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Abstract: Pythagorean cubic fuzzy sets (PCFSs) are a more advanced version of interval-valued 

Pythagorean fuzzy sets where membership and non-membership are depicted using cubic sets. These 

sets offer a greater amount of data to handle uncertainties in the information. However, there has been 

no previous research on the use of Einstein operations for aggregating PCFSs. This study proposes two 

new aggregator operators, namely, Pythagorean cubic fuzzy Einstein weighted averaging (PCFEWA) 

and Pythagorean cubic fuzzy Einstein ordered weighted averaging (PCFEOWA), which extend the 

concept of Einstein operators to PCFSs. These operators offer a more effective and precise way of 

aggregating Pythagorean cubic fuzzy information, especially in decision-making scenarios involving 

multiple criteria and expert opinions. To illustrate the practical implementation of this approach, we 

apply an established MCDM model and conduct a case study aimed at identifying the optimal 

investment market. This case study enables the evaluation and validation of the established MCDM 

model’s effectiveness and reliability, thus making a valuable contribution to the field of investment 

analysis and decision-making. The study systematically compares the proposed approach with existing 

methods and demonstrates its superiority in terms of validity, practicality and effectiveness. Ultimately, 

this paper contributes to the ongoing development of sophisticated techniques for modeling and 

analyzing complex systems, offering practical solutions to real-world decision-making problems. 
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1. Introduction 

Multi-criteria decision-making (MCDM) is a process of choosing the best course of action among 

several alternatives that are evaluated based on multiple criteria. MCDM is widely used in real life to 

solve complex problems that involve multiple objectives or goals and where there is no clear or 

objective single criterion for decision-making. In MCDM, different criteria are identified, and weights 

are assigned to them based on their relative importances. Then, the alternatives are evaluated against 

each criterion, and scores are assigned based on their performances. Finally, the scores are combined 

to determine the overall ranking of the alternatives, and the best course of action is selected. MCDM 

is widely used in various fields, such as finance, engineering, healthcare, environmental management 

and business management. For example, in finance, MCDM can be used to select the best investment 

portfolio that balances risk and return. In healthcare, MCDM can be used to select the best treatment 

option for a patient based on factors such as efficacy, side effects and cost. Li and Sun [1] proposed an 

intelligent investment strategy for stocks using historical data by developing a support vector machine 

(SVM) parameter optimization algorithm. In their 2021 study [2], they also applied a radial basis function 

(RBF) neural network optimal segmentation algorithm to credit rating, demonstrating improved accuracy 

in predicting credit ratings and its potential usefulness in credit risk assessment in financial institutions. 

Aggregation operators are mathematical functions that combine multiple criteria or objectives 

into a single value that represents the overall performance of an alternative. Aggregation operators are 

widely used in decision-making to simplify complex problems that involve multiple criteria and 

objectives. For example, Garg and Rani [3] introduced aggregation operators that incorporate weighted 

averaging to combine various intricate intuitionistic fuzzy sets through t-norm operations. By 

employing Aczel Alsina operations, Senapati et al. [4] developed a variety of new aggregation 

operators that handle interval-valued intuitionistic fuzzy sets. Liu and Wang [5] introduced a series of 

aggregation operators that combine decision information expressed through linguistic intuitionistic 

fuzzy numbers. Akram et al. [6] proposed Hamacher weighted averaging and geometric aggregation 

operators for aggregating complex intuitionistic fuzzy information. Picture fuzzy aggregation 

operators were introduced by Riaz [7] and offer several benefits in handling practical situations. Verma 

and Merigó [8] created arithmetic and geometric aggregation operators to combine information from 

2-dimensional linguistic intuitionistic fuzzy variables. Garg [9] introduced several weighted averaging 

and geometric operators, which were then employed to address decision-making problems. Abdullah 

et al. [10] suggested the use of Pythagorean cubic fuzzy Hamacher aggregation operators in solving 

the green supplier selection problem. Interval-valued Pythagorean fuzzy aggregation operators were 

developed by Peng and Yang [11] to combine interval-valued Pythagorean fuzzy information. 

Zulqarnain et al. [12] developed operational laws for Pythagorean fuzzy hypersoft numbers which 

consider their interaction. This led to the introduction of a variety of aggregation operators that depend 

on the established interaction operational laws. Amin et al. [13] introduced a set of generalized cubic 

Pythagorean fuzzy aggregation operators. These operators are designed to aggregate fuzzy information 

that is expressed in the form of Pythagorean fuzzy numbers and offer a flexible framework that can 

handle a wide range of applications. Nevertheless, in addition to these methods, several other authors 
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have introduced alternative approaches to tackle decision-making problems, including ranking 

functions and aggregation operators [14–25]. These techniques provide further options for decision-

makers seeking to optimize their decision-making processes. 

Einstein operations, which include Einstein addition and multiplication, have a wide range of 

applications in various fields such as physics, computer science and image processing. For example, 

Einstein addition is used to calculate the relativistic velocities of objects moving at high speeds. It 

allows for the addition of velocities that approach the speed of light, which cannot be accomplished 

using ordinary addition. In decision-making, Einstein operations can be used to aggregate fuzzy 

information to obtain a more accurate representation of the underlying data. This can help to improve 

the decision-making process and increase the quality of the decisions made. Einstein operations and 

related aggregation operators have been utilized by numerous researchers across various fields to 

handle fuzzy information in diverse environments. These methods have been proposed and 

implemented in multiple applications, ranging from finance and economics to image processing and 

decision-making. For example, Wang and Liu [26] proposed operational laws on intuitionistic fuzzy 

sets which consist of several fundamental operations, including Einstein sum, Einstein product and 

Einstein exponentiation. Furthermore, they developed a set of geometric aggregation operators based 

on these operations to enhance the ability to deal with uncertainty and imprecision in decision-making. 

Riaz et al. [27] have introduced a class of aggregation operators, called q-rung orthopair fuzzy Einstein 

prioritized aggregation operators, to handle decision-making problems that involve q-rung orthopair 

fuzzy information. Complex q-rung picture fuzzy Einstein averaging operators were suggested by 

Akram et al. [28] as a means of addressing MCDM problems. Riaz et al. presented some prioritized 

operators in a q-rung orthopair fuzzy environment. To obtain additional information concerning 

Einstein aggregation operators and their application in MCDM, we can consult [29–37]. Table 1 

provides explanations for the abbreviations used in this article. 

Table 1. List of abbreviations. 

Abbreviation Explanation Abbreviation Explanation 

MCDM Multi-criteria decision-making PFS Pythagorean fuzzy set 

MD Membership degree FS Fuzzy set 

PCFS Pythagorean cubic fuzzy set NMD Non-membership degree 

CIFS Cubic intuitionistic fuzzy set AO Aggregation operator 

IVPFS 
Interval-valued Pythagorean 

fuzzy set 
CS Cubic set 

IVIFS 
Interval-valued  intuitionistic 

fuzzy set 
PCFN 

Pythagorean cubic fuzzy 

number 

IFS Intuitionistic fuzzy set CIFN 
Cubic intuitionistic fuzzy 

number 

Although the above extensions only consider membership and non-membership degrees, in real-

world scenarios, it can be challenging to express the degree of membership accurately using a fuzzy 

set. In such situations, it may be easier to represent vagueness and uncertainty in the real world by 

using both interval and exact values instead of unique interval/exact values. Consequently, a hybrid 

form of an interval value, such as the Pythagorean cubic fuzzy set (PCFS), can be very useful in 

representing uncertainties caused by hesitant judgments in complex decision-making problems. Khan 

et al. [15,38] introduced the concept of the PCFS, which is described in two parts simultaneously: One 
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represents the membership degrees using an interval-valued Pythagorean fuzzy number (IVPFN), 

while the other represents the membership degrees using a fuzzy number (FN). Thus, a PCFS is a 

hybrid set that combines an IVPFN and an FN. The advantage of PCFS is that it can contain much 

more data to express both the IVPFN and FN simultaneously. Table 2 contains the list of notations 

utilized in this article. 

Table 2. List of notations. 

𝝃𝑼 
The upper limit of the 

membership function 
𝑫 Fermatean fuzzy set 𝒁 

Interval-valued membership 

degree 

𝜻𝑼 
The upper limit of the non-

membership function 
𝐴 

Cubic Fermatean 

fuzzy set 
𝑍̃ 

Interval-valued non-

membership degree 

𝝃  membership function 𝑆𝑐 Score function 𝜁𝑈 
The lower limit of the non-

membership function 

𝜻 non-membership function 𝐴𝑐 Accuracy function 𝜉𝐿 
The lower limit of the non-

membership function 

𝑯 Any non-empty finite set 𝛼 
Pythagorean cubic 

fuzzy number 
𝜓 Criteria 

𝝑 alternative 𝜇 Weight vector 𝑆𝐸 Einstein sum 

𝑻𝑬 Einstein Product ∪𝐸 Einstein union ∩𝐸 Einstein intersection 

Motivations 

Scholars have proposed many aggregation operators in the past for solving real-world decision-

making problems. However, traditional fuzzy sets assign only a single value of membership, whereas 

Pythagorean cubic fuzzy sets use cubic polynomials and offer more flexibility in handling uncertainty. 

This helps decision-makers to assess decision-making criteria more comprehensively and accurately, 

leading to better outcomes. Although PCFSs provide a more robust framework for uncertain 

information in MCDM problems, unfortunately, there has not yet been any study conducted on the 

aggregation operators for PCFSs using Einstein operations.  The present study expands the current 

aggregation operators by utilizing Einstein norm operations and proposing a series of aggregation 

operators. For this, we defined some new operations based on Einstein norm and conorm for 

Pythagorean cubic fuzzy numbers (PCFNs). By using operational laws in aggregation operators, it is 

possible to simplify and manipulate expressions, which in turn can help to improve the efficiency of 

computations and optimize the performance of systems. In addition, it is necessary to create a scoring 

and accuracy function that can effectively compare two PCFNs. By developing these functions, it will 

be possible to make more informed decisions and draw more accurate conclusions based on the 

comparison of PCFNs. Finally, a new method for solving MCDM problems has been introduced in 

this paper, based on the use of the proposed operators. The proposed work is outlined, and its objectives 

are presented in a summary fashion. These objectives are itemized and listed below to provide a clear 

and concise overview of the study’s goals. 

(1) To construct new score and accuracy functions that can effectively evaluate the performance of 

PCFNs by taking into account their unique characteristics. 

(2) To define a framework for data processing and analysis by developing new operational laws that 

employ the Einstein t-norm and t-conorm for Pythagorean cubic fuzzy numbers. These operational 
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laws will enable a more accurate representation of available information and improve decision-

making quality. 

(3) To propose new aggregation operators based on the proposed operational laws to aggregate 

different preferences of decision-makers in the PCFS environment. 

(4) To propose an algorithm that utilizes the aforementioned operators to address the challenges of 

multi-criteria decision-making (MCDM) problems. This technique offers a practical and effective 

means of handling decision-making scenarios where multiple criteria or factors need to be 

considered. 

(5) The study demonstrates the practical application of the proposed approach by implementing an 

established MCDM model and conducting a case study focused on identifying the optimal 

investment market. 

To attain this objective, the remainder of the paper is outlined in the following manner: Section 2 

clarifies the fundamental terminologies of PCFS and Einstein operations. Within Section 3, we present 

basic operational laws and their corresponding weighted aggregation operators for a collection of 

PCFSs. Also, the properties of the proposed operators are analyzed in detail. In Section 4, we expound 

on an MCDM technique that depends on the proposed operators for ranking different alternatives, 

wherein assessments linked to the criteria are presented in the form of PCFNs. Section 5 provides an 

example to demonstrate the approach and verify its feasibility and effectiveness. Finally, Section 6 

summarizes the study. 

2. Preliminaries 

The crucial background information employed in this study is presented in this section. 

2.1. Pythagorean cubic fuzzy sets 

Definition 1. [15,38] Let 𝐻 be a non-empty finite set. A PCFS 𝐷 of an element ℎ ∈ 𝐻 is defined as 

𝐷 = {𝑡, 𝒞𝐷(ℎ),𝒟𝐷(ℎ)|ℎ ∈ 𝐻}        (1) 

where 𝒞𝐷(ℎ) = 〈𝑍𝐷(ℎ); 𝜇𝐷(ℎ)〉 , the membership grade, while 𝒟𝐷(ℎ) = 〈𝑍̃𝐷(ℎ); 𝜈𝐷(ℎ)〉  represents 

the non-membership grade. Furthermore, 𝑍𝐷(ℎ)  and 𝑍̃𝐷(ℎ)  are interval-valued fuzzy sets, while 

𝜉𝐷(ℎ)  and 𝜁𝐷(ℎ)  represent fuzzy sets. Let 𝑍𝐷(ℎ) = [𝜉𝐷
𝐿(ℎ), 𝜉𝐷

𝑈(ℎ)]  and 𝑍̃𝐷(ℎ) = [𝜁𝐷
𝐿(ℎ), 𝜁𝐷

𝑈(ℎ)] . 
Then, 𝒞𝐷(ℎ) = (〈[𝜉𝐷

𝐿(ℎ), 𝜉𝐷
𝑈(ℎ); 𝜉𝐷(ℎ)〉)  describes the degree of membership, while 𝒟𝐷(ℎ) =

(〈[𝜁𝐷
𝐿(ℎ), 𝜁𝐷

𝑈
𝑝
(ℎ)]; 𝜁𝐷(ℎ)〉)  represents the non-membership degree of an element ℎ ∈ 𝐻 , such that 

0 ≼ (𝜉𝐷
𝑈(ℎ))2 + (𝜁𝐷

𝑈(ℎ)) ≼ 1  and 0 ≼ (𝜉𝐷(ℎ))2 + (𝜁𝐷(ℎ))2 ≼ 1 . For simplicity, we call 

(〈𝑍(ℎ); 𝜉(𝑡)〉, 〈𝑍̃(ℎ); 𝜁(𝑡)〉) a CPF number (PCFN), denoted by 𝛽 = (〈𝑍; 𝜉〉, 〈𝑍̃, 𝜁〉). 

