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1. Introduction and objectives

Fractional calculus expands upon traditional calculus by extending the concept of integer order to
any real order. This leads to a variety of definitions for integrals and derivatives within the field of
fractional calculus. The Caputo and Riemann-Liouville (R-L) [1] are considered the most popular
among of the fractional operators. Lately, Hilfer [2] has linked the Caputo and R-L derivatives by
so-call Hilfer or generalized R-L derivatives, which has attracted the attention of many authors in
the literature, such as an equivalent form of the Hilfer derivative derived by Kamocki [3]. Authors
in [4], conducted research on the Ulam stability and existence results for Hadamard-Hilfer differential
equations. Bulavatsky [5] proved the closed solutions for the anomalous diffusion equation in the
sense of Hilfer fractional derivative. Thabet et al. [6] established existence, uniqueness and continuous
dependence of e-approximate solutions for an abstract Hilfer fractional integrodifferential equation via
technique of measure of noncompactness and generalized Gronwall’s inequality. More recently, [7]
presented the Hilfer fractional derivatives of a function relative to another function o, which is called
o-Hilfer fractional derivatives. In 2020, by utilizing Schaefer, Banach and Schauder theorems helped
generalize Gronwall’s inequality and the sufficient conditions of T/H stability and the existence and
uniqueness of solutions for -Hilfer fractional integrodifferential equations investigated by Abdo et
al, [8]. Furthermore, the fixed point topic has a large popularity in mathematics areas and may be
considered a kernel of nonlinear analysis. It is used to study many mathematical, physical and real
phenomena problems, we refer the readers to these references [9—-17]. In fact, the existence, uniqueness
and UH stability is an ideal approaches to deal with nonlinear fractional differential equations, for
example see [18-32].

The pantograph is a tool utilized in trains of electricity in order to congregates electric current from
the overload lines. Indeed, pantograph equation has an essential part in physics, applied and pure
mathematics, such as electrodynamics, control systems, quantum mechanics, probability and number
theory. Ockendon and Tayler [33], modeled the pantograph differential equations which is a particular
type of delay differential equation and is defined by the form:

O'(u) = nh(u) + mh(Au),u € [0,T],T >0,0< A< 1,
Q(0) = Q.

Recently, the pantograph and implicit equations have attracted increasing interesting, for example see
the papers [34-46] and the references cited within them. In particular, the authors [11], studied the
existence, uniqueness and stability of the solution for the following o-Hilfer implicit differential
equation via a bounded interval [a, T]:

D0 () = g(u, Q ), "D Q (W), u € J = [a, T,

3,.7700) = Q, @€ (0,1),8€[0,11,y = a+B - ap.

Thabet et al. [47], investigated the existence criteria of solutions for three-point Caputo conformable
fractional pantograph differential inclusion, given by

CCDg(s) € 6(s, g(s),g(As)), se€la,T], a=0,1¢€(0,1),

ga)=0, g +w™r’s(o)=¢,
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where €€ is Caputo conformable fractional derivative and ® : [a, T]xRxR — P(R) is a set-valued
map. They studied also the Snap system [48].

In 2021, the existence and uniqueness results for the following Hilfer-Katugampola fractional
pantograph implicit differential equation studied by Almalahi et al. [49]:

P20 (u) = g(u, Q (), Q (6u),* DI Q (). 6 € (0, 1),u € J = [a,b],

> 0,37.0(1) = B- 3 9,070 (s) e R, € (0,1),8€ [0, 1].
i=1 j=1

Furthermore, in 2021, the authors of these works [50, 51] established sufficient conditions of the
existence and uniqueness solution and discussed various types of U H stability for initial o— Hilfer
fractional integro-differential equations. Very recently, Xie et al. [52], investigated some qualitative
properties of multi-order differential equations with initial condition involving R-L fractional
derivatives of the form:

n—1
kD Q (u) - Zl ¢ DPIQ (u) = g(u, Q (), "D*Q (), u € J = [0, ),
J:

u' " Q (W)ly=o = 0.

