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Abstract: In this paper, we aim to investigate the equiform differential geometric properties of the
evolute and involute frontal curves in the hyperbolic and de Sitter planes. We inspect the relevance
between evolute and involute frontal curves that relate to symmetry properties. Also, under the
viewpoint of symmetry, we expand these notions to the frontal curves. Moreover, we look at the
classification of these curves and introduce the notion of frontalisation for its singularities. Finally, we
provide two numerical examples with drawing as an application, through which we authenticate our
theoretical results.
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1. Introduction

Many important results in the theory of the curves in R3 were initiated by G. Monge and G.
Darboux pioneered the moving frame idea. Thereafter, Frenet defined his moving frame and his special
equations which play important role in mechanics and kinematics as well as in differential geometry. At
the beginning of the twentieth century, A. Einstein’s theory opened a door to the use of new geometries.
One of them, Minkowski space-time, which is simultaneously the geometry of special relativity and
the geometry induced on each fixed tangent space of an arbitrary Lorentzian manifold, was introduced
and some of classical differential geometry topics have been treated by the researchers. In recent years,
the theory of degenerate submanifolds has been treated by researchers and some classical differential
geometry topics have been extended to Lorentz manifolds. For instance, in [1–4], the authors extended
and studied involute-evolute curves in Minkowski, hyperbolic, and de Sitter spaces.
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The involute of a given curve is a well-known concept in Euclidean 3-space R3. It is well-known
that, if a curve is differentiable at each point of an open interval, a set of mutually orthogonal unit
vectors can be constructed and called Frenet frame or moving frame vectors. The rates of these frame
vectors along the curve define the curvatures of the curves. The set, whose elements are frame vectors
and curvatures of a curve, is called the Frenet apparatus of the curve. An evolute and its involute, are
defined in mutual pairs. The evolute and involute of the curve pair are well known by mathematicians,
especially differential geometry scientists (see for example [5–7]). We can find more motivations for
our work from several papers (see [8–19]).

The geometry of space is associated with the mathematical groups. The idea of invariance of
geometry under transformation group may imply that on some spacetimes of maximum symmetry,
there should be a principle of relativity, which requires the invariance of physical laws without gravity
under the transformations among inertial systems.

The equiform geometry of Cayley-Klein space is defined by requesting that the similarity group
of the space preserves angles between planes and lines, respectively. Cayley-Klein geometries are
studied for many years. However, they recently have become interesting again since their importance
for other fields, like soliton theory, have been rediscovered. Although the equiform geometry has
minor importance related to the usual one, the curves that appear here in the equiform geometry can
be seen as generalizations of well-known curves from the above-mentioned geometries and therefore
could have been of research interest. Besides, the theory of curves and the curves of constant curvature
in the equiform differential geometry of the isotropic spaces I23 and I13 and the Galilean space G3 are
described in [20, 21], respectively.

In this work, we introduce a visualization for the equiform geometry of frontal curves in the
hyperbolic and de Sitter planes. Also, we define the equiform geometry of the involute-evolute curve
couple in H2

0 and S2
1.

2. Basis concepts and geometric meanings

To meet the requirements in the next sections, here, the basic elements of the theory of curves in the
hyperbolic and de Sitter planes are briefly presented. We adopt H2

0 and S2
1 as models of hyperbolic and

de Sitter spheres in Minkowski 3-space E3
1, respectively. SinceH2

0 and S2
1 are Riemannian manifolds, so

the explicit differential geometry of the curves in these spheres is analogous to the differential geometry
of the curves in Euclidean space (see for more details [3, 4, 22]).

Let R3 = {(x1, x2, x3) | x1, x2, x3 ∈ R} be a 3-dimensional vector space, and x = (x1, x2, x3) and
y = (y1, y2, y3) two vectors in R3. The pseudo scalar product of x and y is defined by 〈x, y〉 = −x1y1 +

x2y2+x3y3. We call (R3, 〈, 〉) a 3-dimensional pseudo Euclidean space, or Minkowski 3-space. We write
E3

1 instead of (R3, 〈, 〉) and a vector x in E3
1 is spacelike, lightlike or timelike if 〈x, x〉 > 0, 〈x, x〉 = 0 or

〈x, x〉 < 0, respectively. We define spheres in E3
1 as follows:

Q2
ε =

H2
0 = {x ∈ E3

1 | −x2
1 + x2

2 + x2
3 = −1}, i f ε = −,

S2
1 = {x ∈ E3

1 | −x2
1 + x2

2 + x2
3 = 1}, i f ε = +,

and we take

H2
0 =

H2
+ = {x ∈ E3

1 | −x2
1 + x2

2 + x2
3 = −1, x1 ≥ 1},

H2
− = {x ∈ E3

1 | −x2
1 + x2

2 + x2
3 = −1, x1 ≤ −1},
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where H2
0 = H2

+ ∪ H
2
−. We call H2

0 a hyperbolic sphere and S2
1 a de Sitter sphere. For any two vectors

x = (x1, x2, x3), y = (y1, y2, y3) of R3
1, the vector product is defined by the following.

