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1. Introduction

In this paper, we are concerned on the Cauchy problem to a nonlinear Fokker-Planck equation as
follows ∂tF + v · ∇xF = ρ∇v · (∇vF + vF),

F(0, x, v) = F0(x, v),
(1.1)

where the nonnegative unknown functions F(t, x, v) is the distribution function of particles with
position x = (x1, x2, x3) ∈ R3 and velocity v = (v1, v2, v3) ∈ R3 at time t ≥ 0, and the density ρ(t, x) is
defined as ρ =

∫
R3 Fdv.

In statistical mechanics, nonlinear Fokker-Planck equation is a partial differential equation which
describes the Brownian motion of particles. This equation illustrates the evolution of particle
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probability density function with velocity, time and space position under the influence of resistance or
random force. This equation is also widely used in various fields such as plasma physics,
astrophysics, nonlinear hydrodynamics, theory of electronic circuitry and laser arrays, population
dynamics, human movement sciences and marketing.

The global equilibrium for the nonlinear Fokker-Planck Eq (1.1) is the normalized global
Maxwellian

µ = µ(v) = (2π)−
3
2 e−

|v|2
2 .

Therefore, we can define the perturbation f = f (t, x, v) by

F(t, x, v) = µ + µ
1
2 f (t, x, v),

then the Cauchy problem (1.1) of the nonlinear Fokker-Planck equation is reformulated as∂t f + v · ∇x f = ρL f , ρ = 1 +
∫
R3 µ

1
2 f dv,

f (0, x, v) = f0(x, v) = µ−
1
2 (F0(x, v) − µ),

(1.2)

where the linear Fokker-Planck operator L is given by

L f = µ−
1
2∇v ·

(
µ∇v(µ−

1
2 f )

)
= ∆v f +

1
4

(6 − |v|2) f . (1.3)

Let us define the velocity orthogonal projection

P : L2(R3
v)→ Span

{
µ

1
2 , viµ

1
2 (1 ≤ i ≤ 3)

}
.

For any given function f (t, x, v) ∈ L2(R3
v), one has

P f = a(t, x)µ
1
2 + b(t, x) · vµ

1
2 , (1.4)

with

a =

∫
R3
µ

1
2 f dv, b =

∫
R3

v · µ
1
2 f dv. (1.5)

Then by the macro-micro decomposition introduced in [9], we get the decomposition of
solutions f (t, x, v) of the nonlinear Fokker-Planck Eq (1.1) as follows

f (t, x, v) = P f (t, x, v) + {I − P} f (t, x, v), (1.6)

where I denotes the identity operator, P f and {I − P} f are called the macroscopic and the microscopic
component of f (t, x, v), respectively.

Before the statement of main result, we need list some notations used in this paper.

• A . B means that there is a constant C > 0 such that A ≤ CB. A ∼ B means A . B and B . A.
• For a multi-index α = (α1, α2, α3), the length of α is |α| = α1 + α2 + α3. We denote ∂α = ∂αx =

∂α1
x1∂

α2
x2∂

α3
x3 and use ∂i to denote ∂xi for each i = 1, 2, 3.
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• For any function f and g, denote the inner product and norm as follows

〈 f , g〉 :=
∫
R3

f gdv, | f |2L2
v

=

∫
R3

f 2dv,

| f |2ν := | f |2L2
ν

=

∫
R3

(
|∇v f |2 + ν(v)| f |2

)
dv where ν(v) := 1 + |v|2,

‖ f ‖2ν :=
∫
R3
| f |2νdx =

∫
R3

∫
R3

(
|∇v f |2 + ν(v)| f |2

)
dvdx,

‖ f ‖2 := ‖ f ‖2L2(R3
x×R

3
v ) or ‖a‖2 := ‖a‖2L2(R3

x).

• Denoting the function spaces HN
x L2

v and HN
x L2

ν with the norm as

‖ f ‖2HN
x L2

v
=

∑
|α|≤N

‖∂αx f ‖2, ‖ f ‖2HN
x L2

ν
=

∑
|α|≤N

‖∂αx f ‖2ν.

The basic properties of the linearized Fokker-Planck operator L in (1.3) can be referred in [3,6,7,10,15]
as follows

〈 f , Lg〉 = 〈L f , g〉, Ker L = Span{µ
1
2 }, L(vµ

1
2 ) = −vµ

1
2 , (1.7)

and the Fokker-Planck operator L is coercive in the sense that there is a positive constant λ0 such that

− 〈 f , L f 〉 =

∫
R3
|∇v f +

v
2

f |2dv ≥ λ0|{I − P} f |2ν + |b|2. (1.8)

There are a lot of results about the global existence and large time behavior of solutions to the
Fokker-Planck type equation. Such as for the Fokker-Planck-Boltzmann equation, DiPerna and
Lions [4] first obtained the renormalized solution and established global existence for the Cauchy
problem with large data. Li and Matsumura [12] proved that the strong solution for initial data near an
absolute Maxwellian exist globally in time and tends asymptotically in the L∞y (L1

ξ)-norm to another
time dependent self-similar Maxwellian in large time. The global existence and temporal decay
estimates of classical solutions are established based on the nonlinear energy method developed in [9]
under Grads angular cut-off in [17] and without cut-off in [16], respectively.

