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Abstract: The application of a complex fuzzy logic system based on a linear conjunctive operator 

represents a significant advancement in the field of data analysis and modeling, particularly for 

studying physical scenarios with multiple options. This approach is highly effective in situations where 

the data involved is complex, imprecise and uncertain. The linear conjunctive operator is a key 

component of the fuzzy logic system used in this method. This operator allows for the combination of 

multiple input variables in a systematic way, generating a rule base that captures the behavior of the 

system being studied. The effectiveness of this method is particularly notable in the study of 

phenomena in the actual world that exhibit periodic behavior. The foremost aim of this paper is to 

contribute to the field of fuzzy algebra by introducing and exploring new concepts and their properties 

in the context of conjunctive complex fuzzy environment. In this paper, the conjunctive complex fuzzy 

order of an element belonging to a conjunctive complex fuzzy subgroup of a finite group is introduced. 

Several algebraic properties of this concept are established and a formula is developed to calculate the 

conjunctive complex fuzzy order of any of its powers in this study. Moreover, an important condition 

is investigated that determines the relationship between the membership values of any two elements 

and the membership value of the identity element in the conjunctive complex fuzzy subgroup of a 

group. In addition, the concepts of the conjunctive complex fuzzy order and index of a conjunctive 

complex fuzzy subgroup of a group are also presented in this article and their various fundamental 

algebraic attributes are explored structural. Finally, the conjunctive complex fuzzification of 

Lagrange’s theorem for conjunctive complex fuzzy subgroups of a group is demonstrated. 
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1. Introduction 

In the early 18th century, a star appeared on the horizon of group theory in the form of Lagrange’s 

theorem, which played a key role in solving many complicated questions not only about algebra but 

also about geometry. This incredible result has a great impact on several branches of mathematics 

especially finite group theory, combinatorics and number theory. Many unraveling mathematical 

structures have been proved by this remarkable result. It is also a powerful tool to investigate the 

meaningful characterizations of finite groups as it provides a comprehensive structural view of 

subgroups. The notion of coset plays a central part to understand the ideology of this revolutionary 

result. One of the main advantages of this theorem is that it plays a key role in proving the famous 

Fermat’s little theorem and its generalization, Euler’s theorem in the field of number theory. One can 

easily visualize a probable connection between Lagrange's theorems to real life shows the relationship 

between group theory and real life. In addition, this result is considered a valuable source of abstract 

algebra, but it can be gradually integrated into physical situations. A good detail about the prosperous 

history of this noticeable theorem can be read in [14,16]. 

Presently, science and technology are characterized by complex processes and phenomena for 

which complete information is not always available. These situations lead us to design specific 

mathematical models to handle such types of systems having elements of uncertainty. The extension 

of classical set theory, namely, the fuzzy set theory helps to formulate the mechanism of large numbers 

of these models.  

The theory of fuzzy sets plays a vital role to solve many physical situations in different branch of 

modern science, particularly, decision making, mathematical chemistry, biological classification and 

thermodynamics. Despite all these benefits, we still face major challenges to counter several physical 

situations based on a complex membership function. Complex fuzzy sets permit a natural extension to 

fuzzy set theory to counter such specific problems that cannot be addressed with one-dimensional 

grades of membership. The image processing and numerous periodic aspects of the forecast are the 

problems that can be handle through complex fuzzy sets in much effective way. 

In modern days, the development of computer technologies, the accessibility of high-speed 

processors and numerous programming languages enable researchers to investigate and design many 

algorithms to solve physical phenomena on computers in various fields of science. However, to design 

high-precision models of a physical process, one must begin with its mathematical description and 

analysis in order to attain the specific outcomes of the problem under consideration. This helps to 

design highly efficient numerical methods that can effectively be applied to a computer. In this 

connection, the applications of the operator theory to engineering problems have grown considerably. 

This development is clearly connected to the wide variety of applications of both practical and 

theoretical interests. In many fields, various technical procedures contain similar mathematical 

structures that can be interpreted in the framework of general operator theory. Such a generalization 

allows to construct useful algorithms to solve a wide class of problems. 

Zadeh [1] introduced the concept of a fuzzy set in 1965 as a means to address the challenges of 

managing vagueness in practical situations. The concept of fuzzy subgroups and its fundamental 

algebraic characteristics were established by Rosenfeld [2] in 1971. In 1981, Das [3] presented the 

idea of level subgroups of a fuzzy subgroup. One can study the comprehensive detail about the 

fundamental notions of fuzzy subgroups in [4–8]. Buckley [9] innovated the study of complex fuzzy 

numbers in 1989. The author [10] established the theory of complex fuzzy numbers to design a new 
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formulation of differentiation by using this concept. Furthermore, some elementary properties of fuzzy 

contour integral in the complex plane were depicted by the same author in [11]. Many important 

properties of complex fuzzy numbers were formulated by Zhang [12]. An efficient fuzzy processor 

capable of dealing with complex fuzzy inference system was designed by Ascia et al. [13]. Ramote et 

al. [15] proponded the concept of CFS in 2002 and presented a comprehensive study of two novel 

operations, namely, reflection and rotation. In the recent times, the authors developed the theories of 

CFNSG [17], complex fuzzy hyper structure [18] and CFSG [19] over a complex fuzzy space. In 2017, 

the idea of CFS was used to initiate the notion of CFSG by Alsarahead and Ahmad [20]. In addition, 

the idea of complex intuitionistic fuzzy sets was innovated by the authors [21] in 2017. Moreover, the 

significant applications of this newly defined concept in the solution of decision making problems can 

be viewed in [22,23]. In 2018, an approximate parallelity preserving for complex fuzzy operators was 

established in [24] and several complex fuzzy geometric aggregation operators were investigated in [25]. 

Lvqing Bi et al. [26] and Songsong Dai et al. [27] defined two kinds of entropy measures for complex 

fuzzy sets and analyze their rotational invariance properties in 2019. Abd Ulzeez M. J. Alkouri et al. [28] 

gave the formal definition of bipolar complex fuzzy distance measure and some basic mathematical 

operations on bipolar CFS in 2020. Moreover, the authors [29] proposed the phenomenon of CFS based 

over linear conjunctive operator in 2020. Modernistic applications of complex fuzzy set can be seen 

in [30–39].  

Complex fuzzy sets are a valuable tool for characterizing real-life problems that exhibit 

periodicity, as they provide a useful representation of the unpredictability and periodicity of the objects 

within these sets. However, their ability to handle real-world problems involving complex valued 

membership functions is inherently limited. To overcome this constraint, we propose a novel concept 

of complex fuzzy set based on a linear conjunctive operator, which offers increased flexibility and 

efficiency in modeling real world issues. Its application enables the systematic integration of multiple 

input variables that comprehensively represents the behavior of the studied system. This is 

accomplished by assigning a degree of membership to each input variable based on its relevance to the 

rule being defined. It is noteworthy that this method is highly efficacious in investigating phenomena 

that demonstrates periodicity in real-world situations. Despite all the significances and features of CFS, 

there is a lack of capacity to solve many real-life problems over a complex valued membership function. 

This encourages us to describe the concept of CFS over a linear conjunctive operator through which 

one can have the multiple options to investigate a specific real-world situation in much efficient way 

by choosing appropriate value of the parameter. In addition, it is important to note that the existing 

knowledge of FS and CFS lack the ability to dynamically adjust the parameter in accordance with the 

decision makers' risk aversion, which makes the multi attribute decision making solutions difficult to 

implement in real life. However, the approach presented in this article is very capable of addressing 

this weakness in this situation. Moreover, we also introduce conjunctive complex fuzzy subgroups 

(𝜉 −CFSG) using this method, which can effectively resolve key decision-making problems in areas 

such as image processing, crypto currencies and cyber-security. Our approach improves the 

effectiveness with which challenging real-world problems can be solved by expanding the capabilities 

of complex fuzzy sets. We anticipate that this method will have broad applications in various fields 

due to its ability to handle complex valued membership functions and the versatility offered by the 

linear conjunctive operator. 