Definition 2. [15,38] Let 𝛼 = (〈𝑍; 𝜉〉, 〈𝑍̃, 𝜁〉) , 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍̃1, 𝜁1〉)  and 𝛼2 = (〈𝑍2; 𝜉2〉, 𝑍̃2; 𝜁2)  be 

three PCFNs, and 𝜂 is any positive real number, where 𝑍1 = [𝜉1
𝐿 , 𝜉1

𝑈], 𝑍̃1 = [𝜁1
𝐿 , 𝜁1

𝑈], 𝑍2 = [𝜉2
𝐿 , 𝜉2

𝑈], 
𝑍̃2 = [𝜁2

𝐿 , 𝜁2
𝑈], 𝑍 = [𝜉𝐿 , 𝜉𝑈], and 𝑍̃ = [𝜁𝐿 , 𝜁𝑈]. Then, the operational laws are defined as 

(1) 𝛼1 ⊕ 𝛼2 =

(

 
 〈

[
√(𝜉1

𝐿)2 + (𝜉2
𝐿)2 − (𝜉1

𝐿)2(𝜉2
𝐿)2,

√(𝜉1
𝑈)2 + (𝜉1

𝑈)2 − (𝜉1
𝑈)2(𝜉1

𝑈)2
] ;

√𝜉1
2 + 𝜉2

2 − 𝜉1
2𝜉2

2

〉 ,

〈[𝜁1
𝐿𝜁2

𝐿 , 𝜁1
𝑈𝜁2

𝑈]; 𝜁1𝜁2〉 )

 
 

, 
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(2) 𝛼1 ⊗ 𝛼2 =

(

 
 

〈[𝜉1
𝐿𝜉2

𝐿 , 𝜉1
𝑈𝜉2

𝑈]; 𝜉1𝜉2〉,

〈
[
√(𝜁1

𝐿)2 + (𝜁2
𝐿)2 − (𝜁1

𝐿)2(𝜁2
𝐿)2,

√(𝜁1
𝑈)2 + (𝜁1

𝑈)2 − (𝜁1
𝑈)2(𝜁1

𝑈)2
] ;

√𝜁1
2 + 𝜁2

2 − 𝜁1
2𝜁2

2

〉

)

 
 

, 

(3) 𝜂𝛼 =

(

 
 〈

[
√1 − (1 − (𝜉𝐿)2)𝜂 ,

√1 − (1 − (𝜉𝑈)2)𝜂
] ;

√1 − (1 − 𝜉2)𝜂

〉 ,

〈[(𝜁−)𝜂 , (𝜁+)𝜂]; 𝜁𝜂〉 )

 
 

, 

(4) 𝛼𝜂 =

(

 
 

〈[(𝜉𝐿)𝜂 , (𝜉𝑈)𝜂]; 𝜉𝜂〉,

〈
[
√1 − (1 − (𝜁𝐿)2)𝜂 ,

√1 − (1 − (𝜁𝑈)2)𝜂
] ;

√1 − (1 − 𝜁2)𝜂

〉

)

 
 

. 

Definition 3. [15,38] Let 𝛼 = (〈𝑍; 𝜉〉, 〈𝑍̃; 𝜁〉) be a PCFN, where 𝑍 = [𝜉𝐿 , 𝜉𝑈], and 𝑍̃ = [𝜁𝐿 , 𝜁𝑈]. Then, 

the score function 𝑆𝑐(𝜌) is defined as 

𝑆𝑐(𝛼) = (
𝜉𝐿+𝜉𝑈−𝜉

3
)
2

− (
𝜁𝐿+𝜁𝑈−𝜁

3
)
2

,       (2) 

while the accuracy function is defined as 

𝐴𝑐(𝛼) = (
𝜉𝐿+𝜉𝑈+𝜉

3
)
2

+ (
𝜁𝐿+𝜁𝑈+𝜁

3
)
2

,       (3) 

where −1 ≼ 𝑆𝑐(𝛼) ≼ 1  and 0 ≼ 𝐴𝑐(𝛼) ≼ 1 . Let 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍1, 𝜁1〉)  and 𝛼2 =

(〈𝑍2, 𝜉2〉, 〈𝑍̃2, 𝜁2〉)  be two PCFNs. If 𝑆𝑐(𝛼1) ≺ 𝑆𝑐(𝛼2)  or 𝐴𝑐(𝛼1) ≺ 𝐴𝑐(𝛼2) , then 𝛼1  ≺ 𝛼2 . If 

𝑆𝑐(𝛼1) ≻ 𝑆𝑐(𝛼2)  or 𝐴𝑐(𝛼1) ≻ 𝐴𝑐(𝛼2) , then 𝛼1 ≻ 𝛼2 . If 𝑆𝑐(𝛼1) = 𝑆𝑐(𝛼2)  and 𝐴𝑐(𝛼1) = 𝐴𝑐(𝛼2) , 

then 𝛼1 = 𝛼2. 

Definition 4. [15,38] Let 𝛼 , 𝛼1  and 𝛼2  be any three PCFNs, and 𝜑 , 𝜑1  and 𝜑2  are positive real 

numbers. Then, the following properties hold. 

(1) 𝛼1 ⊕ 𝛼2 = 𝛼2⨁𝛼1, 

(2) 𝛼1⨂𝛼2 = 𝛼2⨂𝛼1, 

(3) 𝜂(𝛼1⨁𝛼2) = 𝜂𝛼1⨁𝜂𝛼2, 

(4) (𝜂1+𝜂2)𝛼 = 𝜂1𝛼⨁𝜂2𝛼, 

(5) (𝛼1⨂𝛼2)
𝜂 = 𝛼1

𝜂
⨂𝛼2

𝜂
, 

(6) 𝛼(𝜂1+𝜂2) = 𝛼𝜂1⨂𝛼𝜂2. 

2.2. Einstein operations 

Definition 5. [39] Einstein product 𝑇𝐸 and Einstein sum 𝑆𝐸 are defined as follows: 

(1) 𝑇𝐸(𝑎, 𝑏) =
𝑎.𝑏

1+(1−𝑎)(1−𝑏)
, for all 𝑎, 𝑏 ∈ [0,1]2, 

(2) 𝑆𝐸(𝑎, 𝑏) =
𝑎+𝑏

1+𝑎𝑏
, for all 𝑎, 𝑏 ∈ [0,1]2. 
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3. Einstein operations for Pythagorean cubic fuzzy sets 

This section is dedicated to establishing a set of operational laws for PCFSs using two key 

elements, namely, 𝑇𝐸  and 𝑆𝐸 . The operational laws outlined in this section represent a significant 

contribution to the study of PCFSs and their real-world applications. 

Definition 6. Let 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍̃1, 𝜁1〉)  and 𝛼2 = (〈𝑍2; 𝜉2〉, 𝑍̃2; 𝜁2)  be two PCFNs, where 𝑍1 =

[𝛼1, 𝜉1
𝑈], 𝑍̃1 = [𝜁1

𝐿 , 𝜁1
𝑈], 𝑍2 = [𝜉2

𝐿 , 𝜉2
𝑈], and 𝑍̃2 = [𝜁2

𝐿 , 𝜁2
𝑈]. Then, some of the Einstein operations over 

𝛼1 and 𝛼2 are defined as follows: 

(1) 𝛼1 ⊕𝐸 𝛼2 =

(

 
 
 
 
 
 〈[√

(𝜉1
𝐿)

2
+(𝜉2

𝐿)
2

1+(𝜉1
𝐿)

2
×𝐸(𝜉2

𝐿)
2 , √

(𝜉1
𝑈)

2
+(𝜉2

𝑈)
2

1+(𝜉1
𝑈)

2
×𝐸(𝜉2

𝑈)
2] ; √

(𝜉1)2+(𝜉2)2

1+(𝜉1)2×𝐸(𝜉2)2
〉 ,

〈

[
 
 
 
 

𝜁1
𝐿×𝐸𝜁2

𝐿

√1+(1−(𝜁1
𝐿)

2
)×𝐸(1−(𝜁2

𝐿)
2
)

,

𝜁1
𝑈×𝐸𝜁2

𝑈

√1+(1−(𝜁1
𝑈)

2
)×𝐸(1−(𝜁2

𝑈)
2
)]
 
 
 
 

;
𝜁1×𝐸𝜁2

√1+(1−(𝜁1)2)×𝐸(1−(𝜁2)2)
〉

)

 
 
 
 
 
 

, 

(2) 𝛼1 ⊗𝐸 𝛼2 =

(

 
 
 
 
 
 

〈

[
 
 
 
 

𝜉1
𝐿×𝐸𝜉2

𝐿

√1+(1−(𝜉1
𝐿)

2
)×𝐸(1−(𝜉2

𝐿)
2
)

,

𝜉1
𝑈×𝐸𝜉2

𝑈

√1+(1−(𝜉1
𝑈)

2
)×𝐸(1−(𝜉2

𝑈)
2
)]
 
 
 
 

;
𝜉1×𝐸𝜉2

√1+(1−(𝜉1)2)×𝐸(1−(𝜉2)2)
〉

〈[√
(𝜁1

𝐿)
2
+(𝜁2

𝐿)
2

1+(𝜁1
𝐿)

2
×𝐸(𝜁2

𝐿)
2 , √

(𝜁1
𝑈)

2
+(𝜁2

𝑈)
2

1+(𝜁1
𝑈)

2
×𝐸(𝜁2

𝑈)
2] ; √

(𝜁1)2+(𝜁2)2

1+(𝜁1)2×𝐸(𝜁2)2
〉

)

 
 
 
 
 
 

. 

Example 1. Let 𝛼1 = (〈[0.5,0.6]; 0.6〉, [0.3,0.4]; 0.2)  and 𝛼2 = (〈[0.2,0.3]; 0.5〉, [0.6,0.7]; 0.4)  are 

two PCFNs. Then, the operations 𝛼1 ⊕𝐸 𝛼2 and 𝛼1 ⊗𝐸 𝛼2 can be calculated as follows: 

𝛼1 ⊕𝐸 𝛼2 =

(

 
 
 

〈[√
(0.5)2+(0.2)2

1+(0.5)2×𝐸(0.2)2
, √

(0.6)2+(0.3)2

1+(0.6)2×𝐸(0.3)2
] ; √

(0.6)2+(0.5)2

1+(0.6)2×𝐸(0.5)2
〉 ,

〈[

0.3×𝐸0.6

√1+(1−(0.3)2)×𝐸(1−(0.6)2)
,

0.4×𝐸0.7

√1+(1−(0.4)2)×𝐸(1−(0.7)2)

] ;
0.2×𝐸0.4

√1+(1−(0.2)2)×𝐸(1−(0.4)2)
〉

)

 
 
 

  

= (〈[0.1191,0.1772]; 0.2873〉, [0.1431,0.2343]; 0.0595). 

𝛼1 ⊗𝐸 𝛼2 =

(

 
 
 〈[

0.5×𝐸0.2

√1+(1−(0.5)2)×𝐸(1−(0.2)2)
,

0.6×𝐸0.3

√1+(1−(0.6)2)×𝐸(1−(0.3)2)

] ;
0.6×𝐸0.5

√1+(1−(0.6)2)×𝐸(1−(0.5)2)
〉

〈[√
(0.3)2+(0.6)2

1+(0.3)2×𝐸(0.6)2
, √

(0.4)2+(0.7)2

1+(0.4)2×𝐸(0.7)2
] ; √

(0.2)2+(0.4)2

1+(0.2)2×𝐸(0.4)2
〉
)

 
 
 

  

= (〈[0.0944,0.1431]; 0.2466〉, [0.1772,0.2696]; 0.0797). 

Definition 7. Let 𝛼 = (〈𝑍; 𝜉〉, 〈𝑍̃, 𝜁〉)  be a PCFN, where 𝑍 = [𝜉𝐿 , 𝜉𝑈]  and 𝑍̃ = [𝜁𝐿 , 𝜁𝑈] . For any 

positive real number 𝜂, 
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(1) 𝜂.𝐸 𝛼 =

(

 
 
 
 
 
 〈

[
 
 
 √

(1+((𝜉𝐿)2)𝜂)−(1−((𝜉𝐿)2)𝜂)

(1+((𝜉𝐿)2)𝜂)+(1−((𝜉𝐿)2)𝜂)
,

√
(1+((𝜉𝑈)2)𝜂)−(1−((𝜉𝑈)2)𝜂)

(1+((𝜉𝑈)2)𝜂)+(1−((𝜉𝑈)2)𝜂)]
 
 
 

; √
(1+((𝜉)2)𝜂)−(1−((𝜉)2)𝜂)

(1+((𝜉)2)𝜂)+(1−((𝜉)2)𝜂)
〉 ,

〈[

√2(𝜁𝐿)
𝜂

√(2−(𝜁𝐿)2)𝜂+((𝜁𝐿)2)𝜂
,

√2(𝜁𝑈)
𝜂

√(2−(𝜁𝑈)2)𝜂+((𝜁𝑈)2)𝜂

] ;
√2(𝜁)𝜂

√(2−(𝜁)2)𝜂+((𝜁)2)𝜂
〉

)

 
 
 
 
 
 

, 

(2) 𝛼𝐸𝜂
=

(

 
 
 
 
 
 〈[

√2(𝜉𝐿)
𝜂

√(2−(𝜉𝐿)2)𝜂+((𝜉𝐿)2)𝜂
,

√2(𝜉𝑈)
𝜂

√(2−(𝜉𝑈)2)𝜂+((𝜉𝑈)2)𝜂

] ;
√2(𝜉)𝜂

√(2−(𝜉)2)𝜂+((𝜉)2)𝜂
〉 ,

〈

[
 
 
 √

(1+((𝜁𝐿)2)𝜂)−(1−((𝜁𝐿)2)𝜂)

(1+((𝜁𝐿)2)𝜂)+(1−((𝜁𝐿)2)𝜂)
,

√
(1+((𝜁𝑈)2)𝜂)−(1−((𝜁𝑈)2)𝜂)

(1+((𝜁𝑈)2)𝜂)+(1−((𝜁𝑈)2)𝜂)]
 
 
 

; √
(1+((𝜁)2)𝜂)−(1−((𝜁)2)𝜂)

(1+((𝜁)2)𝜂)+(1−((𝜁)2)𝜂)
〉

)

 
 
 
 
 
 

. 