Motivated by the above mentioned research papers, this paper aims to study the existence and
uniqueness solution as well as UH, UHR and s-UHR stability for the following multi-order o-Hilfer
fractional pantograph implicit differential equation on unbounded domains:

HRm2 ) (1)~ 'S ¢ 1D (u) = glus O (), Q (6u), FDQ (),
= (1.1)

3P0 (@) = ap, SEPPQ(@) = an, uel=(a,0),a>0,6€ (1)

where p; < p, < -+ < puq1 < 2 < -+ < @, Cirap,a; € R,(i = 1,2,...,n—1),n € N,
Hrpprire HpPare Hpit"e are the o-Hilfer fractional derivatives of order p,, p; € (1,2],u € (0,1] and
types g, qi, v € [0, 1], respectively, such that u < p;, p; + 4 < pn, i”sff is o—R-L fractional integrals of
order x = {1 — p,,2 — p,.}, where p, < p, = pu + 2¢, — pnqn, and a function g : I X T XY XY — T is
continuous in the real Banach space Y.

Throughout this paper, C(I, T) denotes to the Banach space of all continuous functions from / to Y,

which is gifted by the norm ||Q ||+ = sup||Q (u)||. For an appropriate analysis, we define the following
uel
an applicable basic Banach space:

H\HV0
1= {Q'Q(u) € Cd, T),HDZ;V;QQ(M) eC'(1,7), sup”Q(l)|| < oo, sup M < oo},

wel O () uel o(u)

equipped with the following norm:

{ 10 W IIHDZ;V;QQ(M)II}
1Q |ln = max { sup su ,

el O(W) el o (u)

where o : I — (0, o) is an increasing, non-negative and continuous function. Similar to the procedures
in these works [53—55], it can easily be proven that (I1, || - ||;;) is Banach space.
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The contributions and novelty of this paper are to study, for the first time, the existence, uniqueness
solution as well as UH, UHR and s-UHR stability for the problem described in equation (1.1) on
unbounded domains (a,00),a > 0 in a special applicable Banach space II. Additionally, the
multi-order fractional problem (1.1) is considering a more general problem and includes many of
cases. In particular, it reduces to the sense of Hilfer derivatives [2] for o(u) = u; Hilfer-Katugampola
derivatives [56] for o(u) = u’,r > 0; Hilfer-Hadamard derivatives [57] for o(u) = logu; o—R-L
derivatives [1] for ¢,,q;,v — 0; o—Caputo derivatives [58] for ¢,,q;,v — 1; R-L derivatives [1]
for o(u) = u, q,,q;,v — 0; Caputo derivatives [1] for o(u) = u, g,,q;,v — 1; and integer order
derivatives for o(u) = u, p,, pi,u — n € N,q,,q;,v — 1. Furthermore, worth mentioning that our
approach in this paper is different about used in the work [49]. Also, those works [50,51] considered
integro-differential problems at one initial boundary conditions and fractional order belongs to (0, 1],
and the work [52] studied implicit problem in the sense of R-L fractional derivatives of order
Pn € (0, 1], while this work consider the delay and implicit problem (1.1) in the framework of more
general o-Hilfer fractional derivatives of order p,, p; € (1,2] with two boundary conditions.

The rest of this paper is arranged as follows: In Section 2, we will review some definitions and basic
concepts. In Section 3, we prove the existence and uniqueness solution of the multi-order fractional
problem (1.1), by utilizing Banach fixed point theorem in an applicable Banach space. In Section 4, we
introduce various types of U H stability by using the nonlinear analysis topics. At the last, an example
is given to showcase our main outcomes.

2. Preliminaries

Throughout this section, we present some interesting preliminaries, in order to use them in achieving
the desired results.

Definition 2.1. (see [1]) Let g be an integrable function on J = [a,b), and 0 € C'(J) be a non-
decreasing function with o' (u) # 0 for all u € J. Then, the R-L fractional integral of g of order 1, > 0,
with respect to another function o is given by

. 1 u
C*e = r(9)) f o' (o) — o) g(dv, u > a,

where I'(+) is the Euler Gamma function and a € R.

Definition 2.2. (see [1]) The R-L fractional derivative of a function g of order ¥, € (n — 1,n] with
respect to another increasing and integrable function o € C"(J) with o'(u) # 0,Yu € J, is defined by

1 i " ~h=191;0
(Q,(u) du) S 78)w)

1 1 d\ ™
( ) f Q' (o) — o))" g()dv, u > a,

FD" ) (u)

T(n - 9) \o'(w) du
such that n = [91] + 1 and [9,] is the integer part of .
Lemma 2.1. ( [1]) Let { > 0. Then
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. r
|30 ~ ota) ™! = éf_f ) (00~ o@) 9> 0,
and
r
Do) - o@)*" |(u) = F({(f)ﬂ) (0w) —o(@)" 1, 0<¥<1,927-1.