After a little discussion about the development of complex fuzzy subgroups, the remaining 

portion of this paper is shaped as: In Section 2, we study basic notions of 𝜉 −CFS and 𝜉 −CFSG, 
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which are very important to understand the work presented in this paper. Section 3 contains the notion 

of conjunctive complex fuzzy order of an element of 𝜉 − CFSG of a finite group along various 

fundamental algebraic characteristics of this phenomenon. In addition, we design a formula to calculate 

the conjunctive complex fuzzy order of an element for any of its power and determine a correlation 

between the membership values of any two elements and the membership grade of identity element of 

𝜉 − CFSG.The Section 4 deals with the notions of conjunctive complex fuzzy order and index of 

𝜉 − CFSG of a finite group and describes their numerous structural characteristics. Moreover, we 

utilize the study of these notions to establish the conjunctive complex fuzzification of Lagrange’s 

theorem of 𝜉 −CFSG.  

2. Preliminaries 

In this section, we provide some basic information of conjunctive complex fuzzy sets and 

conjunctive complex fuzzy subgroups to understand the topics covered in this paper.  

Definition 2.1. [15] A CFS 𝐴 defined on a universe of discourse 𝑈, is characterized by a membership 

function 𝜇𝐴(𝑚) that allocates each element of 𝑈 to a unit circle 𝐶∗ in complex plane and is written 

as 𝑟𝐴(𝑚)𝑒𝑖𝜔𝐴(𝑚), where 𝑟𝐴(𝑚) denotes the real-valued function from 𝑈 to the closed unit interval 

and 𝑒𝑖𝜔𝐴(𝑚)  is a periodic function whose periodic law and principal period are 2𝜋  and 0 <

𝑎𝑟𝑔𝐴(𝑚) ≤ 2𝜋, respectively. 

Note that 𝜔𝐴(𝑚) = 𝑎𝑟𝑔𝐴(𝑚) + 2𝑘𝜋, 𝑘 ∈ 𝑍 and 𝑎𝑟𝑔𝐴(𝑚) is the principal argument.  

Definition 2.2. [29] For any CFS 𝐴  of 𝑈  and an element 𝜉 ∈ 𝐶∗  where  𝜉 = 𝛼𝑒𝛿 , 0 ≤ 𝛼 ≤ 1 

and 0 ≤ 𝛿 ≤ 2𝜋. The conjunctive complex fuzzy set 𝐴𝜉  relative to CFS 𝐴 is an object of the form 

𝜇𝐴𝜉(𝑚) = 𝑚𝑖𝑛(𝑟𝐴(𝑚)𝑒𝑖𝜔𝐴(𝑚), 𝛼𝑒𝑖𝛽) = 𝑚𝑖𝑛{𝑟𝐴(𝑚), 𝛼}𝑒𝑖𝑚𝑖𝑛(𝜔𝐴(𝑚),𝛽) = 𝑟𝐴𝜉(𝑚)𝑒
𝑖𝜔

𝐴𝜉(𝑚)
  for any 

element 𝑚  of 𝑈 . Here, the real valued function is 𝑟𝐴𝜉: 𝑈 → [0, 1]  and 𝑒
𝑖𝜔

𝐴𝜉   denotes a periodic 

function with periodicity 2𝜋 and 0 < 𝑎𝑟𝑔𝐴𝜉 ≤ 2𝜋.  

For convenience, we write a conjunctive complex fuzzy set as 𝜉 −CFS and 𝐹𝜉(𝑈) represents the 

family of 𝜉 −CFS of 𝑈. 

Definition 2.3. [17] Let 𝐴 and 𝐵 be any two CFS of a universe 𝑈, then 

1) 𝐴 is homogeneous CFS if 𝑟𝐴(𝑚) ≤ 𝑟𝐴(𝑛) implies 𝜔𝐴(𝑚) ≤ 𝜔𝐴(𝑛) and vice versa ∀𝑚, 𝑛 ∈ 𝑈.  

2) 𝐴  is homogeneous CFS with 𝐵  if 𝑟𝐴(𝑚) ≤ 𝑟𝐵(𝑛)  implies 𝜔𝐴(𝑚) ≤ 𝜔𝐵(𝑛)  and vice versa 

∀𝑚, 𝑛 ∈ 𝑈.  

Definition 2.4. [17] Let 𝐴 be a CFS of a group 𝐺. Then 𝐴 is said to be a CFSG of 𝐺 if the following 

conditions are satisfied for each element of 𝐺. 

1) 𝜇𝐴(𝑚𝑛) ≥ min {𝜇𝐴(𝑚), 𝜇𝐴(𝑛)} 

2)  𝜇𝐴(𝑚−1) ≥ μ𝐴(𝑚). 

Definition 2.5. [29] Let 𝐴𝜉 , 𝐵𝜉 ∈ 𝐹𝜉(𝑈). Then 

1) 𝐴𝜉   is said to be homogeneous 𝜉 − CFS if 𝑟𝐴𝜉(𝑚) ≤ 𝑟𝐴𝜉(𝑛)  implies 𝜔𝐴𝜉(𝑚) ≤ 𝜔𝐴𝜉(𝑛) , 

∀ 𝑚, 𝑛 ∈ 𝑈. 

2) 𝐴𝜉   is said to be homogeneous 𝜉 − CFS with 𝐵𝜉  if 𝑟𝐴𝜉(𝑚) ≤ 𝑟𝐵𝜉(𝑛)  implies 𝜔𝐴𝜉(𝑚) ≤

𝜔𝐵𝜉(𝑛), ∀ 𝑚, 𝑛 ∈ 𝑈. 

Definition 2.6. [29] Let 𝐴𝜉  be a 𝜉 −CFS of a group G. Then 𝐴𝜉  is said to be a conjunctive complex 

fuzzy subgroup (denoted by 𝜉 −CFSG) if 𝐴𝜉  satisfies the following conditions for all element 𝑚 

and 𝑛 in 𝐺: 

1) 𝜇𝐴𝜉(𝑚𝑛) ≥ 𝑚𝑖𝑛 {𝜇𝐴𝜉(𝑚), 𝜇𝐴𝜉(𝑛)}. 
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2) 𝜇𝐴𝜉(𝑚−1) ≥ 𝜇𝐴𝜉(𝑚).  

We denote a conjunctive complex fuzzy subgroup by the 𝜉 −CFSG whereas the family of 𝜉 −CFSG 

of a group 𝐺 is represented by 𝐹𝜉(𝐺) in this paper. 

Definition 2.7. [17] A CFSG 𝐴 of a group 𝐺 is CFNSG(G) if 𝑚𝐴 = 𝐴𝑚, ∀𝑚 ∈ 𝐺.  

Definition 2.8. [29] Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺) and be a fixed element of the group 𝐺. The conjunctive complex 

fuzzy left coset of 𝐴𝜉  in 𝐺 is denoted by 𝑚𝐴𝜉 and is described as 𝜇𝑚𝐴𝜉(𝑛) = 𝜇𝐴𝜉(𝑚−1𝑛), ∀𝑛 ∈

𝐺 is called the conjunctive complex fuzzy left coset determined by 𝑚 and 𝐴𝜉 . 