Example 2. Let 𝛼 = (〈[0.5,0.6]; 0.6〉, [0.3,0.4]; 0.2) and 𝜂 = 0.5. Then, the operations 𝜂.𝐸 𝛼 and 𝛼𝐸𝜂
 

can be calculated as 

𝜂.𝐸 𝛼 =

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

(1 + (0.5)2)0.5 − (1 − (0.5)2)0.5

(1 + (0.5)2)0.5 + (1 − (0.5)2)0.5
,

√
(1 + (0.6)2)0.5 − (1 − (0.6)2)0.5

(1 + (0.6)2)0.5 + (1 − (0.6)2)0.5
]
 
 
 
 
 

; √
(1 + (0.6)2)0.5 − (1 − (0.6)2)0.5

(1 + (0.6)2)0.5 + (1 − (0.6)2)0.5
〉 ,

〈

[
 
 
 
 √2(0.3)0.5

√(2 − (0.3)2)0.5 + ((0.3)2)0.5
,

√2(0.4)0.5

√(2 − (0.4)2)𝜂 + ((0.4)2)0.5 ]
 
 
 
 

;
√2(0.2)0.5

√(2 − (0.2)2)0.5 + ((0.2)2)0.5
〉

)

 
 
 
 
 
 
 
 
 

 

= (〈[0.0944,0.1431]; 0.2466〉, [0.1772,0.2696]; 0.0797). 

𝛼𝐸𝜂
=

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 √2(0.5)0.5

√(2 − (0.5)2)0.5 + ((0.5)2)0.5
,

√2(0.6)0.5

√(2 − (0.6)2)0.5 + ((0.6)2)0.5 ]
 
 
 
 

;
√2(0.6)0.5

√(2 − (0.6)2)0.5 + ((0.6)2)0.5
〉 ,

〈

[
 
 
 
 
 
√

(1 + (0.3)2)0.5 − (1 − (0.3)2)0.5

(1 + (0.3)2)0.5 + (1 − (0.3)2)0.5
,

√
(1 + (0.4)2)0.5 − (1 − (0.4)2)0.5

(1 + (0.4)2)0.5 + (1 − (0.4)2)0.5
]
 
 
 
 
 

; √
(1 + (0.2)2)0.5 − (1 − (0.2)2)0.5

(1 + (0.2)2)0.5 + (1 − (0.2)2)0.5
〉

)

 
 
 
 
 
 
 
 
 

 

= (〈[0.0944,0.1431]; 0.2466〉, [0.1772,0.2696]; 0.0797). 

Definition 8. Let 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍̃1, 𝜁1〉)  and 𝛼2 = (〈𝑍2; 𝜉2〉, 𝑍̃2; 𝜁2)  be two PCFNs, where 𝑍1 =
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[𝜉1
𝐿 , 𝜉1

𝑈] , 𝑍̃1 = [𝜁1
𝐿 , 𝜁1

𝑈] , 𝑍2 = [𝜉2
𝐿 , 𝜉2

𝑈],  and 𝑍̃2 = [𝜁2
𝐿 , 𝜁2

𝑈] . Then, the Einstein union and Einstein 

intersection of 𝛼1 and 𝛼2 are defined as follows: 

(1) 𝛼1 ∪𝐸 𝛼2 = (〈[
max(𝜉1

𝐿 , 𝜉2
𝐿) ,

max(𝜉1
𝑈, 𝜉2

𝑈)
] ;max⁡(𝜉1, 𝜉2)〉 , 〈[

min(𝜁1
𝐿 , 𝜁2

𝐿) ,

min(𝜁1
𝑈, 𝜁2

𝑈)
] ;min⁡(𝜁1, 𝜁2)〉), 

(2) 𝛼1 ∩𝐸 𝛼2 = (〈[
min(𝜉1

𝐿 , 𝜉2
𝐿) ,

min(𝜉1
𝑈, 𝜉2

𝑈)
] ;min⁡(𝜉1, 𝜉2)〉 , 〈[

max(𝜁1
𝐿 , 𝜁2

𝐿) ,

max(𝜁1
𝑈, 𝜁2

𝑈)
] ;max⁡(𝜁1, 𝜁2)〉). 

Example 3. Let 𝛼1 = (〈[0.5,0.6]; 0.6〉, [0.3,0.4]; 0.2) and 𝛼2 = (〈[0.2,0.3]; 0.5〉, [0.6,0.7]; 0.4). Then, 

the operations 𝛼1 ⊕𝐸 𝛼2 and 𝛼1 ⊗𝐸 𝛼2 can be calculated as 

𝛼1 ∪𝐸 𝛼2 = (〈[
max(0.5,0.2) ,
max(0.6,0.3)

] ;max⁡(0.6,0.5)〉 , 〈[
min(0.3,0.6) ,
min(0.4,0.7)

] ;min⁡(0.2,0.4)〉)  

= (〈[0.5,0.6]; 0.6〉, [0.3,0.4]; 0.2). 

𝛼1 ∩𝐸 𝛼2 = (〈[
min(0.5,0.2) ,
min(0.6,0.3)

] ;min⁡(0.6,0.5)〉 , 〈[
max(0.3,0.6) ,
max(0.4,0.7)

] ;max⁡(0.2,0.4)〉) 

= (〈[0.2,0.3]; 0.5〉, [0.6,0.7]; 0.4). 

Theorem 1. Let 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍̃1, 𝜁1〉) and 𝛼2 = (〈𝑍2; 𝜉2〉, 𝑍̃2; 𝜁2) be any two PCFNs, where 𝑍1 =

[𝜉1
𝐿 , 𝜉1

𝑈] , 𝑍̃1 = [𝜁1
𝐿 , 𝜁1

𝑈] , 𝑍2 = [𝜉2
𝐿 , 𝜉2

𝑈] , and 𝑍̃2 = [𝜁2
𝐿 , 𝜁2

𝑈] . Then, their accumulated value is also a 

PCFNs, by using Definition 6.  

Proof. For two PCFNs 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍̃1, 𝜁1〉) and 𝛼2 = (〈𝑍2; 𝜉2〉, 𝑍̃2; 𝜁2), we have, 0 ≼ 𝜉1
𝐿 ≼ 𝜉1

𝑈 ≼ 1, 

0 ≼ 𝜁1
𝐿 ≼ 𝜁1

𝑈 ≼ 1 , 0 ≼ 𝜉2
𝐿 ≼ 𝜉2

𝑈 ≼ 1 , 0 ≼ 𝜁2
𝐿 ≼ 𝜁2

𝑈 ≼ 1 , 0 ≼ 𝜉1, 𝜁1 ≼ 1 , and 0 ≼ 𝜉1, 𝜁1 ≼ 1  such that 

(𝜉1
𝑈)2 + (𝜁1

𝑈)2 ≼ 1, (𝜉2
𝑈)2 + (𝜁2

𝑈)2 ≼ 1, 0 ≼ 𝜉1
2 + 𝜁1

2 ≼ 1, and 0 ≼ 𝜉2
2 + 𝜁2

2 ≼ 1. Therefore, 
𝜉1

𝐿×𝐸𝜉2
𝐿

√1+(1−(𝜉1
𝐿)

2
)×𝐸(1−(𝜉2

𝐿)
2
)

≼
𝜉1

𝑈×𝐸𝜉2
𝑈

√1+(1−(𝜉1
𝑈)

2
)×𝐸(1−(𝜉2

𝑈)
2
)

≼ 1, and 

√
(𝜁1

𝐿)
2
+(𝜁2

𝐿)
2

1+(𝜁1
𝐿)

2
×𝐸(𝜁2

𝐿)
2 ≼ √

(𝜁1
𝑈)

2
+(𝜁2

𝑈)
2

1+(𝜁1
𝑈)

2
×𝐸(𝜁2

𝑈)
2 ≼ 1, which implies that 

𝜉1
𝑈×𝐸𝜉2

𝑈

√1+(1−(𝜉1
𝑈)

2
)×𝐸(1−(𝜉2

𝑈)
2
)

+ √
(𝜁1

𝑈)
2
+(𝜁2

𝑈)
2

1+(𝜁1
𝑈)

2
×𝐸(𝜁2

𝑈)
2 ≼ 1. 

Similarly, we can prove that 
𝜉1×𝐸𝜉2

√1+(1−(𝜉1)2)×𝐸(1−(𝜉2)2)
+ √

(𝜁1)2+(𝜁2)2

1+(𝜁1)2×𝐸(𝜁2)2
≼ 1. 

Thus, 𝛼1 ⊗𝐸 𝛼2 is a PCFN. Part (1) can be demonstrated using the same method. 

Theorem 2. Let 𝛼 = (〈[0.5,0.6]; 0.6〉, [0.3,0.4]; 0.2) and 𝜂 = 0.5. Then, the results of the operational 

laws 𝜂.𝐸 𝛼 and 𝛼𝐸𝜂
 are also PCFNs. 

Proof. The proof bears resemblance to Theorem 1. 

Theorem 3. Let 𝛼 = (〈𝑍; 𝜉〉, 〈𝑍̃, 𝜁〉) , 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍̃1, 𝜁1〉)  and 𝛼2 = (〈𝑍2; 𝜉2〉, 𝑍̃2; 𝜁2)  be three 

PCFNs, and 𝜂 , 𝜂2  and 𝜂3  are any positive real numbers, where 𝑍1 = [𝜉1
𝐿 , 𝜉1

𝑈] , 𝑍̃1 = [𝜁1
𝐿 , 𝜁1

𝑈] , 𝑍2 =
[𝜉2

𝐿 , 𝜉2
𝑈], 𝑍̃2 = [𝜁2

𝐿 , 𝜁2
𝑈], 𝑍 = [𝜉𝐿 , 𝜉𝑈], and 𝑍̃ = [𝜁𝐿 , 𝜁𝑈]. Then, we have 

(1) 𝛼1 ⊕𝐸 𝛼2 = 𝛼2 ⊕𝐸 𝛼1, 

(2) 𝛼1 ⊗𝐸 𝛼2 = 𝛼2 ⊗𝐸 𝛼1, 

(3) (𝛼1 ⊗𝐸 𝛼2)
𝜂 = (𝛼1)

𝜂 ⊗𝐸 (𝛼2)
𝜂, 

(4) 𝜂.𝐸 (𝛼1 ⊕𝐸 𝛼2) = 𝜂.𝐸 𝛼1 ⊕ 𝜂.𝐸 𝛼2, 

(5) 𝛼𝜂1 ⊗ 𝛼𝜂2 = 𝛼𝜂1+𝜂2, 
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(6) 𝜂1.𝐸 𝛼 ⊕ 𝜂2.𝐸 𝛼 = (𝜂1 + 𝜂1).𝐸 𝛼. 

Proof. (1) By Definition 6, we have 

𝛼1 ⊕𝐸 𝛼2 =

(

 
 
 
 
 
 〈[√

(𝜉1
𝐿)

2
+(𝜉2

𝐿)
2

1+(𝜉1
𝐿)

2
×𝐸(𝜉2

𝐿)
2 , √

(𝜉1
𝑈)

2
+(𝜉2

𝑈)
2

1+(𝜉1
𝑈)

2
×𝐸(𝜉2

𝑈)
2] ; √

(𝜉1)2+(𝜉2)2

1+(𝜉1)2×𝐸(𝜉2)2
〉 ,

〈

[
 
 
 
 

𝜁1
𝐿×𝐸𝜁2

𝐿

√1+(1−(𝜁1
𝐿)

2
)×𝐸(1−(𝜁2

𝐿)
2
)

,

𝜁1
𝑈×𝐸𝜁2

𝑈

√1+(1−(𝜁1
𝑈)

2
)×𝐸(1−(𝜁2

𝑈)
2
)]
 
 
 
 

;
𝜁1×𝐸𝜁2

√1+(1−(𝜁1)2)×𝐸(1−(𝜁2)2)
〉

)

 
 
 
 
 
 

  

=

(

 
 
 
 
 
 〈[√

(𝜉2
𝐿)

2
+(𝜉1

𝐿)
2

1+(𝜉2
𝐿)

2
×𝐸(𝜉1

𝐿)
2 , √

(𝜉2
𝑈)

2
+(𝜉1

𝑈)
2

1+(𝜉2
𝑈)

2
×𝐸(𝜉1

𝑈)
2] ; √

(𝜉2)2+(𝜉1)2

1+(𝜉2)2×𝐸(𝜉1)2
〉 ,

〈

[
 
 
 
 

𝜁2
𝐿×𝐸𝜁1

𝐿

√1+(1−(𝜁2
𝐿)

2
)×𝐸(1−(𝜁1

𝐿)
2
)

,

𝜁2
𝑈×𝐸𝜁1

𝑈

√1+(1−(𝜁2
𝑈)

2
)×𝐸(1−(𝜁1

𝑈)
2
)]
 
 
 
 

;
𝜁2×𝐸𝜁1

√1+(1−(𝜁2)2)×𝐸(1−(𝜁1)2)
〉

)

 
 
 
 
 
 

= 𝛼2 ⊕𝐸 𝛼1. 