Definition 2.3. ( [7]) The o-Hilfer fractional derivative of a function g of order ¢, € (n — 1,n] and
type ¥, € [0, 1], with respect to another function o € C"(J) with o' (u) # 0 for all u € J, is given by

. 1 d\" (La-ommn
(HDZ}_”&Z Qg)(u) — (C\/ﬂz( ﬂl)g(m%) (\SE;. F2)( 191)7Qg))(u).

, can be written as

9,10
Moreover, the operator D’ ""**

Hphihse o gRe=e Ry yhere § = 9 + ity — 91, (2.1)

Lemma 2.1. ( [1,7])If % € (n—1,n], ¥, € [0,1],0 < I < 1,9 =% + nd, — hi and g" € C(J),
3" € C'(J), then

o(u) — o(@))"™*

~U1:0 HU1.92:0 mﬂg R0 (
JICND, D
e NI g(u) = 8(0) = g - § T

g o), Yuel

Theorem 2.1. ( [59]) Assume that the generalized complete metric space denoted by (E,d), and let the
operator I : E — E is contractive with the Lipschitz constant € < 1. If there is a positive integer r,
where dI"'u, T"u) < oo, for some u € Z. Then the following hold:

(i) The sequence {I""} converges to a fixed point uy of E;
(ii) ug is the unique fixed point of I' in 2" = {v € E[d(I"u, v) < oo},

1
(iii) if v e E*, then d(v, up) < l—b(rv V).
3. Existence and uniqueness results

At the beginning of this section, we derive the factional integral equation which is equivalent to the
multi-order fractional problem specified in (1.1) as follows:

Lemma 3.1. Let a function Q be continuously differentiable. Then, the solution of the multi-order
fractional problem speciﬁed in (1.1) is equivalent to the Volterra factional integral equation:

=1 ai _ =2
QW = F(pn S0 = e@y™! + Fm s (el — o@)
* Z e0PEQ () + I g(u, Q (), Q (6u), "DTEQ (). 3.1)
i=1

Proof. By applying 3" on both sides of (1.1), then by using Lemma 2.1 with boundary conditions,
we get

30770 (a) o, 3@ »
0 u) = W(Q(u) — o(a)) m(@(u) - o(a)y
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n—

1
+ ) SRR () + S g(u, O (w), Q (Gw), "0 ()
i:1

. a1 _ =2
r(p,,)(g(”) o(ayy™! F(pn_l)(g(u) o(@))’

+ Zciﬁff_p O (u) + 30 7g(u, Q (), Q (1), "D 0 ().
i=1

Hence, the proof is completed.

In the following, using Banach fixed point theorems, we establish the existence and uniqueness of
a solution for the multi-order fractional problem defined in Eq (1.1).

Theorem 3.1. Let the following assumptions are fulfilled:

(A1) Suppose that x;(-) > 0,(j = 1,2) are continuous functions and the continuously differentiable
function g : [ X II X I1 X I1 — II such that

Hg(u Ql’ QZ’ 3)_g(u Ql’ QZ’ Q3)”
Pwmm— mM||mxm—meH |0 3) - Q5
< x1(u + + x,(u)
o(u) o(u)
faralle,Qj ell,(j=1,2,3)andu € l.

(Ay) There exist the constants Q,L > 0, such that Q < 1, which are verifying the following
requirements.

b

o(u)

n—1
I{()§]|W“%n+ “anwwwmm}sg

(1)
laol(o() — (@)™ lailo(w) — (@)™ I;¥Ilg(u, 0,0, 0)]
Sulil { o(wI'(i7) * ocw)(@{ - 1) + o) } <L < oo,

where n = p, or p, — u, and 7 = p, or p, — U.

Then, the multi-order fractional problem specified in (1.1) has one and only one solution on unbounded
interval I.