Definition 2.9. [29] Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺)  then 𝐴𝜉   is a conjunctive complex fuzzy normal subgroup 

(denoted by 𝜉 −CFNSG) of 𝐺 if 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛−1𝑚𝑛), ∀ 𝑚, 𝑛 ∈ 𝐺. 

The above definition can also be visualized as: 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑛𝑚). 

We denote a conjunctive complex fuzzy normal subgroup by 𝜉 − CFNSG whereas the family of 

𝜉 −CFNSG of a group 𝐺 is represented by 𝐹𝜉𝑁(𝐺) in this paper. 

3. Structural characterization of 𝝃 −complex fuzzy order of an element of 𝝃 −complex fuzzy 

subgroup 

In the modern era, scientific and technological systems have become increasingly complex and 

multifaceted, often involving phenomena that are not fully understood or characterized by complete 

information. To tackle such complex systems and their uncertainties, specific mathematical models are 

required. In this context, the extension of classical set theory, known as fuzzy set theory, has emerged 

as a powerful tool to handle such situations. This theory has proven to be particularly useful in 

addressing a wide range of physical situations in various branches of modern science, including 

decision making, mathematical chemistry, biological classification and thermodynamics. Despite the 

benefits of fuzzy set theory, we still face significant challenges in dealing with physical situations that 

involve complex membership functions. Complex fuzzy sets provide a natural extension to fuzzy set 

theory, enabling the handling of specific problems that cannot be adequately addressed using one-

dimensional grades of membership. Complex fuzzy sets are employed in control systems to regulate 

and optimize complex processes, such as manufacturing, robotics and traffic control. By adapting to 

changing conditions and uncertainties, complex fuzzy control systems can improve efficiency, safety 

and performance. By using the complex fuzzy sets, the modeling and analysis of these systems can be 

performed with higher accuracy and efficiency, resulting in superior outcomes and solutions to real-

world problems. This highlights the novelty, versatility and practicality of conjunctive complex fuzzy 

sets in dealing with complex and uncertain systems, thereby advancing the application of complex 

fuzzy set theory to a wide range of fields. In addition, the elements of a group, along with their 

properties and relationships, provide crucial information about the structure of the group. By analyzing 

the significance of different elements, mathematicians can gain insights into the overall structure and 

properties of the group. The science of secure communication relies on the use of group theory to 

design and analyze encryption algorithms. The order of an element plays a crucial role in the design 

of such algorithms, as it determines the size of the group and the complexity of the computations 

required to break the encryption and also used to generate repeating patterns and animations in 

computer graphics. The above discussion motivates us to define the notion of a conjunctive complex 

fuzzy order of an element of a conjunctive complex fuzzy subgroup of a finite group G in this section. 

Many fundamental characteristics are highlighted that emerge as a result of this idea, which are vital 

to understand the underlying structural properties of such subgroups. 
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Definition 3.1. Consider a 𝜉 −CFSG 𝐴𝜉  and an element 𝑚 of a finite group 𝐺. The least positive 

integer 𝑛  is called conjunctive complex fuzzy order of 𝑚  (denoted by  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) ) 

if 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑒).  

Example 3.2. Consider the group 𝐺 = {1, −1, 𝑖, −𝑖} is given by: 

𝜇𝐴(𝑚) = {
1𝑒𝑖1.9𝜋      𝑖𝑓 𝑚 ∈ {1, −1}

0.5𝑒𝑖𝜋              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

The 𝜉 −CFSG 𝐴𝜉  of 𝐺 with respect to the value of the parameter 𝜉 = 0.6𝑒𝑖1.1𝜋 is obtained as: 

𝜇𝐴𝜉(𝑚) = {
0.6𝑒𝑖1.1𝜋        𝑖𝑓 𝑚 ∈ {1, −1}

0.5𝑒𝑖𝜋                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

In view of Definition 3.1, we have 𝜉 − 𝐶𝐹𝑂𝐴𝜉(1) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(−1) = 1  

𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑖) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(−𝑖) = 4.  

Theorem 3.3. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺) and 𝑚 ∈ 𝐺 then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚−1). 

Proof. Given that 𝐴𝜉   is a 𝜉 − CFSG, we have  𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑚−1) . This implies that  𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚−1).  

Theorem 3.4. Let 𝐴𝜉 ∈ 𝐹𝜉𝑁(𝐺)  and 𝑚  be any fixed element of 𝐺  then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) =  𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑛−1𝑚𝑛), ∀ 𝑛 ∈ 𝐺. 

Proof. By using Definition 2.6, we obtain  𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛−1𝑚𝑛) . Thus  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) =  𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑛−1𝑚𝑛). 

The subsequent example describes that the Theorem 3.4 is not true whenever 𝐴𝜉   not conjunctive 

complex fuzzy normal subgroup in is 𝐺.  

Example 3.5. The CFSG 𝐴 of the dihedral group D3 =< 𝑎, 𝑏: 𝑎3 = 𝑏2 = 𝑒, 𝑏𝑎 = 𝑎2𝑏 > is defined as: 

𝜇𝐴(𝑚) = {
0.9𝑒1.4𝑖     𝑖𝑓 𝑚 ∈< 𝑏 >

0.5𝑒0.9𝑖        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

The 𝜉 −CFSG 𝐴𝜉  of 𝐷3 with respect to the value of the parameter 𝜉 = 0.8𝑒1.2𝑖 is obtained as: 

𝜇𝐴𝜉(𝑚) = {
0.8𝑒1.2𝑖     𝑖𝑓 𝑚 ∈< 𝑏 >

0.5𝑒0.9𝑖        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Clearly 𝐴𝜉   is not a 𝜉 − CFNSG. Moreover, 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎) = 3 = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎−1)  and  𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑏) = 1. One can easily observe that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑏) ≠ 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎−1𝑏𝑎). 

Theorem 3.6. Let 𝐴𝜉 ∈ 𝐹𝜉𝑁(𝐺) then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑛) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛𝑚) ∀ 𝑚, 𝑛 ∈ 𝐺. 

Proof. Consider 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑛) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉((𝑛−1𝑛)(𝑚𝑛)) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚−1(𝑛𝑚)𝑛).  

The application of Theorem 3.4, the above relation yields that  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚−1(𝑛𝑚)𝑛) = 𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑛𝑚). 

Theorem 3.7. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺) and 𝑚 ∈ 𝐺 then 𝜇𝐴𝜉(𝑚𝑘) ≥ 𝜇𝐴𝜉(𝑚), 𝑘 ∈ 𝑍. 

Proof. The result is obvious in the frame work of mathematical induction for the values. 𝑘 = 0 and 1. 

Moreover, for 𝑘 = 2, we have 

𝜇𝐴𝜉(𝑚2) = 𝜇𝐴𝜉(𝑚. 𝑚) ≥ min{𝜇𝐴𝜉(𝑚), 𝜇𝐴𝜉(𝑚)} = 𝜇𝐴𝜉(𝑚). 

Let the statement be true for 𝑘 = 𝑛. Consider 

𝜇𝐴𝜉(𝑚𝑛+1) = 𝜇𝐴𝜉(𝑚𝑛. 𝑚) ≥ min {𝜇𝐴𝜉(𝑚𝑛), 𝜇𝐴𝜉(𝑚)} = 𝜇𝐴𝜉(𝑚). 

This completes the induction. Moreover, if 𝑘 < 0 then 𝜇𝐴𝜉(𝑚𝑘) = 𝜇𝐴𝜉(𝑚−1)−𝑘 ≥ 𝜇𝐴𝜉(𝑚). 
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Remark 3.8. If (𝑜(𝑚), 𝑘) = 1 then 𝜇𝐴𝜉(𝑚𝑘) = 𝜇𝐴𝜉(𝑚) for any integer 𝑘. 