x ∧ y =

∣∣∣∣∣∣∣∣∣
−e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣ .
We call γh : I −→ H2

0 ⊂ E
3
1;γh(s) = (x1(s), x2(s), x3(s)) a spacelike frontal curve in H2

0 (i.e., γ̇h(s) , 0)
for any s ∈ I, where I is an open interval and 〈γ̇h(s), γ̇h(s)〉 > 0. Also, we call (γh, νγh) : I −→ H2

0×S
2
1 a

framed curve. If γh is singular at s0, we can’t define a frame in a traditional way. However, νγh always
exists even if s is a singular point of γh. We consider µγh

= νγh ∧γh and therefore, the pair {γh, νγh ,µγh
}

is a moving frame of γh. Then, the hyperbolic Serret-Frenet formulae are read as follows:
γ̇h(s)
ν̇
γh

(s)
µ̇γh

(s)

 =


0 0 β(s)
0 0 `(s)
β(s) −`(s) 0



γh(s)
νγh(s)
µγh

(s)

 , (1)

where `(t) = 〈ν̇γh(s),µγh
(s)〉, νγh(s) and µγh

(s) are both unit spacelike vectors. We declare that (γh,−νγh)
is also a framed curve. If (γh, νγh) is a framed immersion, we have (β(s), `(s)) , (0, 0) for each t ∈ I.
The pair (β, `) are geodesic curvatures of the framed curve [23, 24].

Definition 2.1. [24] Under the assumption `2(s) , β2(s), the evolute of the frontal curve γh in the
hyperbolic plane is expressed as

Ev(γh)(s) =
1√∣∣∣`2 − β2

∣∣∣
(
`γh(s) − βνγh(s)

)
, (2)

where γh is the involute curve of Ev(γh) in the hyperbolic plane.

Further, let γd : I −→ S2
1 ⊂ E

3
1;γd(s) = (x1(s), x2(s), x3(s)) be a timelike frontal curve in S2

1
(i.e., γ̇d(s) , 0) for any s ∈ I, where I is an open interval. It is easy to show that 〈γ̇d(s), γ̇d(s)〉 < 0.
Let (γd, νγd ) : I −→ S2

1 × S
2
1 be a framed curve. If γd is singular at s0, then we can’t define a frame

in a traditional way. However, νγd always exists even s is a singular point of γd. Also, we consider
µγd

= νγd ∧ γd. The pair {γd, νγd ,µγd
} is a moving frame of γd and the de Sitter Frenet-Serret formulae

are expressed as follows: 
γ̇d(s)
ν̇
γd

(s)
µ̇γd

(s)

 =


0 0 β(s)
0 0 `(s)
β(s) `(s) 0



γd(s)
νγd (s)
µγd

(s)

 , (3)

where `(t) = −〈ν̇γd (s),µγd
(s)〉; νγd (s) and µγd

(s) are both unit timelike vectors. We declare that
(γd,−νγd ) is also a framed curve. If (γd, νγd ) is a framed immersion, then we have (β(s), `(s)) , (0, 0)
for each t ∈ I, such that the pair (β, `) are geodesic curvatures of the framed curve [25, 26].

Definition 2.2. Under the assumption `2(s) , −β2(s), the evolute of the frontal curve γd in de Sitter
plane is expressed as

Ev(γd)(s) =
1√

`2 + β2

(
`γd(s) − βνγd (s)

)
, (4)

where γd is the involute curve of Ev(γd) in the hyperbolic plane.
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Throughout this work, we assume that the pairs (γh, νγh) and (γd, νγd ) are co-orientable, and the
singular points of γh and γd are finite. Also, the derivative with respect to the arc length s is denoted
by (dot) and to the other parameters by (prime).

3. Equiform geometry of frontal curves in hyperbolic plane

Let γh(s) : I → H2
0(−1) be a frontal curve in a hyperbolic plane. We define the equiform parameter

of γh as

σ =

∫
ds
ρ

=

∫
`

β
ds, (5)

where ρ =
β

`
, is the radius of curvature of the frontal curve γh [27–29].

From Eq (5), we get
ds
dσ

=
β

`
. (6)

LetH is a homothety with a center at the origin and ε as a coefficient. So, if we put γ∗h = H
(
γh

)
, then

s∗ = εs, and
β∗

`∗
= ε

β

`
,

where s∗ is the arc length parameter of γ∗h and β∗/`∗ is the radius of curvature of γ∗h. Hence, σ is an
equiform invariant parameter of γh. Let `/β be not an invariant of the homothety group, then `∗

β∗
= 1

ε
`
β
.

