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Abstract: Pythagorean cubic fuzzy sets (PCFSs) are a more advanced version of interval-valued
Pythagorean fuzzy sets where membership and non-membership are depicted using cubic sets. These
sets offer a greater amount of data to handle uncertainties in the information. However, there has been
no previous research on the use of Einstein operations for aggregating PCFSs. This study proposes two
new aggregator operators, namely, Pythagorean cubic fuzzy Einstein weighted averaging (PCFEWA)
and Pythagorean cubic fuzzy Einstein ordered weighted averaging (PCFEOWA), which extend the
concept of Einstein operators to PCFSs. These operators offer a more effective and precise way of
aggregating Pythagorean cubic fuzzy information, especially in decision-making scenarios involving
multiple criteria and expert opinions. To illustrate the practical implementation of this approach, we
apply an established MCDM model and conduct a case study aimed at identifying the optimal
investment market. This case study enables the evaluation and validation of the established MCDM
model’s effectiveness and reliability, thus making a valuable contribution to the field of investment
analysis and decision-making. The study systematically compares the proposed approach with existing
methods and demonstrates its superiority in terms of validity, practicality and effectiveness. Ultimately,
this paper contributes to the ongoing development of sophisticated techniques for modeling and
analyzing complex systems, offering practical solutions to real-world decision-making problems.
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1. Introduction

Multi-criteria decision-making (MCDM) is a process of choosing the best course of action among
several alternatives that are evaluated based on multiple criteria. MCDM is widely used in real life to
solve complex problems that involve multiple objectives or goals and where there is no clear or
objective single criterion for decision-making. In MCDM, different criteria are identified, and weights
are assigned to them based on their relative importances. Then, the alternatives are evaluated against
each criterion, and scores are assigned based on their performances. Finally, the scores are combined
to determine the overall ranking of the alternatives, and the best course of action is selected. MCDM
is widely used in various fields, such as finance, engineering, healthcare, environmental management
and business management. For example, in finance, MCDM can be used to select the best investment
portfolio that balances risk and return. In healthcare, MCDM can be used to select the best treatment
option for a patient based on factors such as efficacy, side effects and cost. Li and Sun [1] proposed an
intelligent investment strategy for stocks using historical data by developing a support vector machine
(SVM) parameter optimization algorithm. In their 2021 study [2], they also applied a radial basis function
(RBF) neural network optimal segmentation algorithm to credit rating, demonstrating improved accuracy
in predicting credit ratings and its potential usefulness in credit risk assessment in financial institutions.

Aggregation operators are mathematical functions that combine multiple criteria or objectives
into a single value that represents the overall performance of an alternative. Aggregation operators are
widely used in decision-making to simplify complex problems that involve multiple criteria and
objectives. For example, Garg and Rani [3] introduced aggregation operators that incorporate weighted
averaging to combine various intricate intuitionistic fuzzy sets through t-norm operations. By
employing Aczel Alsina operations, Senapati et al. [4] developed a variety of new aggregation
operators that handle interval-valued intuitionistic fuzzy sets. Liu and Wang [5] introduced a series of
aggregation operators that combine decision information expressed through linguistic intuitionistic
fuzzy numbers. Akram et al. [6] proposed Hamacher weighted averaging and geometric aggregation
operators for aggregating complex intuitionistic fuzzy information. Picture fuzzy aggregation
operators were introduced by Riaz [7] and offer several benefits in handling practical situations. Verma
and Merigo [8] created arithmetic and geometric aggregation operators to combine information from
2-dimensional linguistic intuitionistic fuzzy variables. Garg [9] introduced several weighted averaging
and geometric operators, which were then employed to address decision-making problems. Abdullah
et al. [10] suggested the use of Pythagorean cubic fuzzy Hamacher aggregation operators in solving
the green supplier selection problem. Interval-valued Pythagorean fuzzy aggregation operators were
developed by Peng and Yang [11] to combine interval-valued Pythagorean fuzzy information.
Zulqarnain et al. [12] developed operational laws for Pythagorean fuzzy hypersoft numbers which
consider their interaction. This led to the introduction of a variety of aggregation operators that depend
on the established interaction operational laws. Amin et al. [13] introduced a set of generalized cubic
Pythagorean fuzzy aggregation operators. These operators are designed to aggregate fuzzy information
that is expressed in the form of Pythagorean fuzzy numbers and offer a flexible framework that can
handle a wide range of applications. Nevertheless, in addition to these methods, several other authors
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have introduced alternative approaches to tackle decision-making problems, including ranking
functions and aggregation operators [14—25]. These techniques provide further options for decision-
makers seeking to optimize their decision-making processes.

Einstein operations, which include Einstein addition and multiplication, have a wide range of
applications in various fields such as physics, computer science and image processing. For example,
Einstein addition is used to calculate the relativistic velocities of objects moving at high speeds. It
allows for the addition of velocities that approach the speed of light, which cannot be accomplished
using ordinary addition. In decision-making, Einstein operations can be used to aggregate fuzzy
information to obtain a more accurate representation of the underlying data. This can help to improve
the decision-making process and increase the quality of the decisions made. Einstein operations and
related aggregation operators have been utilized by numerous researchers across various fields to
handle fuzzy information in diverse environments. These methods have been proposed and
implemented in multiple applications, ranging from finance and economics to image processing and
decision-making. For example, Wang and Liu [26] proposed operational laws on intuitionistic fuzzy
sets which consist of several fundamental operations, including Einstein sum, Einstein product and
Einstein exponentiation. Furthermore, they developed a set of geometric aggregation operators based
on these operations to enhance the ability to deal with uncertainty and imprecision in decision-making.
Riaz et al. [27] have introduced a class of aggregation operators, called g-rung orthopair fuzzy Einstein
prioritized aggregation operators, to handle decision-making problems that involve q-rung orthopair
fuzzy information. Complex g-rung picture fuzzy Einstein averaging operators were suggested by
Akram et al. [28] as a means of addressing MCDM problems. Riaz et al. presented some prioritized
operators in a g-rung orthopair fuzzy environment. To obtain additional information concerning
Einstein aggregation operators and their application in MCDM, we can consult [29-37]. Table 1
provides explanations for the abbreviations used in this article.

Table 1. List of abbreviations.

Abbreviation  Explanation Abbreviation  Explanation
MCDM Multi-criteria decision-making PFS Pythagorean fuzzy set
MD Membership degree FS Fuzzy set
PCFS Pythagorean cubic fuzzy set NMD Non-membership degree
CIFS Cubic intuitionistic fuzzy set AO Aggregation operator
IVPFS Interval-valued Pythagorean cS Cubic set
fuzzy set
IVIFS Interval-valued intuitionistic PCEN Pythagorean cubic fuzzy
fuzzy set number
IFS Intuitionistic fuzzy set CIFN Cubic intuitionistic fuzzy
number

Although the above extensions only consider membership and non-membership degrees, in real-
world scenarios, it can be challenging to express the degree of membership accurately using a fuzzy
set. In such situations, it may be easier to represent vagueness and uncertainty in the real world by
using both interval and exact values instead of unique interval/exact values. Consequently, a hybrid
form of an interval value, such as the Pythagorean cubic fuzzy set (PCFS), can be very useful in
representing uncertainties caused by hesitant judgments in complex decision-making problems. Khan
et al. [15,38] introduced the concept of the PCFS, which is described in two parts simultaneously: One
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represents the membership degrees using an interval-valued Pythagorean fuzzy number (IVPFN),
while the other represents the membership degrees using a fuzzy number (FN). Thus, a PCFS is a
hybrid set that combines an IVPFN and an FN. The advantage of PCFS is that it can contain much
more data to express both the IVPFN and FN simultaneously. Table 2 contains the list of notations
utilized in this article.

Table 2. List of notations.