Theorem 3.9. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺) . For 𝑚 ∈ 𝐺 , if 𝜇𝐴𝜉(𝑚𝑘1) = 𝜇𝐴𝜉(𝑒)  for some integers 𝑘1 , then 𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑚)|𝑘1. 

Proof. Let 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑛. Then by Euclidean Algorithm, there exist integers 𝑘2 and 𝑘3 such 

that 𝑘1 = 𝑛𝑘2 + 𝑘3, where 0 ≤ 𝑘3 < 𝑛. Consider 

𝜇𝐴𝜉(𝑚𝑘3) = 𝜇𝐴𝜉(𝑚𝑘1−𝑛𝑘2) = 𝜇𝐴𝜉(𝑚𝑘1(𝑚𝑛)−𝑘2) ≥ min {𝜇𝐴𝜉(𝑚𝑘1), 𝜇𝐴𝜉(𝑚𝑛)−𝑘2}

≥ min{𝜇𝐴𝜉(𝑒), 𝜇𝐴𝜉(𝑚𝑛)} = min{𝜇𝐴𝜉(𝑒), 𝜇𝐴𝜉(𝑒)}. 

It follows that 𝜇𝐴𝜉(𝑚𝑘3) = 𝜇𝐴𝜉(𝑒). 

Hence 𝑘3 = 0 by the minimality of n. 

The subsequent theorem establishes a condition in which the membership values of any two elements 

of 𝜉 −CFSG coincides with the membership value of identity element of 𝜉 −CFSG. 

Theorem 3.10. Let  ∀ 𝑚, 𝑛 ∈ 𝐺   (𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚), 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛)) = 1,  𝑚𝑛 = 𝑛𝑚  and  𝜇𝐴𝜉(𝑚𝑛) =

𝜇𝐴𝜉(𝑒). Then 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛) = 𝜇𝐴𝜉(𝑒). 

Proof. Let 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑘1 and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) = 𝑘2. In view of Theorem 3.7 and Remark 3.8, 

we have 𝜇𝐴𝜉(𝑒) = 𝜇𝐴𝜉(𝑚𝑛) ≤ 𝜇𝐴𝜉((𝑚𝑛)𝑘2 = 𝜇𝐴𝜉(𝑚𝑘2𝑛𝑘2). It follows that 𝜇𝐴𝜉(𝑚𝑘2𝑛𝑘2) = 𝜇𝐴𝜉(𝑒). 

Now 𝜇𝐴𝜉(𝑚𝑘2) = 𝜇𝐴𝜉(𝑚𝑘2𝑛𝑘2𝑛−𝑘2) ≥ min{𝜇𝐴𝜉(𝑚𝑘2𝑛𝑘2), 𝜇𝐴𝜉(𝑛−𝑘2)} = min{𝜇𝐴𝜉(𝑒), 𝜇𝐴𝜉(𝑒)}. 

Thus 𝜇𝐴𝜉(𝑚𝑘2) = 𝜇𝐴𝜉(𝑒). 

By applying the Theorem 3.9, we have 𝑘1|𝑘2. However, (𝑘1, 𝑘2) = 1. Thus 𝑘1 = 1. Hence 𝜇𝐴𝜉(𝑚) =

𝜇𝐴𝜉(𝑒). Similarly, 𝜇𝐴𝜉(𝑛) = 𝜇𝐴𝜉(𝑒). 

The following formula facilitates us to calculate the 𝜉-complex fuzzy order of an element for any of 

its power. 

Theorem 3.11. If 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑘1  then  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑘2) =
𝑘1

(𝑘1,𝑘2)
 , for some integer 𝑘2 

and 𝑚 ∈ 𝐺. 

Proof. Assume that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑘2) = 𝑟 and (𝑘1, 𝑘2) = 𝑑. Consider 

𝜇𝐴𝜉 ((𝑚𝑘2)
𝑘1
𝑑 ) = 𝜇𝐴𝜉 ((𝑚𝑘1)

𝑘2
𝑑 ) 

≥ 𝜇𝐴𝜉(𝑒
𝑘2
𝑑 ) 

= 𝜇𝐴𝜉(𝑒). 

By using Theorem 3.9, we have 𝑟 divides 
𝑘1

𝑑
. 

Moreover, (𝑘1, 𝑘2) = 𝑑, therefore 𝑘1𝑝 + 𝑘2𝑞 = 𝑑, for some 𝑝, 𝑞 ∈ 𝑍. Now 

𝜇𝐴𝜉(𝑚𝑟𝑑) = 𝜇𝐴𝜉(𝑚𝑟(𝑘1𝑝+𝑘2𝑞))     = 𝜇𝐴𝜉(𝑚𝑟𝑘1𝑝𝑚𝑟𝑘2𝑞) ≥ min{𝜇𝐴𝜉(𝑚𝑘1)𝑟𝑝), 𝜇𝐴𝜉(𝑚𝑘2)𝑟𝑞)} ≥

min{𝜇𝐴𝜉(𝑚𝑘1), 𝜇𝐴𝜉(𝑚𝑘2𝑟)} ≥ min{𝜇𝐴𝜉(𝑚𝑘1), 𝜇𝐴𝜉(𝑚𝑘2)𝑟 = min{𝜇𝐴𝜉(𝑒), 𝜇𝐴𝜉(𝑒)}}. 

Thus 𝜇𝐴𝜉(𝑚𝑟𝑑) ≥ 𝜇𝐴𝜉(𝑒). 

The application of Theorem 3.9 in the above relation, we have 𝑘1|𝑟𝑑 and hence 𝑟 =
𝑘1

𝑑
. 

Theorem 3.12. Let 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑘1  (𝑘1, 𝑘2) = 1, 𝑘1, 𝑘2 ∈ 𝑍  and  𝑚 ∈ 𝐺 . Then   𝜇𝐴𝜉(𝑚𝑘2) =

𝜇𝐴𝜉(𝑚). 

Proof. By using the fact 𝑘1 and 𝑘2 are relatively prime, we have 𝑘1𝑟 + 𝑘2𝑠 = 1, for some 𝑟, 𝑠 ∈ 𝑍. 
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Then  

𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑘1𝑟 + 𝑘2𝑠) 

= 𝜇𝐴𝜉((𝑚𝑘1)𝑟(𝑚𝑘2)𝑠) 

≥ min {𝜇𝐴𝜉(𝑚𝑘1)𝑟 , 𝜇𝐴𝜉(𝑚𝑘2)𝑠} 

= min {𝜇𝐴𝜉(𝑒), 𝜇𝐴𝜉(𝑚𝑘2)}. 

Thus 

𝜇𝐴𝜉(𝑚) ≥ 𝜇𝐴𝜉(𝑚𝑘2).         (3.1) 

Moreover,  

𝜇𝐴𝜉(𝑚𝑘2) ≥ 𝜇𝐴𝜉(𝑚).         (3.2) 

By comparing (3.1) and (3.2), we get 𝜇𝐴𝜉(𝑚𝑘2) = 𝜇𝐴𝜉(𝑚).  

Corollary 3.13. Let 𝐴𝜉  be a fuzzy subgroup of a group G then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚)|𝑜(𝑚), ∀𝑚 ∈ 𝐺. 

Corollary 3.14. Let 𝐴𝜉  be a fuzzy subgroup of a group G then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚)|𝑜(𝐺). 

Theorem 3.15. Let  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑘1 ,  ∀𝑚 ∈ 𝐺 . If  𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑛) , where 𝑥, 𝑦 ∈ 𝑍  then 𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑚𝑥) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑦). 