If we take Th(σ) = dγh(s)/dσ as a tangent vector of γh in the equiform geometry of H2
0, therefore we

get

Th(σ) =
dγh (s)

dσ
=
β

`

dγh (s)
ds

=
β2

`
µ. (7)

Furthermore, we define the vector Nh as

Nh(σ) =
β2

`
ν. (8)

It is easy to see that
{
γh,Th,Nh

}
is an equiform invariant trihedron of the curve γh. The derivatives of

these vectors with respect to σ are given as follows:

T′h(σ) =
d

dσ
(Th) =

β

`

d
ds

(
β2

`
µ

)
=
β

`

((
2`ββ̇ − ˙̀β2

`2

)
µ +

β2

`
µ̇

)
=
β

`

((
2`ββ̇ − ˙̀β2

`2

)
µ +

β2

`

(
βγh − `ν

))
=
β4

`2 γh +
β2

`

(
2`β̇ − ˙̀β

`2

)
µ −

β3

`
ν

=
β4

`2 γh +

(
2`β̇ − ˙̀β

`2

)
Th − βNh,
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and

N′h(σ) =
d

dσ
(Nh) =

β

`

d
ds

(
β2

`
ν

)
=
β

`

((
2`ββ̇ − ˙̀β2

`2

)
ν +

β2

`
ν̇

)
=
β

`

((
2`ββ̇ − ˙̀β2

`2

)
ν + β2µ

)
=
β3

`
µ +

β2

`

(
2`β̇ − ˙̀β

`2

)
ν

= βTh +

(
2`β̇ − ˙̀β

`2

)
Nh.

Let Kh : I → R be a function defined by Kh = d
ds (β2/`) is called the equiform curvature of the curve

γh. Then, the analogous formulae to Frenet formulae in the equiform geometry of the hyperbolic plane
have the following form 

γ′h(σ) = Th(σ),
T′h(σ) =

β4

`2γh(σ) + Kh
β

Th(σ) − βNh(σ),

N′h(σ) = βTh(σ) + Kh
β

Nh(σ),

(9)

and they can be written in a matrix form as follows:
γ′h(σ)
T′h(σ)
N′h(σ)

 =


0 1 0
β4

`2
Kh
β
−β

0 β Kh
β



γh(σ)
Th(σ)
Nh(σ)

 .
Therefore, according to the equiform Frenet formulae (9), the equiform curvature of the curve γh is
given by

Kh = β
〈
T
′

h,Th

〉
= β

〈
N
′

h,Nh

〉
. (10)

3.1. Equiform geometry of height function in hyperbolic plane

In this section, we introduce the families of functions on a curve γh(σ) : I → H2
0. We call Hh the

hyperbolic height function of the curve γh(σ) in H2
0.

Theorem 3.1. Assume that Hh(σ) : I ∧ H2(−1) → R; (σ,u) → (γh(σ),u), and ‖T′h(σ)‖ , 0, then the
equation of the evolute curve in the equiform geometry is given by:

Ev(γh)(σ) =
−`√∣∣∣`2 − β2

∣∣∣
(
γh(σ) −

1
β

Nh(σ)
)
, (11)

where `2 , β2.

Proof. With the aid of Frenet formulae (9), we obtain

∂Hh

∂σ
(σ,u) =

〈
γ′h(σ),u

〉
= 〈Th(σ),u〉 = 0,
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since u ∈ H2
0, there are λ, µ ∈ R such that u = λγh(σ) + µNh(σ), therefore 〈u,u〉 = −1, hence

−λ2 + µ2
(
β4

`2

)
= −1, and if

∂Hh

∂σ
= 0, then

∂2Hh

∂σ2 = 〈T′h(σ),u〉

=

〈
β4

`2 γh +
Kh

β
Th − βNh, λγh + µNh

〉
= −

β4

`2 λ −
β5

`2 µ = 0,

which implies λ = −βµ, therefore ∂Hh/∂σ = ∂2Hh/∂σ2 = 0, if and only if u = λγh(σ) + µNh(σ),
−λ2 + µ2

(
β4

`2

)
= −1 and λ = −βµ, it leads to

λ =
−`√∣∣∣`2 − β2

∣∣∣ ,
µ =

`

β
√∣∣∣`2 − β2

∣∣∣ .
Under the condition `2 , β2, we have

u =
−`√∣∣∣`2 − β2

∣∣∣
(
γh(σ) −

1
β

Nh(σ)
)
,

it follows that the evolute curve in equiform geometry of the hyperbolic plane is given by

Ev(γh)(σ) =
−`√∣∣∣`2 − β2

∣∣∣
(
γh(σ) −

1
β

Nh(σ)
)
.

Thus, it completes the proof. �

4. Equiform geometry of frontal curves in de Sitter plane

Let γd(s) : I → S2
1 be a frontal curve in de Sitter plane. The equiform parameter of γd is expressed

as
σ =

∫
ds
ρ

=

∫
`

β
ds,

where ρ =
β

`
, is the radius of curvature of the frontal curve γd. From which, we get

ds
dσ

=
β

`
. (12)

Let F be a homothety with the center at the origin and a coefficient ε̄, so if we put γ̄d = F
(
γd

)
, then

s̄ = ε̄s, and
β̄
¯̀ = ε̄

β

`
,
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where s̄ is the arc length parameter of γ̄d and β̄/ ¯̀ is the radius of curvature of γ̄d. Hence, σ is an
equiform invariant parameter of γd. Also, let `/β be not an invariant of the homothety group, then
¯̀
β̄

= 1
ε̄
`
β
. If we take Td = dγd(s)/dσ as a tangent vector of γd in the equiform geometry of S2

1, then we
get

Td(σ) =
dγd (s)

dσ
=
β

`

dγd (s)
ds

=
β2

`
µ, (13)

and we define the vector Nd as follows

Nd(σ) =
β2

`
ν. (14)

It is easy to check that the trihedron
{
γd,Td,Nd

}
is an equiform invariant trihedron of the curve γd.