The upper limit of the Interval-valued membershi
&v pper . D Fermatean fuzzy set Z P
membership function degree
v The upper limit of the non- 4 Cubic Fermatean 7 Interval-valued non-
membership function fuzzy set membership degree
. . . The lower limit of the non-
¢  membership function Sc  Score function ¢y . .
membership function
. . . The lower limit of the non-
{ non-membership function Ac Accuracy function &L . .
membership function
. Pythagorean cubic o
Any non-empty finite set o 0B Yy  Criteria
fuzzy number
¥ alternative 1 Weight vector Sg  Einstein sum
Tr Einstein Product Ug Einstein union Nz Einstein intersection
Motivations

Scholars have proposed many aggregation operators in the past for solving real-world decision-
making problems. However, traditional fuzzy sets assign only a single value of membership, whereas
Pythagorean cubic fuzzy sets use cubic polynomials and offer more flexibility in handling uncertainty.
This helps decision-makers to assess decision-making criteria more comprehensively and accurately,
leading to better outcomes. Although PCFSs provide a more robust framework for uncertain
information in MCDM problems, unfortunately, there has not yet been any study conducted on the
aggregation operators for PCFSs using Einstein operations. The present study expands the current
aggregation operators by utilizing Einstein norm operations and proposing a series of aggregation
operators. For this, we defined some new operations based on Einstein norm and conorm for
Pythagorean cubic fuzzy numbers (PCFNs). By using operational laws in aggregation operators, it is
possible to simplify and manipulate expressions, which in turn can help to improve the efficiency of
computations and optimize the performance of systems. In addition, it is necessary to create a scoring
and accuracy function that can effectively compare two PCFNs. By developing these functions, it will
be possible to make more informed decisions and draw more accurate conclusions based on the
comparison of PCFNs. Finally, a new method for solving MCDM problems has been introduced in
this paper, based on the use of the proposed operators. The proposed work is outlined, and its objectives
are presented in a summary fashion. These objectives are itemized and listed below to provide a clear
and concise overview of the study’s goals.

(1) To construct new score and accuracy functions that can effectively evaluate the performance of
PCFNs by taking into account their unique characteristics.

(2) To define a framework for data processing and analysis by developing new operational laws that
employ the Einstein t-norm and t-conorm for Pythagorean cubic fuzzy numbers. These operational
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laws will enable a more accurate representation of available information and improve decision-
making quality.

(3) To propose new aggregation operators based on the proposed operational laws to aggregate
different preferences of decision-makers in the PCFS environment.

(4) To propose an algorithm that utilizes the aforementioned operators to address the challenges of
multi-criteria decision-making (MCDM) problems. This technique offers a practical and effective
means of handling decision-making scenarios where multiple criteria or factors need to be
considered.

(5) The study demonstrates the practical application of the proposed approach by implementing an
established MCDM model and conducting a case study focused on identifying the optimal
investment market.

To attain this objective, the remainder of the paper is outlined in the following manner: Section 2
clarifies the fundamental terminologies of PCFS and Einstein operations. Within Section 3, we present
basic operational laws and their corresponding weighted aggregation operators for a collection of
PCFSs. Also, the properties of the proposed operators are analyzed in detail. In Section 4, we expound
on an MCDM technique that depends on the proposed operators for ranking different alternatives,
wherein assessments linked to the criteria are presented in the form of PCFNs. Section 5 provides an
example to demonstrate the approach and verify its feasibility and effectiveness. Finally, Section 6
summarizes the study.

2. Preliminaries
The crucial background information employed in this study is presented in this section.
2.1. Pythagorean cubic fuzzy sets

Definition 1. [15,38] Let H be a non-empty finite set. A PCFS D of an element h € H is defined as
D ={t,cp(h), Dp(h)|h € H} (1

where Cp(h) = (Zp(h); up(h)), the membership grade, while Dp,(h) = (Zp(h); vp(h)) represents
the non-membership grade. Furthermore, Zp(h) and Z,(h) are interval-valued fuzzy sets, while

&p(Rh) and {p(h) represent fuzzy sets. Let Zp(h) = [§5(h),§p (h)] and Zp(h) = [¢5(h), {5 (W)].
Then, Cp(h) = ({[E5(R),EY(R);ép(h))) describes the degree of membership, while Dp(h) =

(([( L),y ﬁ(h)] ;D (h))) represents the non-membership degree of an element h € H, such that
0<(CEYM))?+(Y) <1 and 0<(&p(h)?+({p(h)?><1 . For simplicity, we call
((Z(h); £(©)), {Z(h); {(t))) a CPF number (PCFN), denoted by B = ({Z; £),(Z, ).

Definition 2. [15,38] Let @ = ((Z;€),(Z,0)), a1 = ({Z1;61),(Z1, (1)) and a, = ((Z3;€,), Z3; () be
three PCFNs, and 7 is any positive real number, where Z; = [&F,&Y], Z, = [¢E, ¢V, Z, = [€4, &0,
Z, = [¢4, 4V, Z = [€-,&Y], and Z = [¢*, ¢V]. Then, the operational laws are defined as

JED? + &7 - EH2(EH2].
D a @ a, = | WED+ED2- DN,

VER + &3 — g2z
([({“G: Q”Cz”], (1(2)

3
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([Efsz’fffg];flfz),
2 o, ® a, = ( V2 + ()7 - (zf)Z(ch)Z,l;
\< VD2 + @2 - H2ehH) |
V3 + 3G -3
lJl -(1- (fL)Z)n,l ,
(V1= =@,
Ji—a-ey
([, (¢
([EH, EM; €M),
\/ -(1- (ZL)Z)"I
y1-a-@Honl)
==
Definition 3. [15,38] Let a = ({Z; €),(Z; {)) be a PCFN, where Z = [¢L,&Y],and Z = [¢%, ¢Y]. Then,
the score function Sc(p) is defined as

Q) na =

Lo zU_z\2 LysU_z\2
set@) = (=57) - (57 @
while the accuracy function is defined as
LogU g\ 2 LysUyo\2
o - (52 (59, >
where —1<Sc(@)<1 and O0<Ac(@)<1 . Let o =({Z;&)(Z, %)) and ap =

((Zz,fz), (Zz,(z)) be two PCFNs. If Sc(a;) < Sc(az) or Ac(a;) < Ac(ay), then a; < a,. If
Sc(ay) > Sc(ay) or Ac(ay) > Ac(ay), then a; > a,. If Sc(ay) = Sc(a,) and Ac(a,) = Ac(ay),
then a; = a,.

Definition 4. [15,38] Let @, a; and a, be any three PCFNs, and ¢, ¢, and ¢, are positive real
numbers. Then, the following properties hold.

(1) a1 @ a; = a;Day,

(2) a;Qa; = a,Qay,

(3) n(a1®a;) = na;dnas,
(4) (1 +n)a = na®n,a,

(5) (1®ay)" = a'f®a£’,

(6) aMmit12) = g Qqz.
2.2. Einstein operations

Definition 5. [39] Einstein product Tr and Einstein sum Sy are defined as follows:

a.b

__ab 2
(D) forall a,b € [0,1]4,

(1) Tg(a,b) =
(2) Sg(a,b) === forall a, b € [0,1]2.
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3. Einstein operations for Pythagorean cubic fuzzy sets

This section is dedicated to establishing a set of operational laws for PCFSs using two key
elements, namely, Tz and Sg. The operational laws outlined in this section represent a significant
contribution to the study of PCFSs and their real-world applications.

Definition 6. Let a; = ((Zy;&,),(Z1,¢y)) and ay = ((Z3;&,),Z5; {;) be two PCFNs, where Z; =
[ay, 800, Z, = [¢F,¢01, Z, = [€5,&Y], and Z, = [C%, CY]. Then, some of the Einstein operations over
a, and a, are defined as follows:

( D) + (e’ &) +(8Y) [+
1+(g5)*xg(e4)*’ 1+(gy) xE(gg)Z ’ 1+($1)2xE(52)2
(1) ay Bg a; = Sixeds ,] ,
IJ1+ =6 pee(1-")'| . >
(1 ><E(z ’ V1+(1-(¢)2)xg(1-(2)2)
L/1+(1 @) )xs(1 J
E1XE52 ]
I\/” 1=(6))xe (1-(61)") I £1X552 )
&V foz ' 1+ (-G DD xE(1-(8)2)
(2 ay Qg a; = l\/1+ 1-(&7 )Z)J

()’ +(gh)

(sY)° +(z )°

{

1+(¢F) x5 (25)

2
2

1+(29) x(5Y)°

. ’ (¢1)2+({2)? )
"\ 1+(31)2xg($2)?