Proof. Let 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑥) = 𝑡  and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑦) = 𝑠 . Now let 𝑥 = 𝑦 + 𝑘1𝑛  for some 𝑛 ∈ 𝑍 , 

we have  

𝜇𝐴𝜉((𝑚𝑥)𝑠) = 𝜇𝐴𝜉((𝑚𝑦+𝑘1𝑛)𝑠) 

= 𝜇𝐴𝜉((𝑚𝑦)𝑠(𝑚𝑘1)𝑛𝑠) 

≥ min {𝜇𝐴𝜉(𝑚𝑦)𝑠, 𝜇𝐴𝜉(𝑚𝑘1)𝑛} 

≥ min {𝜇𝐴𝜉(𝑒), 𝜇𝐴𝜉(𝑚𝑘1)}. 

Thus 𝜇𝐴𝜉((𝑚𝑥)𝑠) = 𝜇𝐴𝜉(𝑒) 

This means that, 

𝑡|𝑠.            (3.3). 

Similarly, 

𝑠|𝑡.            (3.4) 

By comparing (3.3) and (3.4), we have 𝑡 = 𝑠. 

In the following result, we prove a formula to obtain 𝜉-complex fuzzy order of the product of any two 

elements of 𝜉 −CFSG.  

Theorem 3.16. If (𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚), 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛)) = 1  and  𝑚𝑛 = 𝑛𝑚, ∀𝑚, 𝑛 ∈ 𝐺 , then  𝜉 −

𝐶𝐹𝑂𝐴𝜉(𝑚𝑛) = [𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚)] × [𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛)]. 

Proof. Suppose that  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑛) = 𝑘1 , 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑘2  and  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) = 𝑘3 . 

Consider 

𝜇𝐴𝜉((𝑚𝑛)𝑘2𝑘3) = 𝜇𝐴𝜉((𝑚)𝑘2𝑘3(𝑛)𝑘2𝑘3)  ≥ min{𝜇𝐴𝜉((𝑚𝑘3)𝑘2), 𝜇𝐴𝜉((𝑛𝑘3)𝑘2)}. 

Thus 𝜇𝐴𝜉((𝑚𝑛)𝑘2𝑘3) ≥ 𝜇𝐴𝜉(𝑒). 
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By using the Theorem 3.9 in the above theorem, we have 

𝑘2𝑘3|𝑘1.         (3.5) 

Since (𝑘2, 𝑘3) = 1, therefore either 𝑘2|𝑘1 or 𝑘3|𝑘1. Assume that 𝑘2|𝑘1, then by applying the 

Theorem 3.11, we have 

𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑘1) =
𝑘2

(𝑘1,𝑘2)
.       (3.6) 

In view of Theorem 3.9, in the above relation for 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛𝑘1) establishes the following relation: 

𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛𝑘1) =
𝑘3

(𝑘1,𝑘3)
.       (3.7) 

Again from Theorem 3.9 Eqs (3.6) and (3.7) we obtain (𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑘2), 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛𝑘3)) = 1. 

By applying Theorem 3.9 Eqs (3.6) and (3.7) and using the above stated fact leads us to note that 

𝜇𝐴𝜉(𝑒) = 𝜇𝐴𝜉(𝑚𝑘1) = 𝜇𝐴𝜉(𝑛𝑘1). This means that 

𝑘1|𝑘2𝑘3.          (3.8) 

By comparing (3.5) and (3.8), we have the required result. 

It is important to note that the condition 𝑚𝑛 = 𝑛𝑚 in the Theorem 3.16 cannot be ignored for the 

validity of the result. The consequent example illustrates the otherwise situation. 

Example 3.17. The CFSG 𝐴  of the symmetric group 𝑆3 = {1, (12), (13), (23), (132), (123)}  is 

defined as: 

𝜇𝐴(𝑚) = {
1𝑒1.9𝑖        𝑖𝑓 𝑥 = 1,

0.4𝑒0.8𝑖      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

The 𝜉 −CFSG 𝐴𝜉  of 𝑆3 with respect to the value of the parameter 𝜉 = 0.7𝑒1.1𝑖 is obtained as: 

𝜇𝐴𝜉(𝑚) = {
0.7𝑒1.1𝑖       𝑖𝑓 𝑥 = 𝑒

0.4𝑒0.8𝑖      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Consider 𝑚 = (1 2) and 𝑛 = (1 3). Note that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 2, 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) = 2,  

𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝑛) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛𝑚) = 3 and 𝑚𝑛 ≠ 𝑛𝑚.  

Theorem 3.18. Let 𝑚, 𝑛 be any two generators of a finite group 𝐺 and let 𝐴𝜉 ∈ 𝐹𝜉(𝐺) then 𝜉 −
𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛). 

Proof. Case-I. Suppose that 𝑂(𝐺) = 𝛼. In view of given condition, we have 𝑚𝛼 = 𝑛𝛼 = 𝑒. 

Let for some 𝛽 ∈ 𝑍, we have 𝑛 = 𝑚𝛽, then (𝛼, 𝛽) = 1. Furthermore, by using Theorem 3.12 in the 

above equation, we obtain 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚𝛼) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛). 

Case-II. If G is infinite cyclic group then by using Theorem 3.11, we have 𝑛 = 𝑚−1. 

Theorem 3.19. Every 𝜉 −CFSG 𝐴𝜉  of a finite cyclic group 𝐺 admits the following properties: 

1) If 𝑂(𝑚) = 𝑂(𝑛) then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛). 

2) If 𝑂(𝑚) divides 𝑂(𝑛) then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) divides 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚).  

3) If 𝑂(𝑚) > 𝑂(𝑛), then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) ≥ 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛). 

Proof. Let 𝑂(𝐺) = 𝑘2 and 𝑎 be a generator of 𝐺. Then 𝑚 = 𝑎𝑟 , 𝑛 = 𝑎𝑠 and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎) = 𝑘1, 

where 𝑟, 𝑠 and 𝑘1 ∈ 𝑍. In view of Theorem 3.18, 𝑘1 is regardless of the specific choice of generator 

𝑎 of G. We know that 𝑂(𝑚) =
𝑘2

(𝑘2, 𝑟)⁄  and 𝑂(𝑛) =
𝑘2

(𝑘2, 𝑠)⁄ .The application of the Theorem 3.11, 

we have 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) =
𝑘1

(𝑘1, 𝑟)⁄  and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) =
𝑘1

(𝑘1, 𝑠)⁄  Moreover, by applying the 
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application of Corollary 3.14, yields that 𝑘1|𝑘2. 

1) Given that 𝑂(𝑚) = 𝑂(𝑛). This implies that 𝑂(𝑎𝑟) = 𝑂(𝑎𝑠). This further implies that (𝑟, 𝑘2) =
(𝑠, 𝑘2). This shows that (𝑟, 𝑘1) = (𝑠, 𝑘1). 

Hence 

𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛). 

2) Given that  𝑂(𝑚)|𝑂(𝑛) , then  (𝑟, 𝑘2)|(𝑠, 𝑘2) . This implies that  (𝑟, 𝑘1)|(𝑠, 𝑘1) . Thus  𝜉 −
𝐶𝐹𝑂𝐴𝜉(𝑚)|𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛).  

3) Given that 𝑂(𝑚) > 𝑂(𝑛), then (𝑟, 𝑘2) < (𝑠, 𝑘2). This implies that (𝑟, 𝑘1) < (𝑠, 𝑘1). Also 𝑘1|𝑘2, 

thus 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) ≥ 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛). 

Theorem 3.20. Every 𝜉 −CFSG 𝐴𝜉  of a finite cyclic group 𝐺 admits the following properties: 

1) If 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚)|𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) then 𝜇𝐴𝜉(𝑚) ≥ 𝜇𝐴𝜉(𝑛).  