Now, we find the derivatives of these vectors with respect to σ. So, from Eqs (12)–(14), we find

T′d =
d

dσ
(Td) =

β

`

d
ds

(
β2

`
µ

)
=
β

`

((
2`ββ̇ − ˙̀β2

`2

)
µ +

β2

`
µ̇

)
=
β

`

((
2`ββ̇ − ˙̀β2

`2

)
µ +

β2

`

(
βγd + `ν

))
=
β4

`2 γd +
β2

`

(
2`β̇ − ˙̀β

`2

)
µ +

β3

`
ν

=
β4

`2 γd +

(
2`β̇ − ˙̀β

`2

)
Td + βNd,

also, we get

N′d =
d

dσ
(Nd) =

β

`

d
ds

(
β2

`
ν

)
=
β

`

((
2`ββ̇ − ˙̀β2

`2

)
ν +

β2

`
ν̇

)
=
β

`

((
2`ββ̇ − ˙̀β2

`2

)
ν + β2µ

)
=
β3

`
µ +

β2

`

(
2`β̇ − ˙̀β

`2

)
ν

= βTd +

(
2`β̇ − ˙̀β

`2

)
Nd.

LetKd : I → R be a function defined byKd = d/ds(β2/`) is called the equiform curvature of the curve
γd. The formulae analogous to Frenet formulae in the equiform geometry of de Sitter plane are read as
follows: 

γ′d = Td,

T′d =
β4

`2γd +
Kd
β

Td + βNd,

N′d = βTd +
Kd
β

Nd,

(15)
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and in the matrix form are 
γ′d(σ)
T′d(σ)
N′d(σ)

 =


0 1 0
β4

`2
Kd
β
−β

0 β Kd
β



γd(σ)
Td(σ)
Nd(σ)

 .
Hence, according to the equiform Frenet formulae (15), the equiform curvature of the curve γd is given
by

Kd = β
〈
T
′

d,Td

〉
= β

〈
N
′

d,Nd

〉
. (16)

4.1. Equiform geometry of height function in de Sitter plane

Here, we introduce families of functions on the curve γd(σ) : I → S2
1. We call Hd the de Sitter

height function of the curve γd(σ) in S2
1.

Theorem 4.1. Let Hd(σ) : I ∧ S2
1 → R; (σ, v) → (γd(σ), v), and suppose that ‖T′d(σ)‖ , 0, then the

equation of the evolute curve in the equiform geometry is given by

Ev(γd)(σ) =
`√∣∣∣`2 − β2

∣∣∣
(
γd(σ) +

1
β

Nd(σ)
)
, (17)

where `2 , β2.

Proof. By using Frenet formulae (15), we get

∂Hd

∂σ
(σ, v) =

〈
γ′d(σ), v

〉
= 〈Td(σ), v〉 = 0,

since v ∈ S2
1, there are λ, µ ∈ R such that v = λγd(σ) + µNd(σ), therefore 〈v, v〉 = 1. Hence, −λ2 +

µ2
(
β4

`2

)
= 1, if

∂Hd

∂σ
= 0, then

∂2Hd

∂σ2 = 〈T′d(σ), v〉

=

〈
β4

`2 γd +
Kd

β
Td + βNd, λγd + µNd

〉
= −

β4

`2 λ +
β5

`2 µ = 0,

which implies λ = βµ, therefore ∂Hd/∂σ = ∂2Hd/∂σ2 = 0, if and only if v = λγd(σ) + µNd(σ),
−λ2 + µ2

(
β4

`2

)
= 1 and λ = βµ, which implies that

λ =
`√∣∣∣`2 − β2

∣∣∣ ,
µ =

`

β
√∣∣∣`2 − β2

∣∣∣ .
AIMS Mathematics Volume 8, Issue 8, 18435–18454.
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Under the condition `2 , β2, we get

v =
`√∣∣∣`2 − β2

∣∣∣
(
γd(σ) +

1
β

Nd(σ)
)
,

it follows that the evolute curve in the equiform geometry of de Sitter plane is expressed as

Ev(γd)(σ) =
`√∣∣∣`2 − β2

∣∣∣
(
γd(σ) +

1
β

Nd(σ)
)
,

and thus, the proof is completed. �

5. Equiform geometry of involute-evolute curve couple in H2
0

In this section, we introduce the definitions of front and frontal curves in the hyperbolic plane.
Also, we investigate the equiform geometry of the Frenet apparatus of an evolute-involute curve
couple [30–34].