(2) Again by Definition 6, we have  

𝛼1 ⊗𝐸 𝛼2 =

(

 
 
 
 
 
 

〈

[
 
 
 
 

𝜉1
𝐿×𝐸𝜉2

𝐿

√1+(1−(𝜉1
𝐿)

2
)×𝐸(1−(𝜉2

𝐿)
2
)

,

𝜉1
𝑈×𝐸𝜉2

𝑈

√1+(1−(𝜉1
𝑈)

2
)×𝐸(1−(𝜉2

𝑈)
2
)]
 
 
 
 

;
𝜉1×𝐸𝜉2

√1+(1−(𝜉1)2)×𝐸(1−(𝜉2)2)
〉

〈[√
(𝜁1

𝐿)
2
+(𝜁2

𝐿)
2

1+(𝜁1
𝐿)

2
×𝐸(𝜁2

𝐿)
2 , √

(𝜁1
𝑈)

2
+(𝜁2

𝑈)
2

1+(𝜁1
𝑈)

2
×𝐸(𝜁2

𝑈)
2] ; √

(𝜁1)2+(𝜁2)2

1+(𝜁1)2×𝐸(𝜁2)2
〉

)

 
 
 
 
 
 

  

=

(

 
 
 
 
 
 

〈

[
 
 
 
 

𝜉2
𝐿×𝐸𝜉1

𝐿

√1+(1−(𝜉2
𝐿)

2
)×𝐸(1−(𝜉1

𝐿)
2
)

,

𝜉2
𝑈×𝐸𝜉1

𝑈

√1+(1−(𝜉2
𝑈)

2
)×𝐸(1−(𝜉1

𝑈)
2
)]
 
 
 
 

;
𝜉2×𝐸𝜉1

√1+(1−(𝜉2)2)×𝐸(1−(𝜉1)2)
〉

〈[√
(𝜁2

𝐿)
2
+(𝜁1

𝐿)
2

1+(𝜁2
𝐿)

2
×𝐸(𝜁1

𝐿)
2 , √

(𝜁2
𝑈)

2
+(𝜁1

𝑈)
2

1+(𝜁2
𝑈)

2
×𝐸(𝜁1

𝑈)
2] ; √

(𝜁2)2+(𝜁1)2

1+(𝜁2)2×𝐸(𝜁1)2
〉

)

 
 
 
 
 
 

= 𝛼2 ⊗𝐸 𝛼1. 

The proof of the remaining part is relatively straightforward. 

Definition 9. Let 𝛼 = (〈𝑍; 𝜉〉, 〈𝑍̃, 𝜁〉)  be a PCFN, where 𝑍 = [𝜉𝐿 , 𝜉𝑈]  and 𝑍̃ = [𝜁𝐿 , 𝜁𝑈] . The 

complement of 𝛼 is denoted by 𝛼𝐶 and defined as 𝛼𝐶 = (〈𝑍̃, 𝜁〉, 〈𝑍; 𝜉〉). 

Theorem 4. Let 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍̃1, 𝜁1〉)  and 𝛼2 = (〈𝑍2; 𝜉2〉, 𝑍̃2; 𝜁2)  be two PCFNs, where 𝑍1 =

[𝜉1
𝐿 , 𝜉1

𝑈], 𝑍̃1 = [𝜁1
𝐿 , 𝜁1

𝑈], 𝑍2 = [𝜉2
𝐿 , 𝜉2

𝑈], and 𝑍̃2 = [𝜁2
𝐿 , 𝜁2

𝑈]. Then, we have 

(1) 𝛼1
𝐶 ∩𝐸 𝛼2

𝐶 = (𝛼1 ∪𝐸 𝛼2)
𝐶, 

(2) 𝛼1
𝐶 ∪𝐸 𝛼2

𝐶 = (𝛼1 ∩𝐸 𝛼2)
𝐶, 
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(3) 𝛼1
𝐶 ⊗𝐸 𝛼2

𝐶 = (𝛼1 ⊕𝐸 𝛼2)
𝐶, 

(4) 𝛼1
𝐶 ⊕𝐸 𝛼2

𝐶 = (𝛼1 ⊗𝐸 𝛼2)
𝐶. 

Proof. Since 𝛼1 = (〈𝑍1; 𝜉1〉, 〈𝑍̃1, 𝜁1〉) = (〈[𝜉1
𝐿 , 𝜉1

𝑈]; 𝜉1〉, 〈[𝜁1
𝐿 , 𝜁1

𝑈]; 𝜁1〉), and  

𝛼2 = (〈𝑍2; 𝜉2〉, 〈𝑍̃2, 𝜁2〉) = (〈[𝜉2
𝐿 , 𝜉2

𝑈]; 𝜉2〉, 〈[𝜁2
𝐿 , 𝜁2

𝑈]; 𝜁2〉), by Definition 9, we have 

𝛼1
𝐶 = (〈𝑍̃1, 𝜁1〉, 〈𝑍1; 𝜉1〉) = (〈[𝜁1

𝐿 , 𝜁1
𝑈]; 𝜁1〉, 〈[𝜉1

𝐿 , 𝜉1
𝑈]; 𝜉1〉), and  

𝛼2
𝐶 = (〈𝑍̃2, 𝜁2〉, 〈𝑍2; 𝜉2〉) = (〈[𝜁2

𝐿 , 𝜁2
𝑈]; 𝜁2〉, 〈[𝜉2

𝐿 , 𝜉2
𝑈]; 𝜉2〉). 

By Definition 8, we have  

𝛼1
𝐶 ∩𝐸 𝛼2

𝐶 = (〈[
min(𝜁1

𝐿 , 𝜁2
𝐿) ,

min(𝜁1
𝑈, 𝜁2

𝑈)
] ;min⁡(𝜁1, 𝜁2)〉 , 〈[

max(𝜉1
𝐿 , 𝜉2

𝐿) ,

max(𝜉1
𝑈, 𝜉2

𝑈)
] ;max⁡(𝜉1, 𝜉2)〉). 

On the other hand, 

(𝛼1 ∪𝐸 𝛼2)
𝐶 = (〈[

max(𝜉1
𝐿 , 𝜉2

𝐿) ,

max(𝜉1
𝑈, 𝜉2

𝑈)
] ;max⁡(𝜉1, 𝜉2)〉 , 〈[

min(𝜁1
𝐿 , 𝜁2

𝐿) ,

min(𝜁1
𝑈, 𝜁2

𝑈)
] ;min⁡(𝜁1, 𝜁2)〉)

𝐶

  

= (〈[
min(𝜁1

𝐿 , 𝜁2
𝐿) ,

min(𝜁1
𝑈, 𝜁2

𝑈)
] ;min⁡(𝜁1, 𝜁2)〉 , 〈[

max(𝜉1
𝐿 , 𝜉2

𝐿) ,

max(𝜉1
𝑈, 𝜉2

𝑈)
] ;max⁡(𝜉1, 𝜉2)〉). 

Thus, 𝛼1
𝐶 ∩𝐸 𝛼2

𝐶 = (𝛼1 ∪𝐸 𝛼2)
𝐶. 

As the proof of the remaining portion is relatively simple, it has been excluded from this discussion. 

4. Pythagorean cubic fuzzy Einstein weighted averaging AOs 

This section focuses on exploring the Pythagorean cubic fuzzy averaging AOs using Einstein 

operations. 

4.1. PCFEWA operator 

Definition 10. Let 𝛼𝑖 = (〈𝑍𝑖; 𝜉𝑖〉, 〈𝑍̃𝑖, 𝜁𝑖〉) be a collection of PCFNs, and 𝜇𝑖 is the weight of 𝛼𝑖 (𝑖 =

1,2, … , 𝑛)  such that 0 ≼ 𝜇𝑖 ≼ 1 and ∑ 𝜇𝑖
𝑛
𝑖=1 = 1 . Then, a PCFEWA operator of dimension 𝑛  is a 

mapping 𝑃𝐶𝐹𝐸𝑊𝐴: Δ𝑛 → Δ, and 

𝑃𝐶𝐹𝐸𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝜇1.𝐸 𝛼1 ⊕𝐸 𝜇2.𝐸 𝛼2 ⊕𝐸 …⊕𝐸 𝜇𝑛.𝐸 𝛼𝑛.   (4) 

Theorem 5. Let 𝛼𝑖 = (〈[𝜉𝑖
𝐿 , 𝜉𝑖

𝑈]; 𝜉𝑖〉, 〈[[𝜁𝑖
𝐿 , 𝜁𝑖

𝑈]] , 𝜁𝑖〉) be a collection of PCFNs, and 𝜇𝑖 is the weight of 

𝛼𝑖 (𝑖 = 1,2, … , 𝑛) such that 0 ≼ 𝜇𝑖 ≼ 1 and ∑ 𝜇𝑖
𝑛
𝑖=1 = 1. Then, the aggregated value by using Eq (4) 

is PCFN, and 
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𝑃𝐶𝐹𝐸𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑛)  

=

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑛=1 −∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑛=1

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑛=1 +∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑛=1

,

∏ (1+(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑛=1 −∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑛=1

∏ (1+(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑛=1 +∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑛=1 ]
 
 
 
 
 

; √
∏ (1+(𝜉𝑖)

2)𝜇𝑖𝑛
𝑛=1 −∏ (1−(𝜉𝑖)

2)𝜇𝑖𝑛
𝑛=1

∏ (1+(𝜉𝑖)
2)𝜇𝑖𝑛

𝑛=1 +∏ (1−(𝜉𝑖)
2)𝜇𝑖𝑛

𝑛=1

〉 ,

〈

[
 
 
 
 

√2∏ (𝜁𝑖
𝐿)

𝜇𝑖𝑛
𝑖=1

√∏ (2−(𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑖=1 +∏ ((𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑖=1

,

√2∏ (𝜁𝑖
𝑈)

𝜇𝑖𝑛
𝑖=1

√∏ (2−(𝜁𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑖=1 +∏ ((𝜁𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑖=1 ]
 
 
 
 

;
√2∏ (𝜁𝑖)

𝜇𝑖𝑛
𝑖=1

√∏ (2−(𝜁𝑖)
2)𝜇𝑖𝑛

𝑖=1 +∏ ((𝜁𝑖)
2)𝜇𝑖𝑛

𝑖=1

〉

)

 
 
 
 
 
 
 
 
 

  (5) 

Proof. To demonstrate the validity of Eq (5), we will utilize the principle of mathematical induction 

for the variable 𝑛. This approach involves establishing a base case and then demonstrating that if the 

equation holds for any arbitrary value of 𝑛, it must also hold for the next value of 𝑛 in succession. By 

using this iterative process, we can establish the equation's validity for all possible values of 𝑛. 

When 𝑛 = 2 , 𝑃𝐶𝐹𝐸𝑊𝐴(𝛼1, 𝛼2) = 𝜇1.𝐸 𝛼1 ⊕𝐸 𝜇2.𝐸 𝛼2 . According to Theorem 1, 𝜇1.𝐸 𝛼1  and 

𝜇2.𝐸 𝛼2 are PCFNs. Also, by Theorem 3, we can see that 𝜇1.𝐸 𝛼1 ⊕𝐸 𝜇2.𝐸 𝛼2 is a PCFN.  

𝜇1.𝐸 𝛼1 =

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

(1+(𝜉1
𝐿)

2
)
𝜇1

−(1−(𝜉1
𝐿)

2
)
𝜇1

(1+(𝜉1
𝐿)

2
)
𝜇1

+(1−(𝜉1
𝐿)

2
)
𝜇1 ,

√
(1+(𝜉1

𝑈)
2
)
𝜇1

−(1−(𝜉1
𝑈)

2
)
𝜇1

(1+(𝜉1
𝑈)

2
)
𝜇1

+(1−(𝜉1
𝑈)

2
)
𝜇1

]
 
 
 
 
 

; √
(1+(𝜉1)2)𝜇1−(1−(𝜉1)2)𝜇1

(1+(𝜉1)2)𝜇1+(1−(𝜉1)2)𝜇1
〉 ,

〈

[
 
 
 
 

√2(𝜁1
𝐿)

𝜇1

√(2−(𝜁1
𝐿)

2
)
𝜇1

+((𝜁1
𝐿)

2
)
𝜇1

,

√2(𝜁1
𝑈)

𝜇1

√(2−(𝜁1
𝑈)

2
)
𝜇1

+((𝜁1
𝑈)

2
)
𝜇1

]
 
 
 
 

;
√2(𝜁1)𝜇1

√(2−(𝜁1)2)𝜇1+((𝜁1)2)𝜇1
〉

)

 
 
 
 
 
 
 
 
 

, 

𝜇2.𝐸 𝛼2 =

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

(1+(𝜉2
𝐿)

2
)
𝜇2

−(1−(𝜉2
𝐿)

2
)
𝜇2

(1+(𝜉2
𝐿)

2
)
𝜇2

+(1−(𝜉2
𝐿)

2
)
𝜇2 ,

√
(1+(𝜉2

𝑈)
2
)
𝜇2

−(1−(𝜉2
𝑈)

2
)
𝜇2

(1+(𝜉2
𝑈)

2
)
𝜇2

+(1−(𝜉2
𝑈)

2
)
𝜇2

]
 
 
 
 
 

; √
(1+(𝜉2)2)𝜇2−(1−(𝜉2)2)𝜇2

(1+(𝜉2)2)𝜇2+(1−(𝜉2)2)𝜇2
〉 ,

〈

[
 
 
 
 

√2(𝜁2
𝐿)

𝜇2

√(2−(𝜁2
𝐿)

2
)
𝜇2

+((𝜁2
𝐿)

2
)
𝜇2

,

√2(𝜁2
𝑈)

𝜇2

√(2−(𝜁2
𝑈)

2
)
𝜇2

+((𝜁2
𝑈)

2
)
𝜇2

]
 
 
 
 

;
√2(𝜁2)𝜇2

√(2−(𝜁2)2)𝜂+((𝜁2)2)𝜂
〉

)

 
 
 
 
 
 
 
 
 

. 