Proof. Due to Lemma 3.1, we consider the map = : I1 — II given by:

(EQ)(u) = ————(o(u) — o(@)"~* (3.2)

ap
(,0 ) F(pn -1
-1
Z TP () + 3g(u, Q (u), Q (u), HDZ;V;QQ (w)).
=1

By using (A;) and (A;), we have
IEQ )W)l

o(u)

AIMS Mathematics Volume 8, Issue 8, 18455—-18473.
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|aol |

1 _ n—2
< a(u)r(p,,>(@(”) @y e )F(,Dn (0w - o)y
n—1
+$;|c R @+ o ;{;ng(u 0 (), Q (6w, "D 0 )|
|aol 1 |ai| _ 2
= ey @ T4 o o Dy e —e@r
n—1
I Pn=Pis@ CVP 0
* o 2SI W+ ( 30N, 0,0, 0}
i S Nl © 1), @ (G, "R Q ) = (a0, 0,0)
ol I jai] I
< ol —e@r !+~ )F(pn (0w - o)y
1 S c~[7 —Pi:@ ~Pn@
+ s Z| cil3PEQ ()l + ﬁow lg(,0,0,0)]
LI IQ wll . 11Q (dw)ll "0
W [ 1 )[ cw o | T ow
ol o, al -
< Gy (Q(u) o@)” o =1 1)(Q(M) o(@))’
”Q”H JPipiie chpn;p
o Z| I + Sy, 0,0, 0)
”Q(”;] 3 [20, (1) + 22(1)]

< OlQlln + L <o0,Q € (0, 1).
Also, by helping of Eq (2.1), we obtain
17D EQ ()

o(u)

laol _ k=l | la 1|
S F@on W ~ 0@ GOl (on —

1 n—1 e
= D 1ed3EHYQ )l +
i=1

(Q(u) o)y =2

30 Ng(u, Q (), Q (Su0), "D Q (W)l

laol _ =1 la; |
: S = e T,

()“+

(Q(u) o)y

— )Z I Q@ + S0 g(w.0,0,0)
1 .
(. Q1. Q5. ) - ¢(u.0.0.0)]
|atol 3 - |a1| ,
S @lp, —p @ T G, - ) e

AIMS Mathematics Volume 8, Issue 8, 18455-18473.
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1
||Q||H Z| |<~Pn —Pi #Q(l) +— ( R ﬂé’”g(u 0,0, O)”

O'(Lt) ) N
H%%h?w@DMW)+MWH

<QOlQln+L <e0,Qe(0,D).

Next, we investigate that Z is contractive operator on I1. By using (A;) and (A,), for any Q,Q € II,
we get

IEQ)w) - EQ)W)|

o(u)

1 n—1 - i
SEEZQ%%”%QM—QWN

1
+ —) 30 Ng(u, Q (), @ (6u), "D O () — g(u, O (w), Q (6u), "D Q (W)

-1

Z ISP Q () — Q)@

=1

P 10 () — O (w)l N 10 (6u) — Q(éu)ll]
o(u) o(u) o(u)
17287 Q (u) = "D O (|
+x2(u)
o(u)

= n—1
< ”Q - Q”H Zl 1|3pn p,g(l) + ”Q Q”H@an [le(u) + x(u)]
i=1

o (u) — o(u)
<0IQ - Olin.
Similarly,
17D 2Q (u) - "D EQ (u)
o(u)
1 S ~Pn—Di—HQ A
—HE;““ 10 () = Q)W
1 _ : - ~ o
+(f?”MummQ@U%W@WWﬂMQ@Q@&%w@WW
N =0l 5 ppme gy 4 1Q = Ol
e Z| IR+ T S 2 w) + 220
<0lQ - Oln.

Hence, we deduce that |[EQ — Z0 |z < OllQ — O |ln, which implies that Z is a contractive mapping,
since Q € (0, 1). In the light of Banach fixed point theorem, = has an one and only one fixed point Q
in E, which is verifying 2Q o = Q ¢. Therefore, the problem specified in (1.1) has an one and only one

solution on unbounded interval (a, o).
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4. Stability results

In this section,we discuss U/ HR Stability, T/ H Stability and s-U HR Stability. Regarding this, we
need to present the applicable metrics dy(-) and d,(-) on Banach space II. Regarding this, for non-
negative increasing continuous function ¢(uz) on unbounded interval /, the metric d;(-) is given by

~ Hn V3o HanVio
bl(Q,Q):inﬁ{MeI”Q(u)_Q(”)” < Mo(w), 724720 () = D20 (u)| M(p(u)}.
ue o(u) o(u)

Also, for non-negative decreasing continuous function ¢(«) on unbounded interval I, the metric d,(+) is
given by

bZ(Q’ Q) = sup

uel

2 H \HYV50 H\HYV50
{Me[ 19 @) = QG _ M. 1770 ) = "0 )l SM}.
pu)or(u) @u)o(u)

We can guarantee that d,(-) and d,(-) are metrics on Banach space II, as given in the work [60] and
references therein.