Definition 5.1. The curve denoted by (Ev, νhEv
) : I −→ H2

0×S
2
1 is said to be a framed Legendrian curve

if 〈Ev(s), νhEv
(s)〉 = 0, and 〈Ėv(s), νhEv

(s)〉 = 0 for all s ∈ I, and if
(
Ev, νhEv

)
is an immersion, namely,(

Ėv(s), ν̇hEv
(s)

)
, (0, 0), we call (Ev, νhEv

) a framed immersion Legendrian curve.

Definition 5.2. The curve Ev : I −→ H2
0 is said to be a frontal curve if there exists a smooth mapping

νhEv
: I −→ S2

1 such that (Ev, νhEv
) is a framed curve. Also, we say that Ev : I −→ H2

0 is a front curve
if there exists a smooth mapping νhEv

: I −→ S2
1 such that (Ev, νhEv

) is a framed immersion Legendrian
curve.

Theorem 5.1. Let γh : I −→ H2
0 and Ev(γh) : I −→ H2

0 be unit speed spacelike frontal curves and
Ev(γh) an evolute of γh. The equiform Frenet apparatus of Ev(γh)

{
Ev(γh); ThEv

,NhEv
,KhEv

}
can be

formed according to Frenet apparatus of γh

{
γh;µγh

, νγh , (
`
β
)γh

}
.

Proof. From the definition of the evolute frontal curve in H2
0, and by differentiating both sides of Eq (2)

with respect to s, we get

µhEv
=

1
βhEv

−`
(
` ˙̀ − ββ̇

)
∣∣∣`2 − β2

∣∣∣ 3
2

+
˙̀√∣∣∣`2 − β2

∣∣∣
γh(s)

+
1
βhEv

β
(
` ˙̀ − ββ̇

)
∣∣∣`2 − β2

∣∣∣ 3
2

−
β̇√∣∣∣`2 − β2

∣∣∣
 νγh(s), (18)

which can be written as

µhEv
=

m1

βhEv

γh(s) +
m2

βhEv

νγh(s), (19)
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where

m1 =

−`
(
` ˙̀ − ββ̇

)
∣∣∣`2 − β2

∣∣∣ 3
2

+
˙̀√∣∣∣`2 − β2

∣∣∣
 ,

m2 =

β
(
` ˙̀ − ββ̇

)
∣∣∣`2 − β2

∣∣∣ 3
2

−
β̇√∣∣∣`2 − β2

∣∣∣
 ,

and from the relation βhEv
(s) = ‖Ėv(s)‖, we find

βhEv
(s) =

−`
(
` ˙̀ − ββ̇

)
∣∣∣`2 − β2

∣∣∣ 3
2

+
˙̀√∣∣∣`2 − β2

∣∣∣


2

+

β
(
` ˙̀ − ββ̇

)
∣∣∣`2 − β2

∣∣∣ 3
2

−
β̇√∣∣∣`2 − β2

∣∣∣


2

. (20)

From Definition 5.2, there exists a smooth mapping νhEv
: I −→ S2

1 such that (Ev, νhEv
) is a framed

curve, and we get `hEv
from the equation `hEv

=
〈
ν̇hEv

,µhEv

〉
, where

(
βhEv

, `hEv

)
, (0, 0).

From Eqs (7), (8), (18), and (20), we obtain the equiform geometry of Frenet apparatus of an evolute
curve according to the apparatus of the involute curve as follows:

ThEv
(σ) =

β2
hEv

`hEv

µhEv

=
βhEv

`hEv

−`
(
` ˙̀ − ββ̇

)
∣∣∣`2 − β2

∣∣∣ 3
2

+
˙̀√∣∣∣`2 − β2

∣∣∣
γh(s)

+
βhEv

`hEv

β
(
` ˙̀ − ββ̇

)
∣∣∣`2 − β2

∣∣∣ 3
2

−
β̇√∣∣∣`2 − β2

∣∣∣
 νγh(s),

NhEv
(σ) =

β2
hEv

`hEv

νhEv
, KhEv

=
d
ds

β2
hEv

`hEv

 .
Hence, the proof is completed. �

6. Equiform geometry of involute-evolute curve couple in S2
1

Now, we introduce the definitions of front and frontal curves in the de Sitter plane. Further, we study
the equiform geometry of the Frenet apparatus of an evolute curve according to the Frenet apparatus
of an involute curve.

Definition 6.1. The curve (Ev, νdEv
) : I −→ S2

1 × S
2
1 is said to be a framed Legendrian curve, if

〈Ev(s), νdEv
(s)〉 = 0, and 〈Ėv(s), νdEv

(s)〉 = 0 for all s ∈ I. Also, if
(
Ev, νdEv

)
is an immersion, namely,(

Ėv(s), ν̇dEv
(s)

)
, (0, 0), we call (Ev, νdEv

) a framed immersion Legendrian curve.
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Definition 6.2. The Ev : I −→ S2
1 is a frontal curve if there exists a smooth mapping νdEv

: I −→ S2
1

such that (Ev, νdEv
) is a framed curve. Also, the curve Ev : I −→ S2

1 is said to be a front curve if there
exists a smooth mapping νdEv

: I −→ S2
1 such that (Ev, νdEv

) is a framed immersion Legendrian curve.