𝐶𝐹𝐸𝑊𝐴(𝛼1, 𝛼2)  
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=

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖2

𝑖=1 −∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖2

𝑖=1

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖2

𝑖=1 +∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖2

𝑖=1

,

√
∏ (1+(𝜉𝑖

𝑈)
2
)
𝜇𝑖2

𝑖=1 −∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖2

𝑖=1

∏ (1+(𝜉𝑖
𝑈)

2
)
𝜇𝑖2

𝑖=1 +∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖2

𝑖=1 ]
 
 
 
 
 

; √
∏ (1+(𝜉𝑖)

2)𝜇𝑖2
𝑖=1 −∏ (1−(𝜉𝑖)

2)𝜇𝑖2
𝑖=1

∏ (1+(𝜉𝑖)
2)𝜇𝑖2

𝑖=1 +∏ (1−(𝜉𝑖)
2)𝜇𝑖2

𝑖=1

〉 ,

〈

[
 
 
 
 

√2∏ (𝜁𝑖
𝐿)

𝜇𝑖2
𝑖=1

√∏ (2−(𝜁𝑖
𝐿)

2
)
𝜇𝑖2

𝑖=1 +∏ ((𝜁𝑖
𝐿)

2
)
𝜇𝑖2

𝑖=1

,

√2∏ (𝜁𝑖
𝑈)

𝜇𝑖2
𝑖=1

√∏ (2−(𝜁𝑖
𝑈)

2
)
𝜇𝑖2

𝑖=1 +∏ ((𝜁𝑖
𝑈)

2
)
𝜇𝑖2

𝑖=1 ]
 
 
 
 

;
√2∏ (𝜁𝑖)

𝜇𝑖2
𝑖=1

√∏ (2−(𝜁𝑖)
2)𝜇𝑖2

𝑖=1 +∏ ((𝜁𝑖)
2)𝜇𝑖2

𝑖=1

〉

)

 
 
 
 
 
 
 
 
 

. 

Thus, the result is true for 𝑛 = 2. 

Suppose that the assertion is valid when 𝑛 is equal to some particular value, denoted as 𝑘. In this case, 

we can state that Eq (5) holds, which means that the result holds for the given value of 𝑘. That is, 

𝐶𝐹𝐸𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑘) =

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑘

𝑖=1 −∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑘

𝑖=1

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑘

𝑖=1 +∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑘

𝑖=1

,

√
∏ (1+(𝜉𝑖

𝑈)
2
)
𝜇𝑖𝑘

𝑖=1 −∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑘

𝑖=1

∏ (1+(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑘

𝑖=1 +∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑘

𝑖=1 ]
 
 
 
 
 

; √
∏ (1+(𝜉𝑖)

2)𝜇𝑖𝑘
𝑖=1 −∏ (1−(𝜉𝑖)

2)𝜇𝑖𝑘
𝑖=1

∏ (1+(𝜉𝑖)
2)𝜇𝑖𝑘

𝑖=1 +∏ (1−(𝜉𝑖)
2)𝜇𝑖𝑘

𝑖=1

〉 ,

〈

[
 
 
 
 

√2∏ (𝜁𝑖
𝐿)

𝜇𝑖𝑘
𝑖=1

√∏ (2−(𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑘

𝑖=1 +∏ ((𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑘

𝑖=1

,

√2∏ (𝜁𝑖
𝑈)

𝜇𝑖𝑘
𝑖=1

√∏ (2−(𝜁𝑖
𝑈)

2
)
𝜇𝑖𝑘

𝑖=1 +∏ ((𝜁𝑖
𝑈)

2
)
𝜇𝑖𝑘

𝑖=1 ]
 
 
 
 

;
√2∏ (𝜁𝑖)

𝜇𝑖𝑘
𝑖=1

√∏ (2−(𝜁𝑖)
2)𝜇𝑖𝑘

𝑖=1 +∏ ((𝜁𝑖)
2)𝜇𝑖𝑘

𝑖=1

〉

)

 
 
 
 
 
 
 
 
 

. 

Our present goal is to demonstrate the truth of Eq (5) when 𝑛 is equal to k + 1. By Eq (4), we get 

𝑃𝐶𝐹𝐸𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑘+1) = 𝜇1.𝐸 𝛼1 ⊕𝐸 𝜇2.𝐸 𝛼2 ⊕𝐸 …⊕𝐸 𝜇𝑛.𝐸 𝛼𝑘+1  

=

(

 
 
 
 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
 
√

∏ (1 + (𝜉𝑖
𝐿)2)𝜇𝑖𝑘

𝑖=1 − ∏ (1 − (𝜉𝑖
𝐿)2)𝜇𝑖𝑘

𝑖=1

∏ (1 + (𝜉𝑖
𝐿)2)𝜇𝑖𝑘

𝑖=1 + ∏ (1 − (𝜉𝑖
𝐿)2)𝜇𝑖𝑘

𝑖=1

,

√
∏ (1 + (𝜉𝑖

𝑈)
2
)
𝜇𝑖𝑘

𝑖=1 − ∏ (1 − (𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑘

𝑖=1

∏ (1 + (𝜉𝑖
𝑈)

2
)
𝜇𝑖

𝑘
𝑖=1 + ∏ (1 − (𝜉𝑖

𝑈)
2
)
𝜇𝑖

𝑘
𝑖=1 ]

 
 
 
 
 
 

; √
∏ (1 + (𝜉𝑖)2)𝜇𝑖𝑘

𝑖=1 − ∏ (1 − (𝜉𝑖)2)𝜇𝑖𝑘
𝑖=1

∏ (1 + (𝜉𝑖)2)𝜇𝑖𝑘
𝑖=1 + ∏ (1 − (𝜉𝑖)2)𝜇𝑖𝑘

𝑖=1

〉 ,

〈

[
 
 
 
 
 
 √2∏ (𝜁𝑖

𝐿)𝜇𝑖𝑘
𝑖=1

√∏ (2 − (𝜁𝑖
𝐿)2)𝜇𝑖𝑘

𝑖=1 + ∏ ((𝜁𝑖
𝐿)2)𝜇𝑖𝑘

𝑖=1

,

√2∏ (𝜁𝑖
𝑈)

𝜇𝑖𝑘
𝑖=1

√∏ (2 − (𝜁𝑖
𝑈)

2
)
𝜇𝑖

𝑘
𝑖=1 + ∏ ((𝜁𝑖

𝑈)
2
)
𝜇𝑖

𝑘
𝑖=1 ]

 
 
 
 
 
 

;
√2∏ (𝜁𝑖)

𝜇𝑖𝑘
𝑖=1

√∏ (2 − (𝜁𝑖)2)𝜇𝑖𝑘
𝑖=1 + ∏ ((𝜁𝑖)2)𝜇𝑖𝑘

𝑖=1

〉

)
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⊕𝐸

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

(1+(𝜉𝑘+1
𝐿 )

2
)
𝜇𝑘+1

−(1−(𝜉𝑘+1
𝐿 )

2
)
𝜇𝑘+1

(1+(𝜉𝑘+1
𝐿 )

2
)
𝜇𝑘+1

+(1−(𝜉𝑘+1
𝐿 )

2
)
𝜇𝑘+1

,

√
(1+(𝜉𝑘+1

𝑈 )
2
)
𝜇𝑘+1

−(1−(𝜉𝑘+1
𝑈 )

2
)
𝜇𝑘+1

(1+(𝜉𝑘+1
𝑈 )

2
)
𝜇𝑘+1

+(1−(𝜉𝑘+1
𝑈 )

2
)
𝜇𝑘+1

]
 
 
 
 
 

; √
(1+(𝜉𝑘+1)2)𝜇𝑘+1−(1−(𝜉𝑘+1)2)𝜇𝑘+1

(1+(𝜉𝑘+1)2)𝜇2+(1−(𝜉𝑘+1)2)𝜇𝑘+1
〉 ,

〈

[
 
 
 
 

√2(𝜁𝑘+1
𝐿 )

𝜇𝑘+1

√(2−(𝜁𝑘+1
𝐿 )

2
)
𝜇𝑘+1

+((𝜁𝑘+1
𝐿 )

2
)
𝜇𝑘+1

,

√2(𝜁𝑘+1
𝑈 )

𝜇𝑘+1

√(2−(𝜁𝑘+1
𝑈 )

2
)
𝜇𝑘+1

+((𝑘+1)2)𝜇𝑘+1 ]
 
 
 
 

;
√2(𝜁𝑘+1)𝜇𝑘+1

√(2−(𝜁𝑘+1)2)𝑘+1+((𝜁𝑘+1)2)𝑘+1

〉

)

 
 
 
 
 
 
 
 
 

. 

(

 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑘+1

𝑖=1 −∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑘+1

𝑖=1

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑘+1

𝑖=1 +∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑘+1

𝑖=1

,

√
∏ (1+(𝜉𝑖

𝑈)
2
)
𝜇𝑖𝑘+1

𝑖=1 −∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑘+1

𝑖=1

∏ (1+(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑘+1

𝑖=1 +∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑘+1

𝑖=1 ]
 
 
 
 
 

; √
∏ (1+(𝜉𝑖)

2)𝜇𝑖𝑘+1
𝑖=1 −∏ (1−(𝜉𝑖)

2)𝜇𝑖𝑘+1
𝑖=1

∏ (1+(𝜉𝑖)
2)𝜇𝑖𝑘+1

𝑖=1 +∏ (1−(𝜉𝑖)
2)𝜇𝑖𝑘+1

𝑖=1

〉 ,

〈

[
 
 
 
 

√2∏ (𝜁𝑖
𝐿)

𝜇𝑖𝑘+1
𝑖=1

√∏ (2−(𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑘+1

𝑖=1 +∏ ((𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑘+1

𝑖=1

,

√2∏ (𝜁𝑖
𝑈)

𝜇𝑖𝑘+1
𝑖=1

√∏ (2−(𝜁𝑖
𝑈)

2
)
𝜇𝑖𝑘+1

𝑖=1 +∏ ((𝜁𝑖
𝑈)

2
)
𝜇𝑖𝑘+1

𝑖=1 ]
 
 
 
 

;
√2∏ (𝜁𝑖)

𝜇𝑖𝑘+1
𝑖=1

√∏ (2−(𝜁𝑖)
2)𝜇𝑖𝑘+1

𝑖=1 +∏ ((𝜁𝑖)
2)𝜇𝑖𝑘+1

𝑖=1

〉

)

 
 
 
 
 
 
 
 
 

. 

To summarize, the proof shows that Eq (2) is valid for 𝑛 = 𝑘 + 1, and we can conclude that Eq (5) 

holds for all values of 𝑛 . Therefore, we have successfully proven the validity of Eq (5) across all 

possible values of 𝑛. 

Property 1. (Idempotency) If 𝛼𝑖 = 𝛼 where 𝛼 = (〈[𝜉𝐿 , 𝜉𝑈]; 𝜉〉, 〈[𝜁𝐿 , 𝜁𝑈], 𝜁〉), and 𝜇𝑖 is the associated 

weight of 𝛼𝑖 such that 0 ≼ 𝜇𝑖 ≼ 1 and ∑ 𝜇𝑖
𝑛
𝑖=1 = 1, then PCFEWA(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝛼. 

Proof. As 𝛼𝑖 = (〈[𝜉𝐿 , 𝜉𝑈]; 𝜉〉, 〈[𝜁𝐿 , 𝜁𝑈], 𝜁〉) for all 𝑖, 

PCFEWA(𝛼1, 𝛼2, … , 𝛼𝑛) =  

(

 
 
 
 
 
 
 〈

[
 
 
 √

∏ (1+(𝜉𝐿)2)𝜇𝑖𝑛
𝑛=1 −∏ (1−(𝜉𝐿)2)𝜇𝑖𝑛

𝑛=1

∏ (1+(𝜉𝐿)2)𝜇𝑖𝑛
𝑛=1 +∏ (1−(𝜉𝐿)2)𝜇𝑖𝑛

𝑛=1
,

√
∏ (1+(𝜉𝑈)2)𝜇𝑖𝑛

𝑛=1 −∏ (1−(𝜉𝑈)2)𝜇𝑖𝑛
𝑛=1

∏ (1+(𝜉𝑈)2)𝜇𝑖𝑛
𝑛=1 +∏ (1−(𝜉𝑈)2)𝜇𝑖𝑛

𝑛=1 ]
 
 
 

; √
∏ (1+(𝜉)2)𝜇𝑖𝑛

𝑛=1 −∏ (1−(𝜉)2)𝜇𝑖𝑛
𝑛=1

∏ (1+(𝜉)2)𝜇𝑖𝑛
𝑛=1 +∏ (1−(𝜉)2)𝜇𝑖𝑛

𝑛=1

〉 ,

〈

[
 
 
 
 

√2∏ (𝜁𝐿)
𝜇𝑖𝑛

𝑖=1

√∏ (2−(𝜁𝐿)2)𝜇𝑖𝑛
𝑖=1 +∏ ((𝜁𝐿)2)𝜇𝑖𝑛

𝑖=1

,

√2∏ (𝜁𝑈)
𝜇𝑖𝑛

𝑖=1

√∏ (2−(𝜁𝑈)2)𝜇𝑖𝑛
𝑖=1 +∏ ((𝜁𝑈)2)𝜇𝑖𝑛

𝑖=1 ]
 
 
 
 

;
√2∏ (𝜁)𝜇𝑖𝑛

𝑖=1

√∏ (2−(𝜁)2)𝜇𝑖𝑛
𝑖=1 +∏ ((𝜁)2)𝜇𝑖𝑛

𝑖=1

〉

)
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=

(

 
 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
√

∏ (1+(𝜉𝐿)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1 −∏ (1−(𝜉𝐿)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1

∏ (1+(𝜉𝐿)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1 +∏ (1−(𝜉𝐿)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1

,

√
∏ (1+(𝜉𝑈)2)∑ 𝜇𝑖

𝑛
𝑖=1𝑛

𝑛=1 −∏ (1−(𝜉𝑈)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1

∏ (1+(𝜉𝑈)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1 +∏ (1−(𝜉𝑈)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1 ]
 
 
 
 
 

; √
∏ (1+(𝜉)2)∑ 𝜇𝑖

𝑛
𝑖=1𝑛

𝑛=1 −∏ (1−(𝜉)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1

∏ (1+(𝜉)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1 +∏ (1−(𝜉)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑛=1

〉 ,

〈

[
 
 
 
 
 √2∏ (𝜁𝐿)

∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑖=1

√∏ (2−(𝜁𝐿)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑖=1 +∏ ((𝜁𝐿)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑖=1

,

√2∏ (𝜁𝑈)
∑ 𝜇𝑖

𝑛
𝑖=1𝑛

𝑖=1

√∏ (2−(𝜁𝑈)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑖=1 +∏ ((𝜁𝑈)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑖=1 ]
 
 
 
 
 

;
√2∏ (𝜁)∑ 𝜇𝑖

𝑛
𝑖=1𝑛

𝑖=1

√∏ (2−(𝜁)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑖=1 +∏ ((𝜁)2)∑ 𝜇𝑖
𝑛
𝑖=1𝑛

𝑖=1

〉

)

 
 
 
 
 
 
 
 
 
 

,  

since ∑ 𝜇𝑖
𝑛
𝑖=1 = 1. Therefore, PCFEWA(𝛼1, 𝛼2, … , 𝛼𝑛) = (〈[𝜉𝐿 , 𝜉𝑈]; 𝜉⁡〉, 〈[𝜁𝐿 , 𝜁𝑈], 𝜁〉) = 𝛼. 