Example 1. Let a; = ({[0.5,0.6]; 0.6),[0.3,0.4]; 0.2) and a, = ({[0.2,0.3]; 0.5),[0.6,0.7]; 0.4) are
two PCFNs. Then, the operations a; @ a, and @; @ a, can be calculated as follows:

(0.5)2+(0.2)2

(0.6)2+(0.3)2

(0.6)2+(0.5)2

it !

1+(0.5)2xg(0.2)2’
0.3x50.6

1+(0.6)2x£(0.3)2

|

1+(0.6)2x£(0.5)2

a; Or a; =

(

0.4Xg0.7

V1+(1-(0.3)2)xg(1-(0.6)2)’

. 0.2X£0.4
" J1+(1-(0.2))xg(1-(0.4)2)

)

)

V1+(1-(0.4)2)x(1-(0.7)2)

= ({[0.1191,0.1772]; 0.2873), [0.1431,0.2343]; 0.0595).

0.5xg0.2
V1+(1-(0.5)2)xg(1-(0.2)2)’

(

0.6Xg0.5

0.6X£0.3
V1+(1-(0.6)2)x(1-(0.3)2)

a; Qg a, =

)

;J1+(1—(0.6)2)xE(l—(o.s)Z)

(0.4)2+(0.7)2

(0.2)2+(0.4)2

<[J

(0.3)2+(0.6)2
1+(0.3)2xg(0.6)2’

1+(0.4)2x(0.7)2

|

1+(0.2)2x(0.4)2

= (([0.0944,0.1431]; 0.2466), [0.1772,0.2696]; 0.0797).

Definition 7. Let a = ((Z;¢),(Z,{)) be a PCFN, where Z =

positive real number 7,

AIMS Mathematics
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(2) af" =

(1+((f)2)n)—(1—((f)2)")>
\/(1+((§U)2)n)_(1_((§U)2)77) A+(OHM+a-(&HHM"’

A+(EDHM+-(EDHHM

\/ (1+((E12)M-(1-((EL)2)M)
A+(EHDM+-(EHDND | \/

v2(¢h)"
<J(z—(cL)2)n+<(zL)2)n’ _ V29" )
vZ(gv)" V=)D
J@-@D2)n+(U)2)n
Vv2(sh)"
(J(z—(fL)Z)m«eL)Z)n’ _ V2(9)" )
Vvz(gv)” " J-©HT+H©H

Ve-EDH1+((EH2)N
[ J(1+((:L)2)n)—(1—((<L)2)n) 1
A+ +A-(CLDM ‘ _ J<1+((<)2)n)—(1—((c)2)">)

l\/(1+(((U)2)n)_(1_((<U)2)n) @+O2HM+@-HAH™M
A+(@V2)M+(1-(Y)2)™)
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Example 2. Let « = ({[0.5,0.6]; 0.6), [0.3,0.4]; 0.2) and 1 = 0.5. Then, the operations 1.; @ and a®"
can be calculated as

Npa=

_ j(1 +(0.5)2)95 — (1 — (0.5)2)05 |

(1+(0.6)2)%> — (1 - (0.6)2)05

(1 + (0.5)2)95 + (1 — (0.5)2)05" j

(1 + (0.6)2)%5 — (1 — (0.6)2)05 ’
| (1+ (0.6)2)095 + (1 — (0.6)2)05 |

V2(0.3)05

( J2 = (03505 + ((0.3)2)05 | V2(0.2)05

V2(0.4)05
V(2 = (0.4)2)7 + ((0.4)2)05

= (([0.0944,0.1431]; 0.2466), [0.1772,0.2696]; 0.0797).

ET _

V2(0.5)%5

( J(@2 = (0.5)2)05 + ((0_5)2)0.5' V2(0.6)°5

V(2= (02)2)°5 +((02)2)°%

v2(0.6)°5
V(2= (0.6)2)°% + ((0.6))°F

TG-Gone o

(14 (0.6)%)%> 4+ (1 — (0.6)2)0>

' J(1 +(0.3)2)95 — (1 — (0.3)2)05 |

(14 (0.2)2)%5 — (1 — (0.2)2)0>

(1 + (0.3)2)95 + (1 — (0.3)2)05" J

(14 (0.4)2)05 — (1 — (0.4)2)05 '
| (1 + (0.4)2)05 + (1 — (0.4)2)05 |

= (([0.0944,0.1431]; 0.2466), [0.1772,0.2696]; 0.0797).

1+ (0299 £ (1= (02)2)05

Definition 8. Let a; = ((Zy;&,),(Z1, (1)) and ay = ((Z3;&,),Z5; {;) be two PCFNs, where Z; =

AIMS Mathematics
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[£E,&97, Z, = [¢F, 3V, 7, = [€4,&V], and Z, = [¢5,¢Y]. Then, the Einstein union and Einstein
intersection of @; and @, are defined as follows:

max(¢7,¢3),
max(¢7, ¢7)
min(¢7,¢3), max ({1, ¢3),
min(§7,¢3) max ({7, )
Example 3. Let a; = ({[0.5,0.6]; 0.6),[0.3,0.4]; 0.2) and a, = ({[0.2,0.3]; 0.5),[0.6,0.7]; 0.4). Then,
the operations @; @g a, and a; Q5 a, can be calculated as

_ (,[max(0.5,0.2),] . min(0.3,0.6),] .
a, Ug a, = (<[max(0.6,0.3) ; max (0.6,0.5)), <[min(0.4,0.7) ; min (0.2,0.4))>

= (([0.5,0.6]; 0.6),[0.3,0.4]; 0.2).

_ (,[min(0.5,0.2),] . max(0.3,0.6),]
a, Ng a, = (<[min(0.6,0.3) ] ; min (0.6,0.5)),( max(0.4,0.7) ] ; max (O.2,0.4))>

= (([0.2,0.3]; 0.5),[0.6,0.7]; 0.4).

]; max (fl,€2)>,<[“’“’(5f'<5)' 'rnin»(§1,52)>>,

min(¢y, &) |’

(1) a; Vg a; = ((l

(2) a1 Ng a; = ((l ;min (&5, Ez)%(l ];max ((1:(2)))-

Theorem 1. Let oy = ((Zy;&1),(Z1, (1)) and a, = ((Z4; &2), Z2; {2) be any two PCFNs, where Z; =
[(£EEVY, Z, = [¢F, 201, 7, = [€5,&Y], and Z, = [C4,)]. Then, their accumulated value is also a
PCFNss, by using Definition 6.
Proof. For two PCFNs a; = ((Z1;&,),(Z1,1)) and ay = ((Z3;&,),Z5; (), wehave, 0 < &F < &7 < 1,
0SESYSLO0SESE<SL0SGSG<1,0<¢&,0<1,and0<¢,{ < 1such that
G+ @<L ED* + (@) <1,0< &+ <1,and 0 < &5 4 {F < 1. Therefore,

§ixpéh &/ xgéy <1, and

\/1+(1—(§f)2)x5(1—(f%)2) ) \/1+(1—(ff)2)><5(1—(fzu)2)

L 2 L 2 U 2 U 2
J (SIRICI \/ @) +&) 1 which implies that

1401 xs(ch)” [ 1+(¢Y) % (cY)

£Uxpel (d&«ﬂz
\/1+(1—(§{’)2)><E(1—(EZU)2) 1+(¢) xg (g7

s . &1xgé; (¢1)%+(82)?
<
Similarly, we can prove that N AR AL + /1+((1)2><E((2)2 1

Thus, a; Qg a, is a PCFN. Part (1) can be demonstrated using the same method.

Theorem 2. Let « = (([0.5,0.6]; 0.6),[0.3,0.4]; 0.2) and n = 0.5. Then, the results of the operational
laws 7. @ and a®" are also PCFNG.