Theorem 6.1. Let γd : I −→ S2
1 and Ev(γd) : I −→ S2

1 be unit speed spacelike frontal curves and
Ev(γd) an evolute of γd. Then, the equiform Frenet apparatus of Ev(γd)

{
Ev(γd); TdEv

,NdEv
,KdEv

}
can

be formed according to Frenet apparatus of γd

{
γd;µγd

, νγd , (
`
β
)γd

}
.

Proof. From the definition of the evolute frontal curve in S2
1, and by differentiating both sides of Eq (4)

with respect to s, we get

µdEv
=

1
βdEv

−`
(
` ˙̀ + ββ̇

)
(
`2 + β2) 3

2

+
˙̀√

`2 + β2

γd(s)

+
1
βdEv

β
(
` ˙̀ + ββ̇

)
(
`2 + β2) 3

2

−
β̇√

`2 + β2

 νγd (s), (21)

which can be written as

µdEv
=

Ω1

βdEv

γd(s) +
Ω2

βdEv

νγd (s),

where

Ω1 =

−`
(
` ˙̀ + ββ̇

)
(
`2 + β2) 3

2

+
˙̀√

`2 + β2

 ,
Ω2 =

β
(
` ˙̀ + ββ̇

)
(
`2 + β2) 3

2

−
β̇√

`2 + β2

 .
Further, from the relation βdEv

(s) = ‖Ėv(s)‖, we obtain

βdEv
(s) =

−`
(
` ˙̀ + ββ̇

)
(
`2 + β2) 3

2

+
˙̀√

`2 + β2


2

+

β
(
` ˙̀ + ββ̇

)
(
`2 + β2) 3

2

−
β̇√

`2 + β2


2

. (22)

From Definition 6.2, there exists a smooth mapping νdEv
: I −→ S2

1, such that (Ev, νdEv
) is a framed

curve, and then we get `dEv
from the equation `dEv

=
〈
ν̇dEv

,µdEv

〉
, where

(
βdEv

, `dEv

)
, (0, 0).

Also, from Eqs (13), (14), and (21), we find the equiform geometry of Frenet apparatus of an evolute
curve according to the apparatus of the involute curve as follows:

TdEv
(σ) =

β2
dEv

`dEv

µdEv
=
βdEv

`dEv

−`
(
` ˙̀ + ββ̇

)
(
`2 + β2) 3

2

+
˙̀√

`2 + β2

γd(s)

+
βdEv

`dEv

β
(
` ˙̀ − ββ̇

)
(
`2 + β2) 3

2

−
β̇√

`2 + β2

 νγd (s),

NdEv
(σ) =

β2
dEv

`dEv

νdEv
, KdEv

=
d
ds

β2
dEv

`dEv

 . (23)

Hence, this completes the proof. �
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7. Computational examples

Finally, in what follows we give two illustrative examples for the frontal curves and obtain their
equiform differential geometric properties in the hyperbolic and de Sitter planes.

Example 7.1. Consider the hyperbolic astroid curve γh : I −→ H2
0, parameterized by

γh(t) =

(√
cos6(t) + sin6(t) + 1, cos3(t), sin3(t)

)
, (24)

therefore, we get

γ′h(t) = 3 sin(t) cos(t)

 sin4(t) − cos4(t)√
cos6(t) + sin6(t) + 1

,− cos(t), sin(t)

 .
It is obvious that γh is a singular curve at t = 0, π/2, π and 3π/2.

If we take νγh
= (ν1γh

, ν2γh
, ν3γh

), where
ν1γh

= 1
Q1

(
sin(t) cos(t)

√
cos6(t) + sin6(t) + 1

)
,

ν2γh
= 1
Q1

(
sin(t)

(
cos4(t) + 1

))
,

ν3γh
= 1
Q1

(
cos(t)

(
sin4(t) + 1

))
,

(25)

such thatQ1(t) =
√

1 + sin2(t) cos2(t), then by a straightforward calculation, we obtain 〈γh(t), νγh
(t)〉 =

〈γ′h(t), νγh
(t)〉 = 0 and 〈νγh

(t), νγh
(t)〉 = 1. Hence, (γh, νγh

) is a framed curve (see Figures 1a and 1b).