2) If 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) then 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛). 

Proof.  

1) Suppose 𝑎 is a generator of 𝐺. Let 𝑚 = 𝑎𝑟, 𝑛 = 𝑎𝑠 and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎) = 𝑘1. By Lemma 3.18 

𝑘1 is regardless of the specific choice of a generator 𝑎 of 𝐺. Then 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) = 𝑘1|(𝑟, 𝑘1) 

and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) = 𝑘1|(𝑠, 𝑘1)  by Theorem 3.11 let 𝑟 = ℎ(𝑟, 𝑘1)  and 𝑠 = 𝑖(𝑠, 𝑘1)  and 𝑝 =

𝑗(𝑠, 𝑘1) = 𝑘(𝑟, 𝑘1)  for some  ℎ, 𝑖, 𝑗, 𝑘 ∈ ℤ . Given that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚)|𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) 

then (𝑠, 𝑘1)|(𝑟, 𝑘1). Thus 𝑠 divides 𝑟𝑖 = ℎ(𝑟, 𝑘1)𝑖 and 𝑘1 divides 𝑟𝑗 = ℎ(𝑟, 𝑘1)𝑗, we have 

𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑎𝑟) 

= 𝜇𝐴𝜉(𝑎𝑟(𝑖𝑣+𝑗𝑤)) for some 𝑣, 𝑤 ∈ ℤ since (𝑖, 𝑗) = 1 

= 𝜇𝐴𝜉(𝑎𝑟𝑖𝑣𝑎𝑟𝑗𝑤) ≥ min {𝜇𝐴𝜉(𝑎𝑟𝑖𝑣), 𝜇𝐴𝜉(𝑎𝑟𝑗𝑤) 

≥ min {𝜇𝐴𝜉(𝑎𝑠), 𝜇𝐴𝜉(𝑎𝑝)} = min{𝜇𝐴𝜉(𝑛), 𝜇𝐴𝜉(𝑒)}. 

Hence 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛) . 

2) Same as first 

In the following example, we show that if 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑚) ≥ 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑛) then 𝜇𝐴𝜉(𝑛) ≥ 𝜇𝐴𝜉(𝑚) 

is not true. 

Example 3.21. The CFSG 𝐴 of the group 𝐺 = {1, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5} is defined as: 

𝜇𝐴(𝑚) = {

1𝑒1.9𝑖           𝑖𝑓  𝑚 = 1

0.5𝑒𝑖     𝑖𝑓 𝑚 ∈ {𝑎2, 𝑎4}

0.3𝑒0.7𝑖     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

. 

The 𝜉 −CFSG 𝐴𝜉  of 𝐺 with respect to the value of the parameter 𝜉 = 0.7𝑒1.2𝑖 is obtained as: 

𝜇𝐴𝜉(𝑚) = {

0.7𝑒1.2𝑖           𝑖𝑓  𝑚 = 1

0.5𝑒𝑖        𝑖𝑓 𝑚 ∈ {𝑎2, 𝑎4}

0.3𝑒0.7𝑖     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

. 

Note that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎2) = 3  and  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎3) = 2 . However, 𝜇𝐴𝜉(𝑎2) = 0.5𝑒𝑖 

and 𝜇𝐴𝜉(𝑎3) = 0.3𝑒0.7𝑖. 

Theorem 3.22. Let 𝑎 be any generator of a finite cyclic subgroup H of unit group 𝐺. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺). 

If 𝑂(𝑚)|𝑂(𝑛) then 𝜇𝐴𝜉(𝑚) ≥ 𝜇𝐴𝜉(𝑛), for all 𝑚, 𝑛 ∈ 𝐻. 

Proof. Suppose 𝑂(𝑚) = 𝑝  and 𝑂(𝑛) = 𝑞   for some  𝑝, 𝑞 ∈ 𝑁 . Let 𝑚 = 𝑎𝑟  and 𝑛 = 𝑎𝑠  for 

any 𝑟, 𝑠 ∈ 𝑁. We have 𝑎𝑟𝑝 = 𝑒 = 𝑎𝑠𝑞𝑝. Thus, 𝑚 = 𝑛𝑞. So 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑛𝑞) ≥ 𝜇𝐴𝜉(𝑛). 
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The subsequent example illustrates that the above result is not true for any choice of elements of 𝐺. 

Example 3.23. The CFSG 𝐴 of 𝑈24 is defined as follows: 

𝜇𝐴(𝑚) = {

1𝑒1.9𝑖                            𝑖𝑓 𝑚 = 1

0.6𝑒1.1𝑖          𝑖𝑓 𝑚 ∈ {3,7,13,17}

0.3𝑒0.8𝑖           𝑖𝑓 𝑚 ∈ {9, 11,19}

. 

The 𝜉 −CFSG 𝐴𝜉  of 𝑈20 with respect to the value of the parameter 𝜉 = 0.8𝑒1.2𝑖 is obtained as: 

𝜇𝐴𝜉(𝑚) = {

0.8𝑒1.5𝑖                              𝑖𝑓 𝑚 = 1

0.6𝑒1.1𝑖            𝑖𝑓 𝑚 ∈ {3,7,13,17}

0.3𝑒0.8𝑖         𝑖𝑓 𝑚 ∈ {9,11,19}

. 

Note that 𝑂(11) = 2 and 𝑂(17) = 4 in 𝑈24.  

Clearly, 𝑂(11) divides 𝑂(17) but 𝜇𝐴𝜉(17) < 𝜇𝐴𝜉(11).  

4. 𝝃 −complex fuzzification of Lagrange’s theorem of 𝝃 −complex fuzzy subgroup  

The significance of fuzzy logic lies in its ability to handle uncertainty, imprecision and linguistic 

variables, which are inherent in many real-world problems. By providing a flexible and intuitive 

framework for modeling and reasoning, fuzzy logic enhances decision-making processes, improves 

control strategies and enables the development of intelligent systems across diverse fields, ultimately 

contributing to the advancement of science, technology and problem-solving capabilities. However, 

when the number of variables and fuzzy rules increase, the computational complexity of processing 

and analyzing fuzzy sets may become prohibitively high. To overcome the limitations of traditional 

fuzzy sets, complex fuzzy logic offers enhanced computational efficiency. By extending fuzzy sets to 

include complex-valued membership functions, complex fuzzy sets provide a more flexible and 

powerful framework for modeling and analyzing complex systems. One of the key advantages of 

complex fuzzy sets is their ability to handle situations that cannot be adequately addressed with one-

dimensional grades of membership. This logic allows the representation of intricate relationships, 

uncertainties and interdependencies among variables in a more nuanced manner. This capability is 

particularly beneficial in various fields such as image processing, signal processing and forecasting, 

where complex patterns and dynamic interactions are prevalent. However, the efficacy of complex 

fuzzy sets in tackling real-world problems that involve complex-valued membership functions is 

intrinsically constrained. These limitations arise from the inherent complexity and computational 

burden associated with managing and manipulating complex-valued membership functions. The 

intricate nature of such functions poses challenges in terms of their representations, interpretations and 

practical applicability. Moreover, Complex-valued membership functions require sophisticated 

mathematical techniques and algorithms for their definition and manipulation. To tackle the 

aforementioned constraint, we present a novel concept of complex fuzzy sets utilizing a linear 

conjunctive operator. This innovative approach provides enhanced flexibility and efficiency in the 

modeling of real-world problems within this domain. This advancement enables more accurate and 

effective modeling and analysis of real-world phenomenon. Additionally, our novel concept extends 

beyond complex fuzzy sets to include conjunctive complex fuzzy subgroups ( 𝜉 − CFSG). This 

extension leverages the power of complex fuzzy sets in resolving significant decision-making 

challenges in the diverse domain. By harnessing the flexibility and versatility afforded by complex-
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valued membership functions and the linear conjunctive operator, this approach offers a promising 

framework for tackling real-world challenges and driving advancements in multiple domains. The 

primary aim of this section is to present the concepts of index and order of a conjunctive complex 

fuzzy subgroup of a finite group G. Additionally, the conjunctive complex fuzzification of Lagrange's 

theorem of conjunctive complex fuzzy subgroup (𝜉 −CFSG) is presented in this study. 