Property 2. (Monotonicity) Let 𝛼𝑖 = (〈[𝜉𝑖
𝐿 , 𝜉𝑖

𝑈]; 𝜉𝑖〉, 〈[[𝜁𝑖
𝐿 , 𝜁𝑖

𝑈]] , 𝜁𝑖〉) and  

𝛼̇𝑖 = (〈[𝜉̇𝑖
𝐿 , 𝜉̇𝑖

𝑈]; 𝜉̇𝑖〉, 〈[[𝜁𝑖̇
𝐿 , 𝜁𝑖̇

𝑈]] , 𝜁𝑖̇〉) be PCFNs. If 𝛼𝑖 ≼ 𝛼̇𝑖, then 

PCFEWA(𝛼1, 𝛼2, … , 𝛼𝑛) ≼ PCFEWA(𝛼̇1, 𝛼̇2, … , 𝛼̇𝑛). 

Proof. As the proof is straightforward, we will omit it here. 

Property 3. (Boundedness) Let 𝛼𝑖 = (〈[𝜉𝑖
𝐿 , 𝜉𝑖

𝑈]; 𝜉𝑖〉, 〈[[𝜁𝑖
𝐿 , 𝜁𝑖

𝑈]] , 𝜁𝑖〉) (𝑖 = 1,2, … , 𝑛) be a collection of 

PCFNs. If  

𝛼+ = (〈[
max(𝜉𝑖

𝐿) ,

max(𝜉𝑖
𝑈)

] ;max⁡(𝜉𝑖)〉 , 〈[
min(𝜁𝑖

𝐿) ,

min(𝜁𝑖
𝑈)

] ;min⁡(𝜁𝑖)〉), 

𝛼− = (〈[
min(𝜉𝑖

𝐿) ,

min(𝜉𝑖
𝑈)

] ; min⁡(𝜉𝑖)〉 , 〈[
max(𝜁𝑖

𝐿) ,

max(𝜁𝑖
𝑈)

] ;max⁡(𝜁𝑖)〉), 

then 𝛼− ≼ PCFEWA(𝛼1, 𝛼2, … , 𝛼𝑛) ≼ 𝛼+. 

Proof. As the proof is straightforward, we will omit it here. 

Property 4. (Homogeneity) Let 𝜑 be a positive real number. Then, we have 

PCFEWA(𝜑𝛼1, 𝜑⁡𝛼2, … , 𝜑𝛼𝑛) = ⁡𝜑PCFEWA(𝛼1, 𝛼2, … , 𝛼𝑛). 

Proof. It is simple to demonstrate. 

Corollary 1. The relationship between the PCFEWA and PCFWA operators can be expressed as follows: 

PCFEWA(𝛼1, 𝛼2, … , 𝛼𝑛) ≽ PCFWA(𝛼1, 𝛼2, … , 𝛼𝑛). 

Example 4. Let 𝛼1 = (〈[0.5,0.6]; 0.6〉, 〈[0.3,0.4]; 0.2〉) , 𝛼2 = (〈[0.2,0.3]; 0.5〉, 〈[0.6,0.7]; 0.4〉)  and 

𝛼3 = (〈[0.2,0.4]; 0.3〉, 〈[0.5,0.6]; 0.4〉)  be three PCFNs. The weight vector is 𝜇 = (0.25.0.35,0.4) . 

Then, 

√
∏ (1+(𝜉𝑖

𝐿)
2
)
𝜇𝑖𝑛

𝑛=1 −∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑛=1

∏ (1+(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑛=1 +∏ (1−(𝜉𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑛=1

= √

(1+(0.5)2)0.25×(1+(0.2)2)0.35×(1+(0.2)2)0.4

−(1−(0.5)2)0.25×(1−(0.2)2)0.35×(1−(0.2)2)0.4

(1+(0.5)2)0.25×(1+(0.2)2)0.35×(1+(0.2)2)0.4

+(1−(0.5)2)0.25×(1−(0.2)2)0.35×(1−(0.2)2)0.4

= 0.3059, 
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√
∏ (1+(𝜉𝑖

𝑈)
2
)
𝜇𝑖𝑛

𝑛=1 −∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑛=1

∏ (1+(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑛=1 +∏ (1−(𝜉𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑛=1

= √

(1+(0.6)2)0.25×(1+(0.3)2)0.35×(1+(0.4)2)0.4

−(1−(0.6)2)0.25×(1−(0.3)2)0.35×(1−(0.4)2)0.4

(1+(0.6)2)0.25×(1+(0.3)2)0.35×(1+(0.4)2)0.4

+(1−(0.6)2)0.25×(1−(0.3)2)0.35×(1−(0.4)2)0.4

= 0.4337, 

√
∏ (1+(𝜉𝑖)

2)𝜇𝑖𝑛
𝑛=1 −∏ (1−(𝜉𝑖)

2)𝜇𝑖𝑛
𝑛=1

∏ (1+(𝜉𝑖)
2)𝜇𝑖𝑛

𝑛=1 +∏ (1−(𝜉𝑖)
2)𝜇𝑖𝑛

𝑛=1
= √

(1+(0.6)2)0.25×(1+(0.5)2)0.35×(1+(0.3)2)0.4

−(1−(0.6)2)0.25×(1−(0.5)2)0.35×(1−(0.3)2)0.4

(1+(0.6)2)0.25×(1+(0.5)2)0.35×(1+(0.3)2)0.4

+(1−(0.6)2)0.25×(1−(0.5)2)0.35×(1−(0.3)2)0.4

= 0.4650, 

√2∏ (𝜁𝑖
𝐿)

𝜇𝑖𝑛
𝑖=1

√∏ (2−(𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑖=1 +∏ ((𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑖=1

=
√2(0.3)0.25×(0.6)0.35×(0.5)0.4

√
(2−(0.3)2)0.25×(2−(0.6)2)0.35×(2−(0.5)2)0.4

+(0.3)0.25×(0.6)0.35×(0.5)0.4

= 0.4454, 

√2∏ (𝜁𝑖
𝐿)

𝜇𝑖𝑛
𝑖=1

√∏ (2−(𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑖=1 +∏ ((𝜁𝑖
𝐿)

2
)
𝜇𝑖𝑛

𝑖=1

=
√2(0.4)0.25×(0.7)0.35×(0.6)0.4

√
(2−(0.4)2)0.25×(2−(0.7)2)0.35×(2−(0.6)2)0.4

+(0.4)0.25×(0.7)0.35×(0.6)0.4

= 0.5580, 

√2∏ (𝜁𝑖)
𝜇𝑖𝑛

𝑖=1

√∏ (2−(𝜁𝑖)
2)𝜇𝑖𝑛

𝑖=1 +∏ ((𝜁𝑖)
2)𝜇𝑖𝑛

𝑖=1

=
√2(0.2)0.25×(0.4)0.35×(0.4)0.4

√
(2−(0.2)2)0.25×(2−(0.4)2)0.35×(2−(0.4)2)0.4

+(0.2)0.25×(0.4)0.35×(0.4)0.4

0.3180. 

PCFEWA(𝛼1, 𝛼2, 𝛼3) = (〈[0.3059,0.4337]; 0.4650〉, 〈[0.4454,0.5580]; 0.3180〉). 

Now, by using the PCFWA operator [36] to aggregate these three PCFNs,  

PCFWA(𝛼1, 𝛼2, … , 𝛼𝑛) =

(

 
 
 〈

[
 
 
 √1 − ∏ (1 − (𝜉𝑖

𝐿)2)𝜇𝑖𝑛
𝑖=1 ,

√1 − ∏ (1 − (𝜉𝑖
𝑈)

2
)
𝜇𝑖

𝑛
𝑖=1 ]

 
 
 

; √1 − ∏ (1 − (𝜉𝑖)2)𝜇𝑖𝑛
𝑖=1 〉 ,

〈[∏ ((𝜁𝑖
𝐿)2)𝜇𝑖𝑛

𝑖=1 , ∏ ((𝜁𝑖
𝑈)

2
)
𝜇𝑖𝑛

𝑖=1 ] ;∏ ((𝜁𝑖)
2)𝜇𝑖𝑛

𝑖=1 〉 )

 
 
 

 ,  (6) 

√1 − ∏ (1 − (𝜉𝑖
𝐿)2)𝜇𝑖𝑛

𝑖=1 = √1 − (1 − 0.52)0.25 × (1 − 0.22)0.35 × (1 − 0.22)0.4 = 0.3122, 

√1 − ∏ (1 − (𝜉𝑖
𝑈)

2
)
𝜇𝑖

𝑛
𝑖=1 = √1 − (1 − 0.62)0.25 × (1 − 0.32)0.35 × (1 − 0.42)0.4 = 0.4392, 

√1 − ∏ (1 − (𝜉𝑖)2)𝜇𝑖𝑛
𝑖=1 = √1 − (1 − 0.62)0.25 × (1 − 0.52)0.35 × (1 − 0.32)0.4 = 0.4703, 

∏ (𝜁𝑖
𝐿)𝜇𝑖𝑛

𝑖=1 = (0.3)0.25 × (0.6)0.35 × (0.5)0.4 = 0.4691, 

∏ (𝜁𝑖
𝑈)

𝜇𝑖𝑛
𝑖=1 = (0.4)0.25 × (0.7)0.35 × (0.6)0.4 = 0.5722, 

∏ (𝜁𝑖)
𝜇𝑖𝑛

𝑖=1 = (0.2)0.25 × (0.4)0.35 × (0.4)0.4 = 0.3364. 

PCFWA(𝛼1, 𝛼2, 𝛼3) = (〈[0.3122,0.4392]; 0.4703〉, 〈[0.4691,0.5722]; 0.3364〉). 

By Eq (2), we get 

𝑆𝑐(PCFEWA(𝛼1, 𝛼2, 𝛼3)) = (
0.3059+0.4337−0.4650

3
)
2

− (
0.4454+0.5580−0.3180

3
)
2

= −0.0438, 
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𝑆𝑐(PCFWA(𝛼1, 𝛼2, 𝛼3)) = (
0.3122+0.4392−0.4703

3
)
2

− (
0.4691+0.5722−0.3364

3
)
2

= −0.0465.  

Clearly, we can see that PCFEWA(𝛼1, 𝛼2, … , 𝛼𝑛) ≽ PCFWA(𝛼1, 𝛼2, … , 𝛼𝑛). 

4.2. PCFEWA operator 

Definition 11. A PCFEOWA is a mapping defined as PCFEOWA:⁡∆𝑛→ ∆ on a collection of PCFNs 𝛽𝑖, 

(𝑖 = 1,2, …𝑛) as follows: 

PCFEOWA(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝜇1𝛼𝜌(1) ⊕ 𝜇2𝛼𝜌(2)⨁…⨁⁡𝜇𝑛𝛼𝜌(𝑛)   (7) 

where 𝜌  is a permutation of (1, 2, … , 𝑛) , such that 𝛼𝜌(𝑖−1) ≽ 𝛼𝜌(𝑖)  for 𝑖 = 1,2, … , 𝑛 , and 𝜇 =

(𝜇1, 𝜇2 … , 𝜇𝑛)𝑇 is its weight vector, such that 𝜇 ≻ 0 and ∑ 𝜇𝑖
𝑛
𝑖=1 = 1. Moreover, the 𝑖𝑡ℎ largest PCFN 

among 𝛼𝑖′s is 𝛼𝜌(𝑖). 