In the following, we present the definitions of U HR, U H and s-U HR stability, then state and prove
their theorems.

Definition 4.1. ( [61]) The solution of the multi-order fractional problem specified in (1.1) is UHR
stable, if for every continuously differentiable function Q : I = (a, o) — Il verifying

o - Fo5 et - ety - s o) — ety
—Zcisg’z P00 () - Frg(u, Q (), Q (6w, "DIQ W) < i), u e,
i=1
[0 () - ——=—(0w) - pt@y" ! - = (o) - o(@)y"

(p ) F(pn —H— 1)
- Z e () = g, @ (), Q (Bu), "D Q (w)

<3 p(u),u e 1,

where ¢(u) is a non-negative non-decreasing continuous function on unbounded interval I, there is
a unique solution Q ( of the multi-order fractional problem specified in (1.1), and a constant M > 0
independent of Q, Q ¢, where

10 (1) — Q ow)l|
o(u)

20 () - "0 o(w)|

o(u)

< Mop(u),Yu € 1,

< Mo(u),Yu € 1.

Moreover, if we replace ¢(u) by w > 0, then the solution of the multi-order fractional problem specified
in (1.1) is UH stable.

AIMS Mathematics Volume 8, Issue 8, 18455—-18473.
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Definition 4.2. ( [61]) The solution of the multi-order fractional problem specified in (1.1) is s-UHR
stable, if for every continuously differentiable function Q : I = (a, o) — Il verifying

i (o) ~ oty —ﬁ(g(u)—g(a»ﬂ*ﬂ-z

—ZCiSSZ PO () — 30 g (u, O (u), Q (6u), "D Q (w)
i=1

low- ==

<3"w,uel,

Hivio __ _ =1 _ a _ =2
[0 - £ o) - etay ! = ot - oy
n—1

Zc OFPnPITH () (y) — ”P"_”Qg(u 0 (u), O (6u), HDMVQQ(M))

i=1

<3 wuel,

where w > 0, there is a unique solution Q of the multi-order fractional problem specified in (1.1),
and a constant M > 0 independent of Q, Q ¢ for some positive decreasing continuous function o(u) on
unbounded interval I, where

1Q () = Qo(l|

o(u)
[ D720 () — D2 Q o(u)

o(u)

< Mop(u),Yu € 1,

< Me(u),Vu € 1.

Theorem 4.1. Suppose that (A,) and (A,) are fulfilled, ¢(u) be a non-negative continuous increasing
function on unbounded interval I, and Q : I = (a,o0) — Il is continuously differentiable function

verifying

0w - 575 - o@y " - o) - ety (4.1)
- Z e30TPEQ () — Il Q (), Q (6u), "RETEQ )| < i), u e 1,
i=1
[0 () - ———(ow) - pt@y" ! - = (o) - o(@)y" (42)
‘ Ton — ) o= 1)
n—1

< 3P(u),u e I

Z ci Q<~Pn —Di #Q (u) — mPn—# K_’g(u 0 (), O (6u), HD/;:/;QQ (Lt))

i=1

Then, there is one and only one solution Q ( € I, such that

IIQ(u)—Qo(u)II< K

em),Vuel,0 < Q< 1,

o(u) S 1-0
Hpyfvie — Hppre
[reow 2 0ol K snmero<ozt

where sup 200 = 2@ _

wer T'( + 1)(0'(u))
specified in (1.1) is UHR stable and consequently is UH stable.

< oo, formn = (p,or p, — ), which yields that the solution of problem
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Proof. Consider = : IT — II be the contractive operator as given in (3.2).
Now, for 0, Q € II, it follows from metric d,(-) and the assumptions (A;)—(A,) that

”(EQ)(M)_(EQ)(M)” M‘P(u) (\p,, —pis0 SO( )(wp,l 0
(W) ) Z' R 050

< OMou),Yuel,0< Q< 1,

(21 () + x2 ()]

and

17D EQ (u) - D EQ (wl

o(u)

_M - M :
O_S?lil;) Z | I|S[JJnr Di .119(1) + "z())@pn He [2X1(Ll) + Xz(l/l)]

< OMo(u),Yuel,0< Q< 1.
Then, we obtain
0 (EQ,EQ)<OM = 00(Q0,0),0<Q0< L
In the light of inequalities (4.1) and (4.2), we have

I(Q)w) - EQ)wIl _ sup (o(u) — o(a))™
o (u) et T(pa + Dor(u)

ou) = Ko(u),u €1, 4.3)

17270 (w) - "D 20 | < (o(u) — o(a))™*
o(u) wet T(pp — p+ Dor(u)

o(u) = Kp(u),u € 1. 4.4)

Due to inequalities (4.3) and (4.4), we get

2(Q,E0) < K < oo.