Definition 4.1. Let  𝐴𝜉 ∈ 𝐹𝜉(𝐺) . The conjunctive complex fuzzy order of 𝐴𝜉   (denoted by 

𝜉 −CFO(𝐴𝜉)) is the least common multiple of conjunctive complex fuzzy order of all elements of 𝐺. 

Example 4.2. The CFSG 𝐴 of the group 𝐺 = {𝑒, 𝑎, 𝑏, 𝑎𝑏} is defined as: 

𝜇𝐴(𝑚) = {
0.9𝑒1.9𝑖        𝑖𝑓 𝑚 ∈ {𝑒, 𝑎𝑏}

0.6𝑒0.7𝑖      𝑖𝑓 𝑚 ∈ {𝑎, 𝑏}   
. 

The 𝜉-CFSG 𝐴𝜉  of 𝐺 with respect to the value of the parameter 𝜉 = 0.7𝑒1.1𝑖 is obtained as: 

𝜇𝐴𝜉(𝑚) = {
0.7𝑒1.1𝑖        𝑖𝑓 𝑚 ∈ {𝑒, 𝑎𝑏}

0.6𝑒0.7𝑖      𝑖𝑓 𝑚 ∈ {𝑎, 𝑏}   
. 

Note that 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑒) = 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎𝑏) = 1 and 𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑎) =  𝜉 − 𝐶𝐹𝑂𝐴𝜉(𝑏) = 2. In view 

of above definition, 𝜉 −CFO(𝐴𝜉) = 2. 

Theorem 4.3. For any 𝐴𝜉 ∈ 𝐹𝜉𝑁(𝐺), where 𝐺 is a finite group. Then a map 𝐴𝜉:̅̅ ̅̅ 𝐺 𝐴𝜉⁄ → [0,1] by 

𝜇
𝐴𝜉̅̅ ̅̅ (𝑚𝐴𝜉) = 𝜇𝐴𝜉(𝑚), ∀𝑚 ∈ 𝐺 is a 𝜉 −CFSG of 𝐺 𝐴𝜉⁄ . 

Proof. Let 𝜇
𝐴𝜉̅̅ ̅̅ (𝑚𝐴𝜉), 𝜇

𝐴𝜉̅̅ ̅̅ (𝑛𝐴𝜉) ∈ 𝐴𝜉̅̅̅̅  where 𝑚𝐴𝜉 , 𝑛𝐴𝜉 ∈ 𝐺 𝐴𝜉⁄ . Consider 

𝜇
𝐴𝜉̅̅ ̅̅ (𝑚𝐴𝜉 ∘ 𝑛𝐴𝜉) = 𝜇

𝐴𝜉̅̅ ̅̅ (𝑚𝑛𝐴𝜉) = 𝜇𝐴𝜉(𝑚𝑛) ≥ min{𝜇𝐴𝜉(𝑚), 𝜇𝐴𝜉(𝑛)}. 

It follows that  

𝜇
𝐴𝜉̅̅ ̅̅ (𝑚𝐴𝜉 ∘ 𝑛𝐴𝜉) ≥ min {𝜇

𝐴𝜉̅̅ ̅̅ (𝑚𝐴𝜉), 𝜇
𝐴𝜉̅̅ ̅̅ (𝑛𝐴𝜉)}. 

Moreover, 

𝜇
𝐴𝜉̅̅ ̅̅ (𝑚−1𝐴𝜉) = 𝜇𝐴𝜉(𝑚−1) = 𝜇𝐴𝜉(𝑚) = 𝜇

𝐴𝜉̅̅ ̅̅ (𝑚𝐴𝜉). 

This shows that 𝐴𝜉  is a 𝜉 −CFSG of 𝐺 𝐴𝜉⁄ . 

Definition 4.4. Let 𝐴𝜉 ∈ 𝐹𝜉𝑁(𝐺) and 𝐺 be a finite group 𝐺. Then 𝐴𝜉̅̅̅̅  defined in Theorem 4.3 is 

called the conjunctive complex fuzzy quotient group of 𝐺 determined by 𝐴𝜉 . 

Theorem 4.5. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺)  and  𝑚 ∈ 𝐺 . Then 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑛)  for all  𝑛 ∈ 𝐺 , if and only 

if 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒). 

Proof. Suppose that 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑛), ∀𝑛 ∈ 𝐺. We obtain the required result by taking 𝑛 = 𝑒 in 

the above relation. 

Conversely: Let 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒).  Since 𝐴𝜉   is 𝜉 − CFSG, therefore,  𝜇𝐴𝜉(𝑛) ≤ 𝜇𝐴𝜉(𝑒), ∀𝑛 ∈ 𝐺 . 

This means that 𝜇𝐴𝜉(𝑛) ≤ 𝜇𝐴𝜉(𝑚), ∀𝑛 ∈ 𝐺. 

Moreover, 𝜇𝐴𝜉(𝑚𝑛) ≥ min{𝜇𝐴𝜉(𝑚), 𝜇𝐴𝜉(𝑛)}. Therefore, we have  

𝜇𝐴𝜉(𝑚𝑛) ≥ 𝜇𝐴𝜉(𝑛), ∀𝑛 ∈ 𝐺.        (4.1) 

But 𝜇𝐴𝜉(𝑛) = 𝜇𝐴𝜉(𝑚−1𝑚𝑛) ≥ min {𝜇𝐴𝜉(𝑚), 𝜇𝐴𝜉(𝑚𝑛)}.  

This shows that 
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𝜇𝐴𝜉(𝑛) ≥ 𝜇𝐴𝜉(𝑚𝑛), ∀𝑛 ∈ 𝐺.      (4.2) 

By comparing (4.1) and (4.2), we get 

𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑛). 

Remark 4.6. It is important to note that if 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒) Then 𝜇𝐴𝜉(𝑚𝑛) = 𝜇𝐴𝜉(𝑛𝑚), ∀𝑛 ∈ 𝐺. 

Theorem 4.7. For any 𝐴𝜉 ∈ 𝐹𝜉𝑁(𝐺) and 𝐺 𝐴𝜉⁄  is a quotient group of G  by 𝐴𝜉 . Then there is a 

natural homomorphism f   between G   and 𝐺 𝐴𝜉⁄   as follows: 𝑓(𝑚) = 𝑚𝐴𝜉 , ∀𝑚 ∈ 𝐺  with 

Kernel𝑓 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒)}. 

Proof. Consider 𝑓(𝑚𝑛) = (𝑚𝑛)𝐴𝜉 = (𝑚𝐴𝜉) ∘ (𝑛𝐴𝜉) = 𝑓(𝑚)𝑓(𝑛), 𝑚, 𝑛 ∈ 𝐺. 

Therefore, we obtain 𝑓 as a homomorphism between the groups G  and 𝐺 𝐴𝜉⁄ .  

𝐾𝑒𝑟𝑓 = {𝑚 ∈ 𝐺: 𝑓(𝑚) = 𝐴𝜉} 

= {𝑚 ∈ 𝐺: 𝑚𝐴𝜉 = 𝐴𝜉} 

= {𝑚 ∈ 𝐺: (𝑚𝐴𝜉)𝑦 = (𝐴𝜉)𝑦, ∀𝑦 ∈ 𝐺}. 