Proof. The proof bears resemblance to Theorem 1.

Theorem 3. Let @ = ((Z;€),(Z,0)), ay = ((Z1;&),(Z1,§1)) and a, = ((Z3; &), Z4; (;) be three
PCFNs, and 17, , and 75 are any positive real numbers, where Z;, = [, &V, Z, = [¢5, 471, Z, =
5,621, 22 = (35,651, Z = [§",§"], and Z = [¢*,{V]. Then, we have

(1) a1 Br @z = a, B a4,

(2) a1 Qp @ = a; R ay,

() (a1 Qp a2)" = (a1)" Qg (az)",
(4) n.g (a1 B az) =n.pas npay,
(5) al ® alz = a”l1+772’

)

AIMS Mathematics Volume 8, Issue 7, 16961-16988.
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6) npa®@mpa= M +n)ga
Proof. (1) By Definition 6, we have

( () +(eh)’ GGl / (£1)2+(&,)? )
1+(88)°xg(e5)? [ 1+(e9) x5 (eV)? | N 1+ €02 xp(62)2"’
a, ®p ay = JExeds
2 2\’
( S (=D )e(1-e0) | Cixels )
¥ xply " J1+@-DDxp(1-(32)?)

[+ (=) xe(1-(@)

(52”) +(f{’)

(§2)2+(§0)?

( () +(&h)°
1+(¢’2L)ZXE(E%)2’ 1+(60) P xe(eD) |

1+(&2)2xg(§1)2"’

— {xEedl ’—l = a, ®; a;.
I\/1+ (() XE( ) I [29:1¢€1 >
l {Ixpl? J "J1+(1-()Dxe(1-(1)2)
[+ (@) )xe(1-(9)°)
(2) Again by Definition 6, we have
[ $1XE52 ]
I\/” 1-(e0)")<e(1-()") I f1xe8s >
& xpef "1+ (1-(EDDx(A-(E)?)
a, Qp a; = L/1+ ) ><E (f )? )J
( ()’ +(<) ) +(@d) / (31)%+(82)?
1+(¢8) x5 (¢5)*’ 1+(<y) ><E(§2U)2 ’ 1+(c1)2xE(c2>2
E¥xp&L
( [+ (- )xe(1-(1)°) _— )
&5 xgél 1+ (1-(E)2)xp(1-(ED?)

= \/1+(1—($§’)2)X5( —(ff])z)
(5’ hass )’

=a, Qr a;.

( ) +(Y) / (2)2+(1)?
1+(2k)* x5 (7h)*’ 1+(¢g) xE(qy)Z ’ 1+<<2)2x5(c1)2

The proof of the remaining part is relatively straightforward.
Definition 9. Let a = ((Z;¢),(Z,{)) be a PCFN, where Z = [¢},€Y] and Z =

¢ =(Z,0.(Z;8)).

[¢%,¢Y]. The
complement of a is denoted by a¢ and defined as a
Theorem 4. Let a; = ((Z1;&,),(Z1,41)) and ay = ((Z3;&,),Z5;,) be two PCFNs, where Z; =

[ff' ElU]a Zl = [(f' ZlU]’ ZZ = [55' féj]’ and ZZ = [(%'ZZU] Thene we have
(1) af ng a5 = (a; Ug a,)",

(2) af Ug a§ = (a3 Ng ay)",
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(3) a1C QF ag = (a, @k az)c,
(4) a1C Dk ag = (a; Qg az)c-

Proof. Since a; = ((Z1;§1),Z1,&1)) = (([61, 671 64161, 811 €1)), and

ay = ((Z:62),(Z5,02)) = ([€5, €41 €20, ([¢%, 6415 &2)). by Definition 9, we have
af = ((Z1, 40 (Z1;:60)) = (1h, &1 ) (€L €] €1)), and

af = ((Z2, 020, (Z2; 62)) = (135,31 G20, (85, €51 &2,

By Definition 8, we have

max (¢, $3),
max(§y, &)

c <<[min(cf, 3),

C
as Ng a, =
BT min(¢Y, ¢Y)

; min ((1,fz)>,<l ; max (§y, fz)))-

On the other hand,

‘min(¢t, ¢%)

| min(¢Y, ¢

max(¢f,¢35),
max (&7, &5

c
(@ U ap)¢ = ((l ;max (§4,§2)), ( 'l ;min ({3, (2)))

max (1, €5) |
max(¢y, &) |

_ (,|min(et. ¢,

- ( [min(ﬁ’, €

; min (¢, Q)):(l ; max (f1:fz))>

Thus, af ﬂE ag = (Ofl UE OCZ)C.
As the proof of the remaining portion is relatively simple, it has been excluded from this discussion.

4. Pythagorean cubic fuzzy Einstein weighted averaging AOs

This section focuses on exploring the Pythagorean cubic fuzzy averaging AOs using Einstein
operations.

4.1. PCFEWA operator

Definition 10. Let a; = ((Z;; &;),(Z;, {;)) be a collection of PCFNs, and y; is the weight of e; (i =

1,2,...,n) such that 0 < y; < 1land Y, p; = 1. Then, a PCFEWA operator of dimension n is a
mapping PCFEWA: A" — A, and

PCFEWA(“]_, a,, ...,O(n) = U1.g 1 ®E HUo.g Ao ®E ®E Un-E Apn. (4)

Theorem 5. Let a; = (([SziL' T &) <[[€iL; Zi”]] ,Zi)) be a collection of PCFNs, and y; is the weight of

a; (i =1,2,...,n) such that 0 < y; < 1and Y71, i; = 1. Then, the aggregated value by using Eq (4)
is PCFN, and
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PCFEWA(aq, ay, ..., ay)

[ [, (14(697) e (1-(e1)) |
( n_ (1)) e, (1-0)) | \/rm:1(1+(fi)Z)“i—n,’l=1<1—(fi)2)”i)
(14 (60)) i (1-(e0y?) ¢ | N T (G0 T (oA
n=1 i n=1 i
| L () e - e0?)” 5)
V2 H? 1(5 )“l
J“ e (@) VI, G
VZ H? 1((}’)"‘ \/n{;l(z—(zi)zwwn?:l((zi)zwi
I (=0 e ()

Proof. To demonstrate the validity of Eq (5), we will utilize the principle of mathematical induction
for the variable n. This approach involves establishing a base case and then demonstrating that if the
equation holds for any arbitrary value of n, it must also hold for the next value of n in succession. By
using this iterative process, we can establish the equation's validity for all possible values of n.

When n = 2, PCFEWA(aq, a3) = Uy.g @1 Pg Uy-g az. According to Theorem 1, yy.p a1 and
Uz.g a5 are PCFNs. Also, by Theorem 3, we can see that yy.z @y @g Uy.g @, is a PCFN.

A

(1_(5{])2)111

1+(&Y)

Hi1-p O = \/

(

(1+(eD*) '+ (1—(5%)2)““
()"
(1))

(1_(6{])2)111
Va(h™
\/(2_((%)2)#1+((€%)2)ﬂ1

V2(g)H

1+(&Y)

Je-69) (o)

1+(eh))) " - (1-(eh)))

07 (@)

Uz @y = \/

CFEWA(aq, a3)

AIMS Mathematics

(

( J (") "+ (-eD") |
(
(

1+(e9)") “+(1-(e9)") "
ﬁ(z%)ﬂZ

Y@ (@)

ﬁ(zéj)u-Z

LG9+ (@)

V2(g)H1

N = AL (AP

) (1+(é’1)2)“1—(1—(§’1)2)”1)
A+EDHM+(-(EHH"’

)

(1+(fz)2)”2—(1—(€z)2)“2>
(1+(E)DH2+(1-(§2)2)H2"’

_ V2(;)H2 )
"S-+ (DN
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( _\/H?=1(1+(fi)2)“i—H§=1(1—(Ei)2)”i>
Hi w | N A A+ EDDH+TA , (1-(EpDHT’
JH%_l(H(a” ), (1-E0)) ' '

V2T 1(65)’”
GG (@) | e an

VI, (G Mo G-GoRH T (G0
|12, (2-9)) ez, ((c0))
Thus, the result is true for n = 2.