Theorem 6. Let 𝛼𝑖 = (〈[𝜉𝑖
𝐿 , 𝜉𝑖

𝑈]; 𝜉𝑖〉, 〈[[𝜁𝑖
𝐿 , 𝜁𝑖

𝑈]] , 𝜁𝑖〉) be a collection of PCFNs, and 𝜇𝑖 is the weight of 

𝛼𝑖 (𝑖 = 1,2, … , 𝑛) such that 0 ≼ 𝜇𝑖 ≼ 1and ∑ 𝜇𝑖
𝑛
𝑖=1 = 1. Then, the aggregated value by using Eq (4) 

is PCFN, and 

𝑃𝐶𝐹𝐸𝑂𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑛)  

=

(

 
 
 
 
 
 
 
 
 
 
 
 

〈

[
 
 
 
 
 
 
√

∏ (1+(𝜉𝜌(𝑖)
𝐿 )

2
)
𝜇𝑖

𝑛
𝑖=1 −∏ (1−(𝜉𝜌(𝑖)

𝐿 )
2
)
𝜇𝑖

𝑛
𝑖=1

∏ (1+(𝜉𝜌(𝑖)
𝐿 )

2
)
𝜇𝑖

𝑛
𝑖=1 +∏ (1−(𝜉𝜌(𝑖)

𝐿 )
2
)
𝜇𝑖

𝑛
𝑖=1

,

∏ (1+(𝜉𝜌(𝑖)
𝑈 )

2
)
𝜇𝑖

𝑛
𝑖=1 −∏ (1−(𝜉𝜌(𝑖)

𝑈 )
2
)
𝜇𝑖

𝑛
𝑖=1

∏ (1+(𝜉𝜌(𝑖)
𝑈 )

2
)
𝜇𝑖

𝑛
𝑖=1 +∏ (1−(𝜉𝜌(𝑖)

𝑈 )
2
)
𝜇𝑖

𝑛
𝑖=1 ]

 
 
 
 
 
 

; √
∏ (1+(𝜉𝜌(𝑖))

2
)
𝜇𝑖𝑛

𝑖=1 −∏ (1−(𝜉𝜌(𝑖))
2
)
𝜇𝑖𝑛

𝑖=1

∏ (1+(𝜉𝜌(𝑖))
2
)
𝜇𝑖𝑛

𝑖=1 +∏ (1−(𝜉𝜌(𝑖))
2
)
𝜇𝑖𝑛

𝑖=1

〉 ,

〈

[
 
 
 
 
 
 √2∏ (𝜁𝜌(𝑖)

𝐿 )
𝜇𝑖𝑛

𝑖=1

√∏ (2−(𝜁𝜌(𝑖)
𝐿 )

2
)
𝜇𝑖

𝑛
𝑖=1 +∏ ((𝜁𝜌(𝑖)

𝐿 )
2
)
𝜇𝑖

𝑛
𝑖=1

,

√2∏ (𝜁𝜌(𝑖)
𝑈 )

𝜇𝑖𝑛
𝑖=1

√∏ (2−(𝜁𝜌(𝑖)
𝑈 )

2
)
𝜇𝑖

𝑛
𝑖=1 +∏ ((𝜁𝜌(𝑖)

𝑈 )
2
)
𝜇𝑖

𝑛
𝑖=1 ]

 
 
 
 
 
 

;
√2∏ (𝜁𝜌(𝑖))

𝜇𝑖𝑛
𝑖=1

√∏ (2−(𝜁𝜌(𝑖))
2
)
𝜇𝑖𝑛

𝑖=1 +∏ ((𝜁𝜌(𝑖))
2
)
𝜇𝑖𝑛

𝑖=1

〉

)

 
 
 
 
 
 
 
 
 
 
 
 

  (8) 

Property 5. (Idempotency) If 𝛼𝑖 = 𝛼 where 𝛼 = (〈[𝜉𝐿 , 𝜉𝑈]; 𝜉〉, 〈[𝜁𝐿 , 𝜁𝑈], 𝜁〉), and 𝜇𝑖 is the associated 

weight of 𝛼𝑖 such that 0 ≼ 𝜇𝑖 ≼ 1 and ∑ 𝜇𝑖
𝑛
𝑖=1 = 1, then PCFEOWA(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝛼. 

Property 6. (Monotonicity) Let 𝛼𝑖 = (〈[𝜉𝑖
𝐿 , 𝜉𝑖

𝑈]; 𝜉𝑖〉, 〈[[𝜁𝑖
𝐿 , 𝜁𝑖

𝑈]] , 𝜁𝑖〉) and  

𝛼̇𝑖 = (〈[𝜉̇𝑖
𝐿 , 𝜉̇𝑖

𝑈]; 𝜉̇𝑖〉, 〈[[𝜁𝑖̇
𝐿 , 𝜁𝑖̇

𝑈]] , 𝜁𝑖̇〉) be PCFNs. If 𝛼𝑖 ≼ 𝛼̇𝑖, then 

PCFEOWA(𝛼1, 𝛼2, … , 𝛼𝑛) ≼ PCFEOWA(𝛼̇1, 𝛼̇2, … , 𝛼̇𝑛). 

Property 7. (Boundedness) Let 𝛼𝑖 = (〈[𝜉𝑖
𝐿 , 𝜉𝑖

𝑈]; 𝜉𝑖〉, 〈[[𝜁𝑖
𝐿 , 𝜁𝑖

𝑈]] , 𝜁𝑖〉) (𝑖 = 1,2, … , 𝑛) be a collection of 

PCFNs. If  

𝛼+ = (〈[
max(𝜉𝑖

𝐿) ,

max(𝜉𝑖
𝑈)

] ;max⁡(𝜉𝑖)〉 , 〈[
min(𝜁𝑖

𝐿) ,

min(𝜁𝑖
𝑈)

] ;min⁡(𝜁𝑖)〉), 
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𝛼− = (〈[
min(𝜉𝑖

𝐿) ,

min(𝜉𝑖
𝑈)

] ; min⁡(𝜉𝑖)〉 , 〈[
max(𝜁𝑖

𝐿) ,

max(𝜁𝑖
𝑈)

] ;max⁡(𝜁𝑖)〉), 

then 𝛼− ≼ PCFEOWA(𝛼1, 𝛼2, … , 𝛼𝑛) ≼ 𝛼+. 

Property 8. (Homogeneity) Let 𝜑 be a positive real number. Then, we have 

PCFEOWA(𝜑𝛼1, 𝜑⁡𝛼2, … , 𝜑𝛼𝑛) = ⁡𝜑PCFEOWA(𝛼1, 𝛼2, … , 𝛼𝑛). 

Corollary 2. The relationship between the PCFEOWA and PCFOWA operators can be expressed as 

follows: 

PCFEOWA(𝛼1, 𝛼2, … , 𝛼𝑛) ≽ PCFOWA(𝛼1, 𝛼2, … , 𝛼𝑛). 

5. MCDM approach based on proposed operators 

This section will employ the proposed Einstein aggregation operator to address MCDM problems 

in the context of PCFSs. To facilitate this, we will introduce several assumptions and notations to 

define the MCDM problems and evaluate them using PCFSs. 

Let 𝜗 = {𝜗1, 𝜗2, … , 𝜗𝑚} be the set of 𝑚 alternatives, which have been analyzed under the set of 

𝑛 different criteria 𝜓 = {𝜓1, 𝜓2, … , 𝜓𝑛}. Suppose that an expert assesses the alternatives, providing 

their opinions on each alternative 𝜗𝑖 (where 𝑖 ranges from 1 to 𝑚) within the context of a Pythagorean 

cubic fuzzy environment. The expert's evaluations are based on their preferences and priorities with 

respect to the different criteria in the set 𝜓, and these values can be considered as Pythagorean cubic 

fuzzy numbers (PCFNs) 𝐺 = (𝑔𝑖𝑗)𝑚𝑛
  where 𝑔𝑖𝑗 = (〈[𝜉𝑖𝑗

𝐿 , 𝜉𝑖𝑗
𝑈]; 𝜉𝑖𝑗〉, 〈[𝜁𝑖𝑗

𝐿 , 𝜁𝑖𝑗
𝑈], 𝜁𝑖𝑗〉)  refers to the 

priority values assigned to alternative 𝜗𝑖 by the decision maker such that [𝜉𝑖𝑗
𝐿 , 𝜉𝑖𝑗

𝑈],[𝜁𝑖𝑗
𝐿 , 𝜁𝑖𝑗

𝑈] ⊆ [0,1], 

0 ≼ 𝜉𝑖𝑗,⁡𝜁𝑖𝑗 ≼ 1, (𝜉𝑖𝑗
𝑈)

2
+ (𝜁𝑖𝑗

𝑈)
2

≼ 1 and (𝜉𝑖𝑗)
2
+ (𝜁𝑖𝑗)

2
≼ 1. Let 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑛)𝑇 be the weight 

vector of criteria such that 0 ≼ 𝜇𝑖 ≼ 1 and ∑ 𝜇𝑗 = 1𝑛
𝑗=1  (𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛). 

The proposed method is shown in Figure 1 for identifying the best alternative(s). 

 

Figure 1. Flowchart of the proposed approach. 



16979 

 

AIMS Mathematics  Volume 8, Issue 7, 16961–16988. 

Step 1. To comprehensively evaluate various alternatives, it is necessary to collect relevant information 

and rate them based on specific criteria. The rating values are expressed as a decision matrix 𝐺: 

𝐺 = (

𝑔11
𝑔12 ⋯ 𝑔1𝑛

𝑔21

⋮
𝑔22

⋮
⋯
⋱

𝑔2𝑛

⋮
𝑔𝑚1 𝑔𝑚2 ⋯ 𝑔𝑚𝑛

)        (9) 

where 𝑔𝑖𝑗 = (〈[𝜉𝑖𝑗
𝐿 , 𝜉𝑖𝑗

𝑈]; 𝜉𝑖𝑗〉, 〈[𝜁𝑖𝑗
𝐿 , 𝜁𝑖𝑗

𝑈], 𝜁𝑖𝑗〉)  such that [𝜉𝑖𝑗
𝐿 , 𝜉𝑖𝑗

𝑈] , [𝜁𝑖𝑗
𝐿 , 𝜁𝑖𝑗

𝑈] ⊆ [0,1] , 0 ≼ 𝜉𝑖𝑗 , ⁡𝜁𝑖𝑗 ≼ 1 , 

(𝜉𝑖𝑗
𝑈)

2
+ (𝜁𝑖𝑗

𝑈)
2

≼ 1 and (𝜉𝑖𝑗)
2
+ (𝜁𝑖𝑗)

2
≼ 1. 

Step 2. When making a decision, criteria are used to assess and compare alternative options. Two types 

of criteria exist: Benefit criteria and cost criteria. Benefit criteria evaluate the positive aspects of the 

alternatives being considered, measuring their advantages or benefits to determine the best solution to 

a particular problem. Cost criteria, on the other hand, assess the negative aspects or expenses associated 

with each alternative, measuring their disadvantages or costs, and are important for determining the 

overall feasibility of a solution. We will use the negation operator below for normalization. 

𝑟𝑖𝑗 = {
(〈[𝜉𝑖𝑗

𝐿 , 𝜉𝑖𝑗
𝑈]; 𝜉𝑖𝑗〉, 〈[𝜁𝑖𝑗

𝐿 , 𝜁𝑖𝑗
𝑈]; 𝜁𝑖𝑗〉)⁡for⁡benefit − type⁡criteria

(〈[𝜁𝑖𝑗
𝐿 , 𝜁𝑖𝑗

𝑈]; 𝜁𝑖𝑗〉, 〈[𝜉𝑖𝑗
𝐿 , 𝜉𝑖𝑗

𝑈]; 𝜉𝑖𝑗〉)for⁡cost − type⁡criteria
.   (10) 

To normalize the criteria, we will apply the following operator: If the criterion being assessed is a 

benefit criterion, no further action is necessary. However, if the criterion is a cost criterion, it will be 

converted into a benefit criterion, and the results will be condensed and organized into the decision 

matrix 𝑅 = (𝑟𝑖𝑗)𝑚𝑛
. 

Step 3. One way to aggregate the various preference values 𝑟𝑖𝑗  of the alternatives 𝜗𝑖  into a single 

collective value 𝑟𝑖 is by utilizing either the PCFEWA or PCFEOWA operator. 

Step 4. To calculate the score of the combined PCFN value 𝑟𝑖, you can use Eq (2). Arrange the alternatives 

𝜗𝑖 in order of their score value 𝑆𝑐(𝑟𝑖), starting with the highest value and ending with the lowest. 

5.1. Illustrative example 

To demonstrate the application of MCDM in engineering investment decision-making, we have 

chosen an illustrative example that highlights various investment alternatives. This example serves as 

a demonstration of how MCDM can be utilized to make informed decisions in complex engineering 

investment scenarios. 

Let us examine the realm of investing, where an individual is interested in putting some amount 

of money into an investment. In current times, numerous companies are enticing customers by 

lowering prices and offering additional perks, making it challenging for investors to determine the 

optimal market for investment. To mitigate market risks and improve decision-making clarity, a 

committee was established to invest funds in four key markets: Southern Asian (𝜗1), Eastern Asian 

(𝜗2), Northern Asian (𝜗3) and Local (𝜗4). The committee enlisted the expertise of an analyst who 

evaluated each market based on four primary factors: risk (𝜓1), growth potential (𝜓2), environmental 

impact (𝜓3) and social-political impact (𝜓4). The weight vector, denoted as 𝜇 = (0.35,0.3,0.15,0.2)𝑇, 

is associated with the four primary analyses 𝜓𝑖. Using the established method, we proceed to determine 

the optimal alternative as follows. 

Step 1. The information about each alternative’s preferences is condensed into a set of PCFNs. These 

PCFNs serve as a way to summarize the nuanced and complex preferences of the decision-makers. 
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Additionally, the collection of ratings given for each alternative is recorded in a decision matrix, which 

is presented in Table 3. The decision matrix provides a clear and concise overview of the various 

ratings and their corresponding alternatives. The structure of the proposed model is systematically 

outlined in Figure 2. 

 

Figure 2. The systematic structure of the proposed model. 

Table 3. Decision matrix. 