In view of Definition 2.5, we have 𝐾𝑒𝑟𝑓 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑦𝑚−1) = 𝜇𝐴𝜉(𝑦)}. 

By using the Theorem 4.5 in the above equation, we have 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒). Consequently, 

𝐾𝑒𝑟𝑓 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒)}. 

Remark 4.8. Note that |𝐾𝑒𝑟𝑓| = 𝜉 − 𝐶𝐹𝑂(𝐴𝜉).  

Definition 4.9. The cardinality of the quotient group 𝑮 𝑨𝝃⁄  is called the index of 𝝃 −CFSG 𝑨𝝃 and 

is symbolized by [𝑮: 𝑨𝝃]. 

Example 4.10. The CFSG 𝐴  of a symmetric group 𝑆3 = {1, (12), (23), (13), (123), (132)}  is 

defined as: 

𝜇𝐴(𝑚) = {
0.92𝑒1.8𝑖     𝑖𝑓  𝑚 ∈ {1, (123), (132)}

0.6𝑒𝑖                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

The 𝜉 −CFSG 𝐴𝜉  of 𝐺 with respect to the value of the parameter 𝜉 = 0.7𝑒1.1𝑖 is obtained as: 

𝜇𝐴𝜉(𝑚) = {
0.7𝑒1.1𝑖       𝑖𝑓𝑚 ∈ {1, (123), (132)}

0.6𝑒𝑖                            otherwise
. 

The set of all 0.7𝑒1.1𝑖-complex fuzzy distinct left cosets of 𝑆3 by 𝐴0.7𝑒1.1𝑖
 is given by: 

𝐺 𝐴𝜉 = {𝐴0.7𝑒1.1𝑖
, 𝑚𝐴0.7𝑒1.1𝑖

}⁄ . 

This means that [𝐺: 𝐴.7𝑒1.1𝑖
] = 𝑐𝑎𝑟𝑑(𝐺 𝐴𝜉) = 2⁄ . 

Theorem 4.11. (Conjunctive Complex Fuzzy version of Lagrange’s Theorem of ξ −CFSG) Let 𝐴𝜉 ∈
𝐹𝜉(𝐺), where G is finite group. Then [𝐺: 𝐴𝜉] divides 𝑂(𝐺). 

Proof. In the frame work of Theorem 4.7, 𝑓  is a homomorphism between G   and  𝐺 𝐴𝜉⁄  , 

where 𝐺 𝐴𝜉⁄ = {𝑚𝐴𝜉: 𝑚 ∈ 𝐺}, where 𝑚𝐴𝜉 is described in Definition 2.7. One can easily observe that 

𝐺 𝐴𝜉⁄  is finite as 𝐺 is finite. 

Consider, the subgroup 𝐻 of 𝐺 as: 

𝐻 = {𝑚 ∈ 𝐺: 𝑚𝐴𝜉 = 𝑒𝐴𝜉}.        (4.3) 

By using Theorem 4.7 in the above relation, we get 𝐻 = {𝑚 ∈ 𝐺: 𝜇𝐴𝜉(𝑚) = 𝜇𝐴𝜉(𝑒)}. 
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The left decomposition of 𝐺 as a disjoint union of cosets of 𝐺 modulo 𝐻 is given by: 

𝐺 = 𝑥1𝐻 ∪ 𝑥2𝐻 ∪ … … ∪ 𝑥𝑘𝐻        (4.4) 

where 𝒙𝒊𝑯 = 𝑯. Now we illustrate that there is a conjunctive complex fuzzy left coset in 𝑮 𝑨𝝃⁄  

corresponding to each coset 𝒙𝒊𝑯 given in (4.4) and also establish the injectivity of this correspondence. 

Consider any coset 𝒙𝒊𝑯. Let 𝒉 ∈ 𝑯, then  

𝑓(𝑥𝑖ℎ) = 𝑥𝑖ℎ𝐴𝜉 = 𝑥𝑖𝐴𝜉ℎ𝐴𝜉 = 𝑥𝑖𝐴𝜉𝑒𝐴𝜉 = 𝑥𝑖𝐴
𝜉 . 

It shows that each element of 𝑥𝑖𝐴𝜉   is mapped to conjunctive complex fuzzy coset under the 

function 𝑓. 

Moreover, we formulate a natural correspondence 𝑓: {𝑥𝑖𝐻: 1 ≤ 𝑖 ≤ 𝑚} → 𝐺 𝐴𝜉⁄  defined as: 

𝑓(𝑥𝑖𝐻) = 𝑥𝑖𝐴
𝜉 ,   1 ≤ 𝑖 ≤ 𝑚 . The correspondence 𝑓  is injective as for if  𝑥𝑖𝐴𝜉 = 𝑥𝑗𝐴𝜉 , 

then 𝑥𝑖
−1𝑥𝑗𝐴𝜉 = 𝑒𝐴𝜉 . By using (4.3), we have 𝑥𝑖

−1𝑥𝑗 ∈ 𝐻. This means that 𝑥𝑖𝐻 = 𝑥𝑗𝐻 and hence 𝑓 

is one-to-one. 

The above discussion clearly indicates that [𝐺: 𝐻]  and [𝐺: 𝐴𝜉]  are equal. As  [𝐺: 𝐻]|𝑂(𝐺) , so 

[𝐺: 𝐴𝜉] also divides 𝑂(𝐺). 

Corollary 4.12. Let 𝐴𝜉 ∈ 𝐹𝜉(𝐺) and G be a finite group then 𝜉 − 𝐶𝐹𝑂(𝐴𝜉) divides ( ).O G  

Example 4.13. In view of example 4.10, we have, [𝐺: 𝐴𝜉] = 2  and  𝑂(𝐺) = 6 . This means that 

[𝐺: 𝐴𝜉] divides 𝑂(𝐺). 

5. Conclusions 

The notions of conjunctive complex fuzzy order of an element and conjunctive complex fuzzy 

order of 𝜉 −CFSG have been innovated in this work. Many key algebraic postulates of these concepts 

have been established. A useful mechanism has been designed to calculate the conjunctive complex 

fuzzy order of an element for any of its power and a correlation between the membership values of 

any two elements and the membership value of identity element of 𝜉 −CFSG have been determined 

in this article. In addition, the notions of conjunctive complex fuzzy order and index of a 𝜉 −CFSG 

have been proposed and various elementary structural properties of these concepts have been proved 

to highlight the significance of these newly defined ideologies. Furthermore, the conjunctive complex 

fuzzification of Lagrange’s theorem for conjunctive complex fuzzy subgroups of a group has been 

presented in this article. The main limitation of this study is its computational complexity. Modeling 

complex systems using complex fuzzy sets can require a significant amount of computation and 

memory resources. Additionally, designing the membership functions for complex fuzzy sets can be 

challenging, and the results may be highly sensitive to the choice of parameters. Another limitation is 

the difficulty in interpreting the results obtained from complex fuzzy logic models, which may require 

expert knowledge and can be less intuitive compared to traditional mathematical models. Finally, the 

lack of standardized methods for designing and evaluating complex fuzzy logic models can make it 

difficult to compare and reproduce results across different applications and domains. The main 

emphasis of future endeavors will be directed towards the development of a comprehensive decision 

analysis tool that incorporates the linear conjunctive operator. The ultimate objective will be enhancing 

the practicality and applicability of this tool in real-world contexts. In addition, the approach presented 

in this article can be intend to address multi-attribute decision-making problems in medicine, image 

processing and cyber security. 
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