(a) (b)

Figure 1. (a) The hyperbolic frontal curve γh(t), (b) The curve νγh
(t).
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Thereafter, from the relation µγh
= νγh

∧ γh, we find

µγh
=

1
Q1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−i j k

sin(t) cos(t)

(cos6(t)+sin6(t)+1)−
1
2

sin(t)
(
cos4(t) + 1

)
cos(t)

(
sin4(t) + 1

)
√

cos6(t) + sin6(t) + 1 cos3(t) sin3(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and then, we get

µγh
(t) =

√
cos6(t) + sin6(t) + 1√
1 + sin2(t) cos2(t)

 cos4(t) − sin4(t)√
cos6(t) + sin6(t) + 1

, cos(t),− sin(t)

 , (26)

it follows that 〈µγh
(t),µγh

(t)〉 = 1. So, we obtain

β(t) = ‖γ′h(t)‖ = 3 sin(t) cos(t)

√
1 −

(sin4(t) − cos4(t))2

cos6(t) + sin6(t) + 1
. (27)

Also, from Eq (25), we have

ν′γh
(t) =

sin(t) cos(t)(sin2(t) − cos2(t))

(1 + sin2(t) cos2(t))
3
2

(sin(t) cos(t)
√

cos6(t) + sin6(t) + 1,

sin(t)(cos4(t) + 1), cos(t)(sin4(t) + 1))

+
1√

1 + sin2(t) cos2(t)
(
√

cos6(t) + sin6(t) + 1(cos2(t) − sin2(t)

+
3 sin2(t) cos2(t)(sin4(t) − cos4(t))

cos6(t) + sin6(t) + 1
), cos3(t)(cos2(t) − 4 sin2(t))

+ cos(t),− sin3(t)(sin2(t) − 4 cos2(t)) − sin(t)),

thus, we get

`(t) = 〈ν′γh
(t),µγh

(t)〉

=
−151 − 108 cos(4t) + 3 cos(8t)
4(−9 + cos(4t))

√
26 + 6 cos(4t)

. (28)

Furthermore, we have (β(0), `(0)) , (0, 0), and hence γh is a frontal curve.
Moreover, from Eqs (2), (24), (25), (27), and (28), we obtain the evolute curve Ev(t) (see Figure 2)

as follows: Ev(t) =
(
Ev1 ,Ev2 ,Ev3

)
, where

Ev1(t) = Λ1 sin(t) cos(t),

Ev2(t) = Λ3 cos3(t) − Λ2 sin(t)
(
cos4(t) + 1

)
,

Ev2(t) = Λ3 sin3(t) − Λ2 cos(t)
(
sin4(t) + 1

)
, (29)
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18448

such that

Λ1(t) =

√
1 + sin2(t) cos2(t)√
|`2 − β2|

` − β√
1 + sin2(t) cos2(t)

 ,
Λ2(t) =

β√(
1 + sin2(t) cos2(t)

)
(|`2 − β2|)

,

Λ3(t) =
`√
|`2 − β2|

.

Also, from Eqs (7), (8) and (29), we obtain the equiform geometry of Frenet apparatus of the curve γh

in the hyperbolic plane as follows:

Th(σ) =
81(9 − cos(4t)5/2) sin(2t)4

2
√

2(13 + 3 cos(4t))(151 + 108 cos(4t) − 3 cos(8t))

 cos4(t) − sin4(t)√
cos6(t) + sin6(t) + 1

, cos(t),− sin(t)

 ,
and Nh(σ) = (Nh1 ,Nh2 ,Nh3), where

Nh1 = Q2

(
sin(t) cos(t)

√
cos6(t) + sin6(t) + 1

)
,

Nh2 = Q2

(
sin(t)

(
cos4(t) + 1

))
,

Nh3 = Q2

(
cos(t)

(
sin4(t) + 1

))
,

such that

Q2 =
81(9 − cos(4t)5/2) sin(2t)4

(13 + 3 cos(4t))3/2(151 + 108 cos(4t) − 3 cos(8t))
,

Kh =
81(cos(4t) − 9)2(1012202 cos(2t) + 74204 cos(6t) − 37236 cos(10t) − 621 cos(14t) − 27 cos(18t)) sin(2t)3

8
√

2(13 + 3 cos(4t))5/2(151 + 108 cos(4t) − 3 cos(8t))2
.

Figure 2. The evolute curve Ev(t) of γh(t).
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Example 7.2. We assume that the curve γd : I −→ S2
1 is given by

γd(t) =
(
sinh(t3), cos(t2) cosh(t3), sin(t2) cosh(t3)

)
, (30)

where γd is a singular curve at t = 0. If we take νγd
= (ν1γd

, ν2γd
, ν3γd

), where
ν1γd

= 1
P1

(
2 cosh2(t3)

)
ν2γd

= 1
P1

(
2 sinh(t3) cos(t2) cosh(t3) − 3t sin(t2)

)
ν3γd

= 1
P1

(
2 sin(t2) sinh(t3) cosh(t3) + 3t cos(t2)

)
,

(31)

and P1 =

√∣∣∣9t2 − 4 cosh2(t3)
∣∣∣.

Then, we obtain 〈γd(t), νγd
(t)〉 = 〈γ′d(t), νγd

(t)〉 = 0 and 〈νγd
(t), νγd

(t)〉 = 1. Therefore, (γd, νγd
) is a

framed curve (see Figures 3a and 3b).