Based on (i) and (ii) of Theorem 2.1, there is an one and only one fixed point Q( such that EQ o = Q.
As consequence of (iif) of Theorem 2.1, we can conclude that

K
N EC. Q) <5 0<0 <L

According to the above conclusions, the solution of problem specified in (1.1) is ¢/ HR stable. Along
with this, if ¢(u) = 1, then the solution of problem specified in (1.1) is ¢ H stable.

01(Q,Q0) <

Theorem 4.2. Suppose that (A}) and (A,) are fulfilled, (1) be a non-negative decreasing continuous
function on unbounded interval I, and Q : I = (a,00) — Il is continuously differentiable function

verifying

low-

1"(,0,1 (Q(u) o@)y" - F(pn — 1)(Q(M) ola)y (4.5)

—Zcisg’z P20 (u) - 30 g(u, Q (), Q (8w), "DLTQ (u)
i=1

<3"w,uel,
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H gy ___ % _ =1 _ a1 _ =2
|20 - s o — ey - ot — oty (4.6)
n—1

—Z LI () = I (u, Q (), Q (6u), TDLTEQ ()

<3 Hwuel,

where w > 0. Then, there is one and only one solution Q o € I, and a constant ¥ > 0 such that

19 ) — Qo _ wK

Y
em),Vuel,0< Q< 1,

o(u) T 1-0
72470 () - "D 0 o(w)| Wy
u 4 < Nuel,L0<Q<1,
= T g 0
_ 1
where sup M < K < oo, forn = p, or p, — u, which yields that the solution of problem

wet L7+ Dor(u) —
specified in (1.1) is s-UHR stable.

Proof. Similar to Theorem 4.1, take the contractive operator £ : I — II as given in (3.2). From
metric d,(-) and assumptions (A;)—(A,), we present that

IEQ)w) - (EQ)w)|

<OMMuel,0<Q<1,

p(u)o(u)
and
Havio = Helvie =
"D EQ (u) — "D, Q(u)”_QM,VueI,0<Q<1.
o(u)o(u)
Then, we get

2(EQ,EQ) < OM = 0%,(0,0),0< Q0 < 1.

Due to non-negativeness, continuity of a decreasing function ¢(u), Vu € I, we find

1
— <W¥Y.Vuel0<V.
o(u)

Based on inequalities (4.5) and (4.6), we obtain
Q)W) - ED) @Il _ u w(o(u) — o(a))™

= KYw, 1, 4.7

o) o e(p + Doy S @7
D420 (u) - D 20 () (o) — o)

= K¥w,u € l. 4.8

oo (u) = S T —pit Do) S 5

From inequalities (4.7) and (4.8), we have
%(0,20) < KYw < .

From (i) and (ii) of Theorem 2.1, there is an unique fixed point Q( such that EQ, = Q. As
consequence from (iii) of Theorem 2.1, we can deduce that

KY
22(0.00) < 2,(20. Q) < £,0< 0<l.

1-0
According to the above conclusions, the solution of the multi-order fractional problem specified in (1.1)
is s-U HR stable, and the proof is completed.
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5. Example

Herein, we present an example to illustrate validity of main results.
Now, consider the following multi-order o-Hilfer fractional pantograph implicit differential
equation:

&\Lﬂ

Q(@+—Q(@)+ Vi D50 (u)
2()0 (20 + u®) 100 (20 + u®)

9
5
a

20 () - 24270 () - 3HDIFQ () = 1 +
0@ =1 3@ = Luel = (a,0).