Suppose that the assertion is valid when n is equal to some particular value, denoted as k. In this case,
we can state that Eq (5) holds, which means that the result holds for the given value of k. That is,

\/ 1+(¢h) ) " (a- (f%)z)”"_
; :

1+(e9)") I (-0 | \/n;;lm(fi)zwi—n;;l(l—(fi)Z)Hi
I, T+ D FHTIE,, - ED)

)

),

L

( )
jni‘-l(l f”)) 1, (1-e)) "

(

Hi
CFEWA(@y, gy o) = | INTE (1)) S, (1-0Y7)

VZIe 1(#)“"
[Jn 2-(¢°) i (@) _ VZIIE, (G)M

V2 Hi‘ 1(6 oy 'Jn{-;l(z—(zi)zwi+n{-;1((ci)2)“i)
lJn ()" J

Our present goal is to demonstrate the truth of Eq (5) when n is equal to k + 1. By Eq (4), we get
PCFEWA(ay, @z, ..., Qy1) = - @1 Dg o5 @2 Dg - Dg Un-g Apsr
' j £+ DD - T, (- G
Mo+ GO+ T, (1 - G
L)) - (-0 J
(1 +(E) " + H':=1 (1- )"

£+ AR =TT, (- EDM
1(1 + (51)2);11 + l_[ 1(1 - (fl)z)ul

\/_H 1((1 )Hl
Jn (z—(a o+ T, (@D I @
( ; ((.U)”i )
ol Jn L2 — (G2 + T, (€)™
I (2 (a-”)z) 1 (@))]

AIMS Mathematics Volume 8, Issue 7, 16961-16988.



T (1-(ghy)?) |

(1+(€k+1)
(1+(cke)” "“+(1 (eh))™ | \/

( ) (1+ (1) D Hh+1 (1 (§gr1) P HRH1
1+ k) DH2+(1—(Eg41)DHhA1
(1+(5k+1) )ﬂk+1 ( (f}%’+1)2)uk+1 k+1 k+1
Kk Kk
EBE | (1+($k+1)) o ( ($k+1)) o
VZ(hyr) !

(

V2(gh )

L)) ™ (k)

l \/(2_({Ig+1)2)uk+1+((k+1)2)‘uk+1 J

1 (e5))) e (1-(g1))

V2({gqp) Pt
J G4 (Ga)D

)

M a+EDDH-TIR (1 (E)2)Hi

i (-t6)”

Mt (1+(61)) e (- () j
k+1(1+(fu) )”‘ k+1(1 (giU)Z)“.
k+1(1+(fu) ) k+1( (giU)Z)“l_

V2 H{‘*f(( )"

I\/Hk+1 k+1((< ) )

M a+ED DM+ (- (& )2)'*1)

V2L ()M

fni“f(z " |
l\/l-[k+1

BER(Ga

Jn"“@ @O

)

),
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To summarize, the proof shows that Eq (2) is valid for n = k + 1, and we can conclude that Eq (5)
holds for all values of n. Therefore, we have successfully proven the validity of Eq (5) across all

possible values of n.

Property 1. (Idempotency) If a; = a where a = ({[¢%,&Y]; &), ([{L,
weight of @; such that 0 < p; < 1 and }j-; u; = 1, then PCFEWA(a4, a5,

Ul,7)) forall i,

Proof. As a; = ({[€%,&V]; €),([¢%. ¢
PCFEWA(ay, a3, ..., @) =

\/ n_ L (A+(EDDR-T_, (1-(EL)2)Hi

n=1(1+()AHi-TTh-, (1-(5*)*H

=1 (LHED DT, - DM \/ :

n_ (1+EDD)HR[E_ (-2 |
n_ A+ EDRHE, (1-(EV)2)H

V2T, (9™
Jn L (2- QDT (CDDH

ﬁ=1(1+(f)2)“i+H2=1(1—(€)2)“i) ’

V2[Ii, (DH

V2T, ()"
Jn L (2-QU)2HIHT, (GU)2)M
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\/1‘[3 1(1+($L)2)21111”i_]‘m 1(1_(§L)2)Z?=1#i
" Z Hi n - Z?: I n n
M7, (1+(ED2)2i=1 Hi IR, (1-(EL)2)%i=1 \/1‘[2 L@ =1 Fi[_ (1 (§)2) i1 K

n Z i n - Z?: i ’
[ (14 (602 SR i [ (1 (0Bt it | N Pma (T EDTE T, G-

Moy (1+ (V)21 4TI, (1~ (V) 2) 2= M

VEIIE, (69
( e T D T T e VETT ()5 b
VIR, (g)Fm1 \/1'[ L2 @D = T, (D)2 M
N e I T Oy
since 1=, u; = 1. Therefore, PCFEWA(ay, &y, ..., an) = (([EX,EV]; € ),([¢5 Y], ) = a.
Property 2. (Monotonicity) Let a; = ({[¢%,21; &), {[ (¢4 ¢V1, ¢)) and
= ({[¢5,€71: €. ¢|[¢5.¢71]  €)) be PCFNs. If a; < d;, then

PCFEWA(ay, ay, ..., ay) < PCFEWA(d,4, dy, ..., &y).

Proof. As the proof is straightforward, we will omit it here.
Property 3. (Boundedness) Let a; = (([fiL, &1 &), ([[{iL' (iU]] ) Zi)) (i =1,2,...,n) be a collection of
PCFNs. If

L
ot = <lmax(fl )l < (&), (lml ((?lU)) - min ({l))>’

max(&/
__(,|min(¢; ax(¢h),
a _< min (S;lu)l (El)):([ ((lu)l max (Zl)))

then a~ < PCFEWA(ay, ay, ..., a,) < a™.
Proof. As the proof is straightforward, we will omit it here.
Property 4. (Homogeneity) Let ¢ be a positive real number. Then, we have

PCFEWA(@aq, ¢ ay, ..., pa,) = @PCFEWA(ay, ay, ..., ay).

Proof. It is simple to demonstrate.
Corollary 1. The relationship between the PCFEWA and PCFWA operators can be expressed as follows:

PCFEWA(ay, ay, ..., ay) = PCFWA(aq, ay, ..., ay,).

Example 4. Let a; = ({[0.5,0.6]; 0.6), ([0.3,0.4]; 0.2)), &, = ({[0.2,0.3]; 0.5), ([0.6,0.7]; 0.4)) and
as; = (([0.2,0.4]; 0.3),([0.5,0.6]; 0.4)) be three PCFNs. The weight vector is 4 = (0.25.0.35,0.4).
Then,

i B (1+(0.5)2)0-25%(1+(0.2)2)9-35x(1+(0.2)2)04
e (1+(€L)2) = ( (fL)Z) _|=(1-(0.5)2)025x(1-(0.2)2)035x (1-(0.2)2)04 __ 0.3059
L L - (1+(0.5)2)0-25x (1+(0.2)2)9-35x (1+(0.2)2)04 - Y ”

(1+(€ ) ) ( (f ) ) +(1—(0.5)2)0'25X(l—(0.2)2)0'35X(l—(0.2)2)0'4
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i o (1+(0.6)2)025x (1+(0.3)2) 035X (1+(0.4)2)04
r(1+ED)Y) ML (1-ED)T) T | (- 0.6)2)025x(1-(0.3)2)035x (1-(0.4)2)04 0.4337
n (1+(gU)2)’”+nn (1_(511)2)”1‘ T (14(0.6)2)925x(1+(0.3)2)035x (1+(0.4)2)04 T ** ’
n=1 i n=1 i +(1-(0.6)2)9-25%(1—(0.3)2)0-35x (1—(0.4)2)0-4
(1+(0.6)2)0'25X(1+(0.5)2)0'35X(1+(0.3)2)0'4
ooy A+EDH T, =DM | -(1-(0.6)2)025x(1-(0.5))°35x(1-(0.3))* _ 4oy
2=1(1+(gi)Z)Hi+H2=1(1_(€i)2)Iti - (1+(0.6)2)0'25X(1+(O.5)2)0'35X(1+(0.3)2)0-4’ — V. s
+(1—(0.6)2)0'25X(l—(0.5)2)0'35X(l—(0.3)2)0'4
n (LM 0.25 0.35 0.4
ﬁnlzigzl) _ = V2(0.3)%25x(0.6)°35x(0.5) = 04454,
I (2~() I (€07) [-032025x (2~ (062035 (2~ (05204
+(0.3)0'25X(0.6)0'35X(0.5)0'4
n (LM 0.25 0.35 0.4
VZ2IT,(¢)) _ V2(0.4)%25%(0.7)°35%(0.6) = 0.5580,