Alternatives  𝝍𝟏 𝝍𝟐 𝝍𝟑 𝝍𝟒 

𝝑𝟏 (
〈[0.6,0.7]; 0.6〉,
〈[0.5,0.6]; 0.4〉

) (
〈[0.5,0.6]; 0.5〉,
〈[0.3,0.4]; 0.6〉

) (
〈[0.4,0.5]; 0.5〉,
〈[0.2,0.3]; 0.4〉

) (
〈[0.3,0.4]; 0.6〉,
〈[0.5,0.6]; 0.7〉

) 

𝝑𝟐 (
〈[0.5,0.6]; 0.7〉,
〈[0.4,0.5]; 0.6〉

) (
〈[0.3,0.4]; 0.8〉,
〈[0.5,0.6]; 0.6〉

) (
〈[0.5,0.6]; 0.8〉,
〈[0.3,0.4]; 0.5〉

) (
〈[0.6,0.7]; 0.5〉,
〈[0.5,0.6]; 0.4〉

) 

𝝑𝟑 (
〈[0.4,0.5]; 0.2〉,
〈[0.2,0.3]; 0.5〉

) (
〈[0.5,0.6]; 0.5〉,
〈[0.4,0.5]; 0.7〉

) (
〈[0.6,0.7]; 0.6〉,
〈[0.5,0.6]; 0.4〉

) (
〈[0.5,0.6]; 0.3〉,
〈[0.4,0.5]; 0.5〉

) 

𝝑𝟒 (
〈[0.6,0.7]; 0.6〉,
〈[0.4,0.5]; 0.4〉

) (
〈[0.3,0.4]; 0.3〉,
〈[0.4,0.5]; 0.4〉

) (
〈[0.2,0.3]; 0.5〉,
〈[0.5,0.6]; 0.3〉

) (
〈[0.4,0.5]; 0.3〉,
〈[0.6,0.7]; 0.2〉

) 

Step 2. Since 𝜓1 and 𝜓4 pertain to costs, while 𝜓2 and 𝜓3 are related to benefits, the criteria can be 

categorized accordingly. Therefore, to create a normalized Pythagorean cubic fuzzy decision matrix 𝑅, 

Eq (10) is utilized. This process takes into account the various types of criteria and ensures that the 

resulting decision matrix accurately reflects the relative importances of both costs and benefits. The 

resulting decision matrix can be seen in Table 4. 

Table 4. Normalized decision matrix. 

Alternatives  𝝍𝟏 𝝍𝟐 𝝍𝟑 𝝍𝟒 

𝝑𝟏 (
〈[0.5,0.6]; 0.4〉,
〈[0.6,0.7]; 0.6〉

) (
〈[0.5,0.6]; 0.5〉,
〈[0.3,0.4]; 0.6〉

) (
〈[0.4,0.5]; 0.5〉,
〈[0.2,0.3]; 0.4〉

) (
〈[0.5,0.6]; 0.7〉,
〈[0.3,0.4]; 0.6〉

) 

𝝑𝟐 (
〈[0.4,0.5]; 0.6〉,
〈[0.5,0.6]; 0.7〉

) (
〈[0.3,0.4]; 0.8〉,
〈[0.5,0.6]; 0.6〉

) (
〈[0.5,0.6]; 0.8〉,
〈[0.3,0.4]; 0.5〉

) (
〈[0.5,0.6]; 0.4〉,
〈[0.6,0.7]; 0.5〉

) 

𝝑𝟑 (
〈[0.2,0.3]; 0.5〉,
〈[0.4,0.5]; 0.2〉

) (
〈[0.5,0.6]; 0.5〉,
〈[0.4,0.5]; 0.7〉

) (
〈[0.6,0.7]; 0.6〉,
〈[0.5,0.6]; 0.4〉

) (
〈[0.4,0.5]; 0.5〉,
〈[0.5,0.6]; 0.3〉

) 

𝝑𝟒 (
〈[0.4,0.5]; 0.4〉,
〈[0.6,0.7]; 0.6〉

) (
〈[0.3,0.4]; 0.3〉,
〈[0.4,0.5]; 0.4〉

) (
〈[0.2,0.3]; 0.5〉,
〈[0.5,0.6]; 0.3〉

) (
〈[0.6,0.7]; 0.2〉,
〈[0.4,0.5]; 0.3〉

) 
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Step 3. To combine the individual preference values 𝑟𝑖𝑗  associated with each alternative Ai into a 

unified value 𝑟𝑖, two operators can be employed: PCFEWA or PCFEOWA. These operators offer a 

means of aggregation that can effectively take into account the diverse and often complex preferences 

of decision-makers. 

(1) By PCFEWA operator 

By utilizing the PCFEWA operator and taking into consideration the provided evidence, the 

various performance values can be effectively aggregated. This process allows for the calculation of 

comprehensive overall performance values for each alternative, which are summarized in Table 5. 

Table 5. Aggregated performance values of alternatives by using the PCFEWA operator. 

Alternatives Aggregated performance values 

𝝑𝟏 (〈[0.5894,0.6515]; 0.5532〉, 〈[0.4879,0.6106]; 0.6370〉) 

𝝑𝟐 (〈[0.4108,0.5315]; 0.6070〉, 〈[0.5193,0.6347]; 0.4566〉) 

𝝑𝟑 (〈[0.4511,0.5768]; 0.6204〉, 〈[0.5033,0.6116]; 0.5483〉) 

𝝑𝟒 (〈[0.4015,0.5676]; 0.5619〉, 〈[0.4356,0.5284]; 0.5943〉) 

(2) By PCFOWA operator 

By taking into account the provided evidence and using the PCFEOWA operator, it is possible to 

aggregate the different performance values effectively. Before utilizing the PCFEOWA operator to 

aggregate different alternatives, we ranked their original positions based on their score. The results are 

summerized in Table 6. 

Table 6. Aggregated performance values of alternatives by using the PCFEOWA operator. 

Alternatives Aggregated performance values 

𝝑𝟏 (〈[0.6029,0.6764]; 0.5791〉, 〈[0.4841,0.6214]; 0.6403〉) 

𝝑𝟐 (〈[0.4213,0.5453]; 0.6178〉, 〈[0.5301,0.6418]; 0.4697〉) 

𝝑𝟑 (〈[0.4601,0.5844]; 0.6297〉, 〈[0.5143,0.6241]; 0.5587〉) 

𝝑𝟒 (〈[0.4112,0.5791]; 0.5788〉, 〈[0.4467,0.5384]; 0.6065〉) 

Step 4. Equation (2) can be utilized to compute the score of the combined PCFN value 𝑟𝑖 . After 

obtaining the scores, arrange the alternatives 𝜗𝑖 in descending order of their score value, beginning 

with the highest value and concluding with the lowest. The outcomes are then summarized in Table 7. 

Table 7. Score values and ranking order of alternatives. 

Operators  Score values Ranking orders 

𝜗1 𝜗2 𝜗3 𝜗4 

PCFEWA 0.0289 −0.0415 −0.0172 0.0032 𝜗1 ≻ 𝜗4 ≻ 𝜗3 ≻ 𝜗2 

PCFEOWA 0.0304 −0.0413 −0.0182 0.0029 𝜗1 ≻ 𝜗4 ≻ 𝜗3 ≻ 𝜗2 

Table 7 reveals that the alternative 𝜗1  has the highest score value among all the alternatives. 

Therefore, it can be concluded that 𝜗1 is the most suitable option for the investment based on the given 

criteria and the evaluation method used. It is noteworthy that the score values of the other alternatives 

are comparatively lower than 𝜗1, indicating that they may not be as favorable as 𝜗1 for the investment. 
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Consequently, the decision-makers should consider investing in 𝜗1, as it has demonstrated superior 

performance and has the potential to yield the desired outcomes. Figure 3 displays a graphical 

representation of the proposed aggregation operators. Upon examination of the figure, it becomes 

evident that the outcomes of both operators are quite similar. This similarity between the results 

supports the notion that the proposed method is stable, as it can consistently generate similar results 

using different aggregation operators. 

 

Figure 3. Graphical representation of the proposed aggregation operators. 

5.2. Comparative study 

To determine the effectiveness of our proposed method in identifying the best alternatives, we 

conducted a comparative analysis with several previous approaches described by various authors. The 

objective was to assess the performance of our method compared to these existing methods. The results 

of this comparison are presented in Table 8, where each method is evaluated based on its ability to 

identify the best alternatives according to the given criteria. This analysis provides valuable insights 

into the strengths and weaknesses of each method and allows us to determine the efficacy of our 

proposed approach in identifying the most suitable alternatives for the investment. 

Based on the comparison, we can conclude that the best alternative identified by our proposed 

approach is consistent with the results obtained from the existing methods. However, the aggregated 

PCFN values generated by our approach are more conservative than those produced by the other 

methods. As observed from the table, the relative score values of the alternatives follow a similar trend 

(either increasing or decreasing) across all the methods. This indicates that our proposed approach is 

equally effective in addressing decision-making problems in a PCFS environment as the existing 

methods. Overall, the comparative analysis provides evidence of the efficacy of our proposed approach 

in identifying the most suitable alternatives for the investment.  
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Table 8. Score values and ranking order of alternatives with different existing approaches. 

Approaches  Score values Ranking orders 

𝜗1 𝜗2 𝜗3 𝜗4 

Seker and Kahraman [40] −0.4560 −0.5632 −0.4903 −0.4734 𝜗1 ≻ 𝜗4 ≻ 𝜗3 ≻ 𝜗2 

Abdullah et al. [10] −0.4011 −0.5578 −0.5106 −0.4895 𝜗1 ≻ 𝜗4 ≻ 𝜗3 ≻ 𝜗2 

Hussain et al. [41] −0.3316 −0.5285 −0.5043 −0.4259 𝜗1 ≻ 𝜗4 ≻ 𝜗3 ≻ 𝜗2 

Khan et al. [38] −0.2167 −0.5908 −0.4550 −0.3518 𝜗1 ≻ 𝜗4 ≻ 𝜗3 ≻ 𝜗2 

Based on the information presented in Figure 4, it can be observed that the outcomes achieved 

through the proposed approach are comparable to those of other approaches. However, it is worth 

noting that the proposed approach exhibits a higher level of stability and provides significantly more 

detailed information when compared to the other approaches. These findings suggest that the proposed 

approach may have distinct advantages over the other methods in terms of reliability and the depth of 

information it can provide. 

 

Figure 4. A visual representation of various alternatives with different approaches. 

From the above discussion, we have observed that the proposed approach produces the best 

alternative, which validates its stability in comparison to the state-of-the-art methods. In contrast to 

the existing decision-making methods that use either  IVPFSs or FSs, the proposed approach considers 

both IVPFSs and FSs simultaneously, resulting in a more comprehensive evaluation of the alternatives. 

This is important as existing approaches may lose crucial information on either IVPFNs or FNs, which 

could potentially impact the decision results. Additionally, the proposed approach uses a different 

computational procedure than the existing approaches, but it yields more realistic results due to the 

consideration of the consistent priority degree between argument pairs in the decision process. 

Overall, the proposed model offers a significant improvement over existing approaches by 

relaxing many of their constraints and limitations. In doing so, it provides a more flexible and adaptable 

environment that can effectively address complex decision-making problems. By enabling decision-
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makers to consider a broader range of factors and criteria, the proposed model empowers them to make 

more informed and nuanced decisions that reflect the real-world complexities of their specific 

situations. Furthermore, the proposed model incorporates advanced algorithms and techniques that 

enhance its robustness and scalability, allowing it to handle large and diverse data sets with ease. By 

leveraging these innovative features, the proposed model provides decision-makers with a powerful 

and reliable tool that can help them achieve their goals more efficiently and effectively. 

5.3. Advantages of proposed operators 

(1) The Pythagorean cubic fuzzy aggregation operators that have been proposed exhibit a higher 

degree of flexibility in comparison to the currently existing Einstein aggregation operators for 

both Pythagorean fuzzy sets and interval-valued Pythagorean fuzzy sets. These new 

aggregation operators can incorporate more complex and nuanced relationships between input 

variables, allowing for more accurate and precise results. Moreover, the Pythagorean cubic 

fuzzy aggregation operators have a wider range of applications, making them a more versatile 

and adaptable tool for decision-making processes in a variety of fields. 

(2) The Pythagorean cubic fuzzy set (PCFS) is a generalized form that can handle incomplete, 

indeterminate and inconsistent information commonly found in real-world problems. As a 

result, current studies using PCFS are more suitable for solving day-to-day problems than 

existing ones. 

5.4. Limitations 

Limitations are inherent in all research, and this study is no exception. As with any research, these 

limitations will serve as a guide for future studies in this area. 

(1) The study proposes new weighted averaging and ordered weighted averaging operators that 

use Einstein operations within a PCF environment. It is important to note that further 

advancements can be made by defining weighted geometric and ordered weighted geometric 

operators that utilize Einstein operations in the PCF environment in the future. 

(2) In the current study, the demonstration is conducted using four criteria and four alternatives. 

However, in future research, data can be collected from multiple experts across various 

locations to validate the results of this study. 

6. Conclusions 

The Pythagorean cubic fuzzy set is a significant and innovative framework where the degrees of 

membership and non-membership of an element are represented by cubic sets. By leveraging the 

benefits offered by these sets, the existing Einstein operations are extended to the Pythagorean cubic 

fuzzy environment. This extension of the Einstein operations allows for a more accurate and nuanced 

representation of uncertain or imprecise information, which is often encountered in decision-making 

processes. Drawing on these operational laws, a collection of aggregation operators, namely, 

Pythagorean cubic fuzzy Einstein weighted averaging and Pythagorean cubic fuzzy Einstein ordered 

weighted averaging operators, has been proposed to facilitate the aggregation of Pythagorean cubic 

fuzzy information. These operators offer enhanced flexibility and accuracy in dealing with uncertain 

or vague information and can be applied in various decision-making contexts. Furthermore, an MCDM 
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algorithm is provided to deal with PCF information. To illustrate the proposed approach, a relevant 

example of investment decision-making in an optimal market has been provided. Lastly, the proposed 

results are compared with other existing approaches to confirm the stability and reliability of the 

proposed method. 

In the future, the applicability of the findings in this paper could be extended to various uncertain 

and fuzzy environments such as interval 2-tuple linguistic multi-attribute decision-making [42], risk 

analysis [43] and others [44]. Also, Pythagorean cubic fuzzy numbers can only be utilized when the 

condition (𝜉𝑈)2 + (𝜁𝑈)2 ≼ 1 is met. However, in certain real-world situations, this condition may not 

be satisfied, thereby posing a challenge to decision-makers. For instance, when a decision-maker rates 

an alternative as (0.8, 0.7), it cannot be accommodated by the proposed algorithm. Consequently, it 

may be necessary to conduct additional research to investigate these limitations. 
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