1 1 _ _ 1 _ 1 — —
7q2 - g,QI - Z7C2 - 27C1 - 3?# - g,v— aaal - §7a2 -

BN (O8]

Here, n = 3, p3 = 5,p2 4,p1 = % qs =
%,pg fé,é =z andO'(u) =20+ u®
The applicable Banach space is given as follows:

@wn<wmlﬁvﬁwmn<m
MEI 20 ’ ue[p 20 + I/l6

I, ={0|0) € C(I,R),@th Q(u) e C'(I,R),s

Clearly, the assumption (A,) is satisfied for x;(u) = 55 and x(u) = ‘f In the following, we will
introduce some particular cases:

(i) Hilfer-Katugampola Case: Let o(u) = u? for u € (0, o), by using Mathematica software, we have

1 9. u? Vu
su lc |<”5 PR + 35¢ [2—+
P{ Z %

}<Q 0.28894 < 1.

+ub" " [7200 100
Simultaneously,
1 2 9_1_,. 1 9 1. U2 N
A3 7P + ——3%, 72— + — [} < 0 ~ 0.264307 < 1.
Su?{zomﬁgld AT YT [ 200 100]} e

Figure 1, shows the graphical representation of Q which is less than 1 in the Hilfer-Katugampola
sense, namely o(u) = u? for n = ps in Figure la, or p3 — u in Figure 1b.

o(u)= v? and n=ps.

@ o(u)=u’ and n=p;-p.
Q
1.x107 |
-12 [
9.x10° | 5.x10
8.x107 | 4.x1012[
7.x10° |
3_,(10—12,
6.x108 |
5.x1078 2.x107"2}
4.x108 |
. 1.x107"2
0 2x10" 4x10" 6x10" 8x10" 1x102 2x10"  4x10"  6x10"  8x10" 1x10*5j
(a) (b)

Figure 1. Shows the graphs of Q < 1, for o(u) = u* and n = p3 or p3 — u of problem 5.1.
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(i1) Hilfer-Hadamard Case: Let o(u#) = logu for u € (1, c0), then we obtain
0 €{0.126507,0.159715}, hence, Q < 1.

Figure 2, shows the graphical representation of Q which is less than 1 in the Hilfer-Hadamard
sense, namely o(u) = log(u) for n = p; in Figure 2a, or p; — u in Figure 2b.

o(u)=log(v) and n=p;. o(u)=log(v) and n=p;-p.
Q Q
5.x1078 |
4.x107*8 |
4.x1078 |
3.)(10748,
3.x1078 |
2.)(10748,
2.x1078 |
1.x1078 1 1.x10™8 |
. L Loy L L — u
2x10"  4x10"  6x10"  8x10"  1x10%™ 2x10"™  4x10"  6x10"  8x10"  1x10™
(a) (b)

Figure 2. Shows the graphs of Q < 1, for o(u) = log(u) and = p3 or p3 — u of problem 5.1.

(ii1) Hilfer Case: Let o(u) = u for u € (0, o0), by the same process in (i), we get
0 €{0.269014,0.260751}, hence, Q < 1.

Figure 3, shows the graphical representation of Q which is less than 1 in the Hilfer sense, namely
o(u) = u for n = p3 in Figure 3a, or p; — u in Figure 3b.

o(u)y=vand n=p;. o(w)y=uand n=p3-p.
Q Q
25x107%0 L
3.x107%8 |-
2.x107%0 F
2.x1078 1 1.5%1070 |
1.x107%0 b
1.x1078 1
5.x10731 L
s s ‘ u s s ‘ u
2x10"  4x10"  6x10"  8x10"  1x10" 2x10"  4x10"  6x10"  8x10"  1x10"
(a) (b)

Figure 3. Shows the graphs of Q < 1, for o(u) = u and n = p3 or p3 — u of problem 5.1.
Therefore, we observe in all cases that the assumption (A,) is satisfied. Thus by Theorem 3.1,
we deduce that the multi-order fractional problem (5.1) possesses a unique solution in all cases on
corresponding unbounded domains in applicable Banach space II;.

6. Conclusions

This paper announced that, by utilizing the Banach fixed point theorem and nonlinear analysis
topics in an applicable Banach space on unbounded domains (a, ), for a > 0, the multi-order o-Hilfer
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fractional pantograph implicit differential equation provides existence and uniqueness results as well
as UH, UHR and s-UHR stability. Also, an example includes some particular cases is provided to
illustrate the validity of our results.

There are two important notes which young researchers can focus on those for their future works.
First, can proportional delays bring out some difficulties when you deal with the existence and stability
of a multi-order Hilfer fractional pantograph implicit differential equation on unbounded domains?
Second, it is good idea that young researchers try to find new sufficient conditions by changing the
Banach fixed point theorem with another contraction fixed point results.
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