(a) (b)

Figure 3. (a) The de Sitter frontal curve γd(t), (b) The curve νγd
(t).

Now, from the relation µγd
= νγd

∧ γd, we find

µγd
(t) =

1
P1

∣∣∣∣∣∣∣∣∣∣
−i j k

2 cosh2(t3) 2 sinh(t3) cos(t2) cosh(t3) − 3t sin(t2) 2 sin(t2) sinh(t3) cosh(t3) + 3t cos(t2)
sinh(t3) cos(t2) cosh(t3) sin(t2) cosh(t3)

∣∣∣∣∣∣∣∣∣∣ ,
it follows that

µγd
=

1
P1

(
3t cosh(t3), 3t cos(t2) sinh(t3) − 2 sin(t2) cosh(t3), 3t sin(t2) sinh(t3) + 2 cos(t2) cosh(t3)

)
,

(32)
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where 〈µγd
(t),µγd

(t)〉 = 1, so we get

β(t) = ‖γ′d(t)‖ = t
√∣∣∣9t2 − 4 cosh2(t3)

∣∣∣. (33)

Further, from Eq (31), we have

ν′γd
(t) =

−(9t − 4 cosh(t3) sinh(t3))∣∣∣9t2 − 4 cosh2(t3)
∣∣∣ 3

2

(2 cosh2(t3), 2 sinh(t3) cos(t2) cosh(t3) − 3t sin(t2),

2 sin(t2) sinh(t3) cosh(t3) + 3t cos(t2))

+
1√∣∣∣9t2 − 4 cosh2(t3)

∣∣∣ (12t2 cosh(t3) sinh(t3), 6t2 cos(t2)(cosh2(t3) + sinh2(t3))

− 4t sinh(t3) sin(t2) cosh(t3) − 3 sin(t2) − 6t2 cos(t2), 6t2 sin(t2)(cosh2(t3) + sinh2(t3))
+ 4t sinh(t3) cos(t2) cosh(t3) − 3 cos(t2) − 6t2 sin(t2)),

which leads to

`(t) = 〈ν′γd
(t),µγd

(t)〉

=
2(−18t3 sinh(t3) + 4t sinh(t3) cosh(t3) + 3 cosh(t3))

9t2 − 4 cosh2(t3)
, (34)

it follows that (β(0), `(0)) , (0, 0), and then γd is a frontal curve.
Also, from Eqs (4), (30), (31), (33), and (34), we obtain the evolute curve Ev(t) (see Figure 4) as

follows: Ev(t) =
(
Ev1 ,Ev2 ,Ev3

)
, where

Ev1(t) =
1

P1

√
|4P2

2 − t2P4
1|

(
2P2 sinh(t3) − 2tP2

1 cosh2(t3)
)
,

Ev1(t) =
1

P1

√
|4P2

2 − t2P4
1|

(
2P2 cos(t2) cosh(t3) − 2tP2

12 sinh(t3) cos(t2) cosh(t3) − 3t2P2
1 sin(t2)

)
,

Ev1(t) =
1

P1

√
|4P2

2 − t2P4
1|

(
2P2 sin(t2) cosh(t3) − tP2

1 sin(t2) sinh(t3) cosh(t3) − 3t2P2
1 cos(t2)

)
,

such that P2 = −18t3 sinh(t3) + 4t sinh(t3) cosh(t3) + 3 cosh(t3).
Now, from Eqs (13), (14), (31), (32), (33), and (34), we get the equiform geometry of Frenet

apparatus of the curve γd in the de Sitter plane as under:

Td(σ) = P3

(
3t cosh(t3), 3t cos(t2) sinh(t3) − 2 sin(t2) cosh(t3), 3t sin(t2) sinh(t3) + 2 cos(t2) cosh(t3)

)
,

where

P3 =
t2(9t2 − 4 cosh2(t3))

3
2

6 cosh(t3) + 4t(−9t2 sinh(t3) + 4t sinh(2t3))
,
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and Nd(σ) = (Nd1 ,Nd2 ,Nd3), such that
Nd1 = P3

(
2 cosh2(t3)

)
Nd2 = P3

(
2 sinh(t3) cos(t2) cosh(t3) − 3t sin(t2)

)
Nd3 = P3

(
2 sin(t2) sinh(t3) cosh(t3) + 3t cos(t2)

)
,

also, we obtain

Kd =
d
dt

(
t2(9t2 − 4 cosh2(t3))2

6 cosh(t3) + 4t(−9t2 sinh(t3) + 4t sinh(2t3))

)
.

Figure 4. The evolute curve Ev(t) of γd(t).

8. Conclusions

The equiform differential geometric properties of the evolute and involute frontal curves in the
hyperbolic and de Sitter planes have been studied. We have introduced the relevance between
evolute and involute frontal curves that relate to symmetry properties. Also, under the viewpoint of
symmetry, these notions to the frontal curves have been expanded. Furthermore, we have looked at
the classification of these curves and introduce the notion of frontalisation for its singularities. Finally,
two numerical examples through which we authenticate our theoretical results are given and plotted.
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