread with
logistic growth independently together with an additional effect one over the other.

It is addressed that, for a given piece of information initiated by two specific users called sources,
the density of influenced users in the network depends on the distance x to any source. Based on this
model we consider the following stationary system

u′′(x) +
r1

d1
u(x)

(
1 −

u(x)
K1

)
+
α1

d1
u(x)v(x) = µ m(x),

v′′(x) +
r2

d2
v(x)

(
1 −

v(x)
K2

)
+
α2

d2
u(x)v(x) = λ n(x),

(4.1)

together with the boundary conditions

u(0) − b1u′(0) = 1,
u′(1) = 0,

v(0) − b2v′(0) = 1,
v′(1) = 0,

(4.2)

where bi, di, ri,Ki ∈ R
+ and αi ≥ 0, i = 1, 2, having the following meaning:

• u and v are the density of information from the different sources
• d1, d2 represent the popularity of the two pieces of information;
• r1, r2 are the speed with which information spreads within groups of users with the same distance;
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• K1,K2 represents the carrying capacity, which is the maximum possible density of influenced
users;
• α1 measures the positive effect of news v on u and α2 measures the positive effect of news u on v;
• m, n : [0, 1] → R+ are continuous functions, µ, λ real parameters, both relating with distance of

each source.
• b1, b2 are related with the initial spread of each source.

Define
m ≡ max

x∈[0,1]
m(x) and n ≡ max

x∈[0,1]
n(x),

consider K1 = 1 and K2 = 1, in the sense that the maximum load capacity is 100%, and, as a numeric
example, assume that

b1 ∈

]
0,

1
6

]
, b2 ∈

]
0,

1
2

]
,

2
3
+

11r1

144d1
+

11(4π2 − 1)α1

48π2d1
< 1,

1
8
+

(4π2 − 1)r2

16π4d2
+

11(4π2 − 1)α2

48π2d2
<

3
2
.

Then the functions

γ1(x) =
3
4

(x − 1)2, γ2(x) =
1
2

(x − 1)2

Γ1(x) =
1

12
x4 −

1
6

x2 + 1, Γ2(x) =
1

4π2 cos2
(
π

2
x
)
+

(4π2 − 1)
4π2

are, respectively, lower and upper solutions of problems (4.1) and (4.2) for

µ ∈

[
1
m

(
2
3
+

11r1

144d1
+

11(4π2 − 1)α1

48π2d1

)
,

1
m

]
(4.3)

and

λ ∈

[
1
n

(
1
8
+

(4π2 − 1)r2

16π4d2
+

11(4π2 − 1)α2

48π2d2

)
,

3
2n

]
. (4.4)

Moreover, the problems (4.1) and (4.2) are particular cases of (E), (B), with

f (x, y0, z0, y1, z1) =
r1

d1
y0 (1 − y0) +

α1

d1
y0z0,

and
h(x, y0, z0, y1, z1) =

r2

d2
z0 (1 − z0) +

α2

d2
y0z0.

These functions verify the Nagumo conditions (N1) and (N2), relative to the intervals
y0 ∈ [γ1(x),Γ1(x)] and z0 ∈ [γ2(x),Γ2(x)], as

| f (x, y0, z0, y1, z1)| =
∣∣∣∣∣ r1

d1
y0 (1 − y0) +

α1

d1
y0z0

∣∣∣∣∣
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≤
r1

d1
|y0 (1 − y0)| +

α1

d1
|y0z0|

≤
1

2d1

(
1
2

r1 + α1

)
,

|h(x, y0, z0, y1, z1)| =
∣∣∣∣∣ r2

d2
z0 (1 − z0) +

α2

d2
y0z0

∣∣∣∣∣
≤

r2

d2
|z0 (1 − z0)| +

α2

d2
|y0z0|

≤
1

2d2

(
1
2

r2 + α2

)
.

and, trivially, ∫ +∞ ds
1

2di

(
1
2ri + αi

) = +∞, for i = 1, 2.

So by Theorem 3.1 the problems (4.1) and (4.2) have at least one solution (u(x), v(x)), for the values
of µ and λ verifying (4.3) and (4.4), such that

3
4

(x − 1)2 ≤ u(x) ≤
1

12
x4 −

1
6

x2 + 1,

and
1
2

(x − 1)2 ≤ v(x) ≤
1

4π2 cos2
(
π

2
x
)
+

(4π2 − 1)
4π2 ,

for all x ∈ [0, 1].
The Figures 3 and 4 show the regions where this solution lies.

Figure 3. Localization of u(x).
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Figure 4. Localization of v(x).

5. Discussion

As far as we know, it is the first paper where Ambrosetti-Prodi differential equations are considered
in couple systems with different parameters, therefore with present a preliminary study where the
solvability of such problems is obtained for parameters’ values for which there are lower and upper
solutions. There are a lot of open issues such as how the Ambosetti-Prodi alternative could be done for
coupled systems, and what are the sufficient conditions on the nonlinearities to discuss the existence,
non-existence, and multiplicity of coupled systems solutions

We highlight two aspects in this work:

• A new definition type of lower and upper solutions for coupled systems (see Definition 2.1),
which overcomes the nonlinear dependence on the two unknown functions and is will be crucial
for future work;
• In the presence of such lower and upper solutions the parameters always belong to bounded sets,

as it is illustrated in Example 3.1 and in the application.

6. Conclusions

The main result allows us to evaluate some parameter values for which there are lower and upper
solutions, and, therefore, it shows that, for these values, there is also, at least, a solution and this
solution is localized in a strip bounded by lower and upper solutions.

The lower and upper solutions method seems to be a powerful tool to deal with these
Amprosetti-Prodi type problems, as it allows not only some estimations on both parameters for which
there are solutions of the coupled systems, but also because it provides strips for the localization of
such solutions.

In fact, this localization tool, in our opinion, has been undervalued, as it maybe very useful to know
some qualitative properties of the unknown functions.
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