JHL(Z—(z%)z)”im?ﬂ((z%)z)”i J(z—(o.4>2)°-25x(z—(o.7>2>°-35x(z—(o.e)2>0-4
+(0.4)0'25X(0.7)0'35 X(0.6)0'4

V2ITis, (G)H _ v2(0.2)%%5%(0.4)235x(0.4)%*

- 0.3180.
Jn?zl(z—@i)Z)ﬂi+n{;1((zi)2)ﬂt j(z—(o.z)Z)O-zsx(z—(o.4)2)°-35x(z—(o.4)2)0-4

+(0.2)0-25%(0.4)0-35%(0.4)04

PCFEWA(a4, @, a3) = ({[0.3059,0.4337]; 0.4650), ([0.4454,0.5580]; 0.3180)).
Now, by using the PCFWA operator [36] to aggregate these three PCFNs,

[ j 1-IT,(1 - (é#)zwu]
q | VI @om,
PCFWA(ay, @, ..., @y) = l\/1 i, (1- (9)7)" : ©6)

(M e, I (@0)7) ] T (ot

\/1 — T, (1 = (E1)2)m = /1 — (1 — 0.52)025 x (1 — 0.22)035 x (1 — 0.22)%4 = 0.3122,

\/1 1, (1 - (fi")z)m = /1= (1 - 0.62)025 x (1 — 0.32)035 x (1 — 0.42)04 = 0.4392,

=TI, (1= (E)HH =1 — (1 —0.62)025 x (1 — 0.52)035 x (1 — 0.32)04 = 0.4703,
(@M = (0.3)%25 x (0.6)°3° x (0.5)%* = 0.4691,
®L (¢ = (04)°% x (0.7)°35 x (0.6)°* = 0.5722,

n ()M = (0.2)025 x (0.4)°35 x (0.4)%* = 0.3364.
PCFWA(ay, a,, at3) = ({[0.3122,0.4392]; 0.4703), ([0.4691,0.5722]; 0.3364)).

By Eq (2), we get

0.3059+0.4-337—0.4-650)2 (0.4454+0.5580—0.3180

) - )2 = —0.0438,

Sc(PCFEWA(al, a,, ag)) = (
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0.3122+0.4-392—O.4-703)2 (0.4691+0.5722—0.3364

: . )2 = —0.0465.

Sc(PCFWA(ay, @z, 3)) = (
Clearly, we can see that PCFEWA (a4, ay, ..., @) = PCFWA(a4, @y, ..., a;).
4.2. PCFEWA operator

Definition 11. A PCFEOWA is a mapping defined as PCFEOWA: A™— A on a collection of PCFNs f;,
(i=1,2,..n) as follows:

PCFEOWA(“L Az, .y an) = H1@p(1) D .Uzap(z)® .. D HnQp(n) (7)

where p is a permutation of (1,2,...,n), such that @,;_q1) > apy for i=1,2,..,n, and p =
(U1, ty -, )T s its weight vector, such that u > 0 and Y7, y; = 1. Moreover, the i*" largest PCFN
among a;'s is a, ;).

Theorem 6. Let o; = (([EiL, & &, ([[EiL, (iU]] , (i)) be a collection of PCFNs, and p; is the weight of
a; (i =1,2,...,n) such that 0 < y; < land )}}L, 4; = 1. Then, the aggregated value by using Eq (4)
is PCFN, and

PCFEOWA(aq, a3, ..., ay)

)
Hir i i
1-(s50) ) | n?=1(1+(fpa>)2)“'—H?ﬂ(l—(fpm)z)”')
' H?=1(1+(s‘p(i))2)#l+l'[?=1(1—(fp(i))2)#l '

=" e . @®)

Bi ui'
jﬂ?=1(2‘(5ﬁ(i>)2) +H?=1<(cﬁ(i))2) _ V2R (Go)"

) ; , :

V2T (6) \/H?ﬂ(z‘@p(i))z)ul+H?=1((€P<"))2)ul

Ki Hi

_jn?ﬂ(z‘((g(i))z) 1+H?=1((§g<i>)2) l_

Property 5. (Idempotency) If a; = a where a = ({[¢L,&Y]; €),([¢%, Y], 7)), and y; is the associated
weight of @; such that 0 < p; < 1 and Yj-; u; = 1, then PCFEOWA(4, @3, ..., @) = a.

Property 6. (Monotonicity) Let a; = (([EiL, &€, ([[(iL' fiu]] , fi)) and
a; = (([¢4,€VT: €0 (|[¢,8V]| ¢)) be PCFNs. If @; < ., then

PCFEOWA(ay, &y, ..., ) < PCFEOWA(dy, dy, ..., i)

Property 7. (Boundedness) Let a; = (([fiL, &V &), ([[(f, (iU]] ) (i)) (i = 1,2,...,n) be a collection of

PCFNs. If
[ [max(E))] min(),|
a = <<[max(fiu)l ; Max (fl)) ’ ([mln((ly) ; MIn (Zl)))s
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_ min(¢; max({}),
a < Imm(flu)l n (&), ([ ((lu) max ((1)))

then a~ < PCFEOWA(aq, a5, ..., a,) < at
Property 8. (Homogeneity) Let ¢ be a positive real number. Then, we have

PCFEOWA(gpaq, ¢ ay, ..., pa,) = @PCFEOWA(ay, @y, ..., ;).

Corollary 2. The relationship between the PCFEOWA and PCFOWA operators can be expressed as
follows:

PCFEOWA(a4, ay, ..., a,) = PCFOWA(a4, ay, ..., ay).
5. MCDM approach based on proposed operators

This section will employ the proposed Einstein aggregation operator to address MCDM problems
in the context of PCFSs. To facilitate this, we will introduce several assumptions and notations to
define the MCDM problems and evaluate them using PCFSs.

Let 9 = {9;,9,, ..., 9} be the set of m alternatives, which have been analyzed under the set of
n different criteria Y = {11, ¥,, ..., P, }. Suppose that an expert assesses the alternatives, providing
their opinions on each alternative 9J; (where i ranges from 1 to m) within the context of a Pythagorean
cubic fuzzy environment. The expert's evaluations are based on their preferences and priorities with
respect to the different criteria in the set Y, and these values can be considered as Pythagorean cubic

fuzzy numbers (PCFNs) G = (gij)mn where g;; = (([fi’“j,fg]; $ij) ([(fj,(ilﬂ,{ij)) refers to the

priority values assigned to alternative U; by the decision maker such that [EiLj, fg],[{fj, (iLJ’-] c [0,1],
2 2 .

0<&;,0;<1,(&; ) + (¢ ) Tand (&;)" + (3;)” < 1. Let u = (g, Uz, -, tn)T be the weight

vector of criteria such that 0 < y; < 1 and Z}lzlyj =1(i=12,...mj=12..,n).

The proposed method is shown in Figure 1 for identifying the best alternative(s).

Define set of alternatives Define set of criteria
\ 4
Input Data
Define weight vector of criteria

v

Constract decision matrix <

v v
Propoaed Approach 2 23 2
E £ rNormahze decision matrix

Aggregate the information by using 1. Find the score or accuracy values
the proposed operators 2. Rank the alternatives

it criteria decision
problem

v

\ 4

OQutput 1bcst alternative

Figure 1. Flowchart of the proposed approach.
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Step 1. To comprehensively evaluate various alternatives, it is necessary to collect relevant information
and rate them based on specific criteria. The rating values are expressed as a decision matrix G:

11 Y1z " Gin
G=(% g L I ©)
Im1 9Imz " Gmn

where gi; = ({5, €51 §i) <[€55, €], €iy)) sueh that [&5, €8], [, ] < [0,1], 0 < &, Gy < 1,
ED*+ (" < 1and (&) + (¢y) < L.

Step 2. When making a decision, criteria are used to assess and compare alternative options. Two types
of criteria exist: Benefit criteria and cost criteria. Benefit criteria evaluate the positive aspects of the
alternatives being considered, measuring their advantages or benefits to determine the best solution to
a particular problem. Cost criteria, on the other hand, assess the negative aspects or expenses associated
with each alternative, measuring their disadvantages or costs, and are important for determining the
overall feasibility of a solution. We will use the negation operator below for normalization.

B {(([fiLj, &5 ; €, ([Sh 5); i) for benefit — type criteria
v (¢, S S (€8 €8] €i)) for cost — type criteria

To normalize the criteria, we will apply the following operator: If the criterion being assessed is a
benefit criterion, no further action is necessary. However, if the criterion is a cost criterion, it will be
converted into a benefit criterion, and the results will be condensed and organized into the decision
matrix R = (rl- j)mn'

(10)

Step 3. One way to aggregate the various preference values 7;; of the alternatives ¥; into a single
collective value 7; is by utilizing either the PCFEWA or PCFEOWA operator.

Step 4. To calculate the score of the combined PCFN value 1;, you can use Eq (2). Arrange the alternatives
9; in order of their score value Sc(r;), starting with the highest value and ending with the lowest.

5.1. Hllustrative example

To demonstrate the application of MCDM in engineering investment decision-making, we have
chosen an illustrative example that highlights various investment alternatives. This example serves as
a demonstration of how MCDM can be utilized to make informed decisions in complex engineering
investment scenarios.

Let us examine the realm of investing, where an individual is interested in putting some amount
of money into an investment. In current times, numerous companies are enticing customers by
lowering prices and offering additional perks, making it challenging for investors to determine the
optimal market for investment. To mitigate market risks and improve decision-making clarity, a
committee was established to invest funds in four key markets: Southern Asian (9,), Eastern Asian
(9,), Northern Asian (9¥3) and Local (9,). The committee enlisted the expertise of an analyst who
evaluated each market based on four primary factors: risk (1), growth potential (i), environmental
impact (13) and social-political impact (1, ). The weight vector, denoted as p = (0.35,0.3,0.15,0.2)7,
is associated with the four primary analyses ;. Using the established method, we proceed to determine
the optimal alternative as follows.

Step 1. The information about each alternative’s preferences is condensed into a set of PCFNs. These
PCFNs serve as a way to summarize the nuanced and complex preferences of the decision-makers.
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Additionally, the collection of ratings given for each alternative is recorded in a decision matrix, which
is presented in Table 3. The decision matrix provides a clear and concise overview of the various

ratings and their corresponding alternatives. The structure of the proposed model is systematically
outlined in Figure 2.

Goal Or timal Merket for Investment

thern
Markel

Figure 2. The systematic structure of the proposed model.

Table 3. Decision matrix.

Alternatives U Y, Y3
P <(0607],06),) ([0506],05),) ( 0405,05),) (([0304],0 ),)
1 ([0.5,0.6]; 0.4) ([0.3,0.4]; 0.6) ([0.2,0.3]; 0.4) [0.5,0.6]; 0.7)
9, (([0.5,0.6]; 0.7),) (([0.3,0.4]; 0.8),) (( [0.5,0.6]; 0. 8),) ( [0.6,0.7]; 0. ),)
([0.4,0.5]; 0.6) ([0.5,0.6]; 0.6) ([0.3,0.4]; 0.5) [0.5,0.6]; 0.4)
95 <([o.4,0.5]; 0.2),) (([0.5,0.6]; 0.5),) (([0 6,0.7]; 0.6), (([0 5,0.6]; 0. ),)
([0.2,0.3]; 0.5) ([0.4,0.5]; 0.7) ([0.5,0.6]; 0.4) ([0.4,0.5]; 0.5)
9, (([0.6,0.7]; 0.6),) (([0 3,0.4]; 0. 3),) (([o 2,0.3]; 0. 5),) (([0 4,0.5]; 0.3), )
([0.4,0.5]; 0.4) ([0.4,0.5]; 0.4) ([0.5,0.6]; 0.3) ([0.6,0.7]; 0.2)

Step 2. Since Y, and Y, pertain to costs, while 1, and 15 are related to benefits, the criteria can be
categorized accordingly. Therefore, to create a normalized Pythagorean cubic fuzzy decision matrix R,
Eq (10) is utilized. This process takes into account the various types of criteria and ensures that the

resulting decision matrix accurately reflects the relative importances of both costs and benefits. The
resulting decision matrix can be seen in Table 4.

Table 4. Normalized decision matrix.

Alternatives 4, Y, Y3 Yy
9, ( {[0.5,0.6]; 0. 4),) ( [0.5,0.6]; 0. 5),) (([0 4,0.5]; 0. 5),) (([0.5,0.6], o.7>,)
([0.6,0.7]; 0.6) ([0.3,0.4]; 0.6) ([0.2,0.3]; 0.4) ([0.3,0.4]; 0.6)
9, (([0 4,0.5]; 0. 6),) (([o 3,0.4]; 0. 8),) (([0 5,0.6]; 0. 8),) (([0.5,().6], 0.4),)
(0205050 (0506050 (10607060 ((10405)05)
) ; , ; , ; , 4,0.5]; 0.5),
’ (([0405 ,02)) (([0405],07)) (([0506],04)> (([0.5,0.6],0.3))
9, (([o 4,0.5]; 0. 4),) (([o 3,0.4]; 0. 3),) (([0 2,0.3]; 0. 5),) (([0.6,0.7], o.2>,)
([0.6,0.7]; 0.6 ([0.4,0.5]; 0.4) ([0.5,0.6]; 0.3) ([0.4,0.5]; 0.3)
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Step 3. To combine the individual preference values 7;; associated with each alternative Ai into a
unified value r;, two operators can be employed: PCFEWA or PCFEOWA. These operators offer a
means of aggregation that can effectively take into account the diverse and often complex preferences

of decision-makers.
(1) By PCFEWA operator

By utilizing the PCFEWA operator and taking into consideration the provided evidence, the
various performance values can be effectively aggregated. This process allows for the calculation of
comprehensive overall performance values for each alternative, which are summarized in Table 5.

Table 5. Aggregated performance values of alternatives by using the PCFEWA operator.

Alternatives  Aggregated performance values

Y4 ({([0.5894,0.6515]; 0.5532),([0.4879,0.6106]; 0.6370))

Y, ({[0.4108,0.5315]; 0.6070),([0.5193,0.6347]; 0.4566))

U3 ({([0.4511,0.5768]; 0.6204),([0.5033,0.6116]; 0.5483))

U, ({[0.4015,0.5676]; 0.5619),([0.4356,0.5284]; 0.5943))
(2) By PCFOWA operator

By taking into account the provided evidence and using the PCFEOWA operator, it is possible to
aggregate the different performance values effectively. Before utilizing the PCFEOWA operator to

aggregate different alternatives, we ranked their original positions based on their score. The results are
summerized in Table 6.

Table 6. Aggregated performance values of alternatives by using the PCFEOWA operator.

Alternatives Aggregated performance values

Y, ({[0.6029,0.6764]; 0.5791),([0.4841,0.6214]; 0.6403))
Y, ({[0.4213,0.5453]; 0.6178),([0.5301,0.6418]; 0.4697))
U3 ({[0.4601,0.5844]; 0.6297),([0.5143,0.6241]; 0.5587))
Yy ({[0.4112,0.5791]; 0.5788), {[0.4467,0.5384]; 0.6065))

Step 4. Equation (2) can be utilized to compute the score of the combined PCFN value r;. After
obtaining the scores, arrange the alternatives 9J; in descending order of their score value, beginning
with the highest value and concluding with the lowest. The outcomes are then summarized in Table 7.

Table 7. Score values and ranking order of alternatives.

Operators _Score values Ranking orders

o2 I, 3 Uy
PCFEWA  0.0289 —0.0415 —0.0172 0.0032 U; >, > 95 >V,
PCFEOWA 0.0304 -—0.0413 -—0.0182 0.0029 ¢, >, > 195 >V,

Table 7 reveals that the alternative ; has the highest score value among all the alternatives.
Therefore, it can be concluded that 9, is the most suitable option for the investment based on the given
criteria and the evaluation method used. It is noteworthy that the score values of the other alternatives
are comparatively lower than 9;, indicating that they may not be as favorable as 9; for the investment.
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Consequently, the decision-makers should consider investing in 9J;, as it has demonstrated superior
performance and has the potential to yield the desired outcomes. Figure 3 displays a graphical
representation of the proposed aggregation operators. Upon examination of the figure, it becomes
evident that the outcomes of both operators are quite similar. This similarity between the results
supports the notion that the proposed method is stable, as it can consistently generate similar results
using different aggregation operators.

0.04 PCFEWA PCFEQWA
0.03

0.02
001
0
-0.01

-0.02

Score values

-0.03
-0.04

-0.05
Alternatives

Figure 3. Graphical representation of the proposed aggregation operators.
5.2. Comparative study

To determine the effectiveness of our proposed method in identifying the best alternatives, we
conducted a comparative analysis with several previous approaches described by various authors. The
objective was to assess the performance of our method compared to these existing methods. The results
of this comparison are presented in Table 8, where each method is evaluated based on its ability to
identify the best alternatives according to the given criteria. This analysis provides valuable insights
into the strengths and weaknesses of each method and allows us to determine the efficacy of our
proposed approach in identifying the most suitable alternatives for the investment.

Based on the comparison, we can conclude that the best alternative identified by our proposed
approach is consistent with the results obtained from the existing methods. However, the aggregated
PCFN values generated by our approach are more conservative than those produced by the other
methods. As observed from the table, the relative score values of the alternatives follow a similar trend
(either increasing or decreasing) across all the methods. This indicates that our proposed approach is
equally effective in addressing decision-making problems in a PCFS environment as the existing
methods. Overall, the comparative analysis provides evidence of the efficacy of our proposed approach
in identifying the most suitable alternatives for the investment.
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Table 8. Score values and ranking order of alternatives with different existing approaches.

Approaches Score values Ranking orders

1 9, I3 oA
Seker and Kahraman [40] —0.4560 —0.5632 —0.4903 —0.4734 U; >V, > 93 >0,
Abdullah et al. [10] —0.4011 -0.5578 —-0.5106 —0.4895 Y, > VY, >3 >V,
Hussain et al. [41] —0.3316 —0.5285 —0.5043 —0.4259 9, > U, >3 > U,
Khan et al. [38] —0.2167 —0.5908 —0.4550 —0.3518 9; > 9, >3 > U,

Based on the information presented in Figure 4, it can be observed that the outcomes achieved
through the proposed approach are comparable to those of other approaches. However, it is worth
noting that the proposed approach exhibits a higher level of stability and provides significantly more
detailed information when compared to the other approaches. These findings suggest that the proposed
approach may have distinct advantages over the other methods in terms of reliability and the depth of
information it can provide.

| liﬁﬂ

=

=]

-0.5
-0.6

m Seker and Kahraman [40] m Abdullah et al. [10] Hussain etal. [41]
Khan et al. [3E] B proposed PCFEWA N proposed PCFEOWA

Figure 4. A visual representation of various alternatives with different approaches.

From the above discussion, we have observed that the proposed approach produces the best
alternative, which validates its stability in comparison to the state-of-the-art methods. In contrast to
the existing decision-making methods that use either IVPFSs or FSs, the proposed approach considers
both IVPFSs and FSs simultaneously, resulting in a more comprehensive evaluation of the alternatives.
This is important as existing approaches may lose crucial information on either [IVPFNs or FNs, which
could potentially impact the decision results. Additionally, the proposed approach uses a different
computational procedure than the existing approaches, but it yields more realistic results due to the
consideration of the consistent priority degree between argument pairs in the decision process.

Overall, the proposed model offers a significant improvement over existing approaches by
relaxing many of their constraints and limitations. In doing so, it provides a more flexible and adaptable
environment that can effectively address complex decision-making problems. By enabling decision-

AIMS Mathematics Volume 8, Issue 7, 16961-16988.



16984

makers to consider a broader range of factors and criteria, the proposed model empowers them to make
more informed and nuanced decisions that reflect the real-world complexities of their specific
situations. Furthermore, the proposed model incorporates advanced algorithms and techniques that
enhance its robustness and scalability, allowing it to handle large and diverse data sets with ease. By
leveraging these innovative features, the proposed model provides decision-makers with a powerful
and reliable tool that can help them achieve their goals more efficiently and effectively.

5.3. Advantages of proposed operators

(1) The Pythagorean cubic fuzzy aggregation operators that have been proposed exhibit a higher
degree of flexibility in comparison to the currently existing Einstein aggregation operators for
both Pythagorean fuzzy sets and interval-valued Pythagorean fuzzy sets. These new
aggregation operators can incorporate more complex and nuanced relationships between input
variables, allowing for more accurate and precise results. Moreover, the Pythagorean cubic
fuzzy aggregation operators have a wider range of applications, making them a more versatile
and adaptable tool for decision-making processes in a variety of fields.

(2) The Pythagorean cubic fuzzy set (PCFS) is a generalized form that can handle incomplete,
indeterminate and inconsistent information commonly found in real-world problems. As a
result, current studies using PCFS are more suitable for solving day-to-day problems than
existing ones.

5.4. Limitations

Limitations are inherent in all research, and this study is no exception. As with any research, these
limitations will serve as a guide for future studies in this area.

(1) The study proposes new weighted averaging and ordered weighted averaging operators that
use Finstein operations within a PCF environment. It is important to note that further
advancements can be made by defining weighted geometric and ordered weighted geometric
operators that utilize Einstein operations in the PCF environment in the future.

(2) In the current study, the demonstration is conducted using four criteria and four alternatives.
However, in future research, data can be collected from multiple experts across various
locations to validate the results of this study.

6. Conclusions

The Pythagorean cubic fuzzy set is a significant and innovative framework where the degrees of
membership and non-membership of an element are represented by cubic sets. By leveraging the
benefits offered by these sets, the existing Einstein operations are extended to the Pythagorean cubic
fuzzy environment. This extension of the Einstein operations allows for a more accurate and nuanced
representation of uncertain or imprecise information, which is often encountered in decision-making
processes. Drawing on these operational laws, a collection of aggregation operators, namely,
Pythagorean cubic fuzzy Einstein weighted averaging and Pythagorean cubic fuzzy Einstein ordered
weighted averaging operators, has been proposed to facilitate the aggregation of Pythagorean cubic
fuzzy information. These operators offer enhanced flexibility and accuracy in dealing with uncertain
or vague information and can be applied in various decision-making contexts. Furthermore, an MCDM
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algorithm is provided to deal with PCF information. To illustrate the proposed approach, a relevant
example of investment decision-making in an optimal market has been provided. Lastly, the proposed
results are compared with other existing approaches to confirm the stability and reliability of the
proposed method.

In the future, the applicability of the findings in this paper could be extended to various uncertain
and fuzzy environments such as interval 2-tuple linguistic multi-attribute decision-making [42], risk
analysis [43] and others [44]. Also, Pythagorean cubic fuzzy numbers can only be utilized when the
condition (£Y)? + (¢Y)? < 1 is met. However, in certain real-world situations, this condition may not
be satisfied, thereby posing a challenge to decision-makers. For instance, when a decision-maker rates
an alternative as (0.8, 0.7), it cannot be accommodated by the proposed algorithm. Consequently, it
may be necessary to conduct additional research to investigate these limitations.
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