As for the Vlasov-Poisson-Fokker-Planck equation, Duan and liu [6] obtained the time-periodic
small-amplitude solution in the three dimensional whole space by Serrins method. Hwang and
Jang [10], Wang [18] obtained the global existence and the time decay of the solution. For the
problem (1.1), the global existence is proved by combining uniform-in-time energy estimates and the
decay rates of the solution is obtained by using the precise spectral analysis of the linearized
Fokker-Planck operator as well as the energy method in [13]. Interested readers can refer to the
references [2, 7, 8, 12, 14, 19] for more related details.

For the nonlinear Fokker-Planck equation, Imbert and Mouhot [11] obtained the Hölder continuity
by De Giorgi and Moser argument together with the averaging lemma. Liao et al. [13] deduced the
global existence of the Cauchy problem to the equation based on the energy estimates and the decay
rates of the solutions by using the precise spectral analysis of the linearized Fokker-Planck operator
in Sobolev space HN

x ,N ≥ 4. Also the new difficulty caused by the nonlinear term was resolved by
additional tailored weighted-in-v energy estimates suitable for Fokker-Planck operators. However, in
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this paper, we find that we can deal with the difficult by using the definition of the linearized Fokker-
Planck operator L in (1.3) which is not necessary to estimate the dissipation ‖Lg‖2

HN
x L2

v
.

The rest of this paper is organized as follows. In Section 2, we give the main result of this paper.
In Section 3, we deduce the microscopic and macroscopic dissipation by a refined energy method,
respectively. Section 4 is devoted to close the a priori estimate, then the proof of main theorem is
completed based on the continuation argument.

2. Main result

Now we define the energy norm and the corresponding dissipation rate norm, respectively, by

E(t) ∼
∑
|α|≤2

‖∂αx f ‖2, (2.1)

D(t) ∼
∑
|α|≤2

(
‖∂αx {I − P} f ‖2ν + ‖∂αx b‖2

)
+

∑
|α|≤1

‖∂αx∇xa‖2. (2.2)

With the above preparation in hand, our main result can be stated as follows.

Theorem 2.1. Assume there exist a sufficiently small positive constant ε0 such that F0(x, v) = µ +

µ
1
2 f0(x, v) ≥ 0 satisfies E(0) ≤ ε0, then the Cauchy problem (1.2) admits a unique global solution

f (t, x, v) satisfying F(t, x, v) = µ + µ
1
2 f (t, x, v) ≥ 0, and it holds that

E(t) +

∫ t

0
D(s)ds ≤ E(0), (2.3)

for any t > 0. In particular, we have the global energy estimate

sup
t≥0
‖ f (t)‖H2

x L2
v
≤ ‖ f0‖H2

x L2
v
.

Remark 2.1. • Compared with the integer Sobolev space H4
x used in [13], the regularity

assumption on the initial data in H2
x is weaker by virtue of the Sobolev embedding in Lemma 3.1,

especially the estimate of L6(R3).
• In order to overcome the difficulty from the nonlinear term, the authors in [13] need to estimate

the dissipation ‖Lg‖2
HN

x L2
v
. However, it seems to be not necessary for our estimates.

3. Energy estimates

In this section, we will derive the energy estimates for the nonlinear Fokker-Planck equation. The
first part is concerned on the estimates of the microscopic dissipation and the second part is about
the estimates of macroscopic dissipation by the macroscopic equations similar as [13]. We need list
the following lemma about Sobolev inequalities which are very important to obtain the corresponding
energy estimates.

Lemma 3.1. (See [1, 5].) Let u ∈ H2(R3), then there is a constant C > 0 such that

• ‖u‖L∞ ≤ C‖∇u‖
1
2 ‖∇2u‖

1
2 ≤ C‖∇u‖H1 ,

• ‖u‖L6 ≤ C‖∇u‖,
• ‖u‖Lq ≤ C‖u‖H1 , 2 ≤ q ≤ 6.
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3.1. Estimates of microscopic dissipation

Firstly, we need the estimates of the microscopic dissipation for the solution f in (1.2).

Lemma 3.2. It holds that
1
2

d
dt

∑
|α|≤2

‖∂αx f ‖2 + λ0

∑
|α|≤2

‖∂αx {I − P} f ‖2ν +
∑
|α|≤2

‖∂αx b‖2 . E
1
2 (t)D(t), (3.1)

for any t > 0.

Proof. Step 1. α = 0. Multiply (1.2)1 by f and integrate over R3
v × R

3
x to obtain

1
2

d
dt

∫
R3

∫
R3

f 2dvdx −
∫
R3

∫
R3

f L f dvdx =

∫
R3

∫
R3

a f L f dvdx. (3.2)

By using (1.5) and (1.7), we have

〈LP f , f 〉 = 〈L(aµ
1
2 ), f 〉 + 〈L(b · vµ

1
2 ), f 〉

= a〈L(µ
1
2 ), f 〉 + b〈L(vµ

1
2 ), f 〉

= −b〈vµ
1
2 , f 〉 = −|b|2.

(3.3)

Similarly, we can get

〈L{I − P} f , f 〉 = 〈L{I − P} f , {I − P} f 〉 + 〈L{I − P} f ,P f 〉

= 〈L{I − P} f , {I − P} f 〉 + 〈LP f , {I − P} f 〉
= 〈L{I − P} f , {I − P} f 〉.

(3.4)

Therefore, by (3.3) and (3.4) and the definition of L (1.3), we can obtain

〈L f , f 〉 = 〈LP f , f 〉 + 〈L{I − P} f , f 〉 = 〈L{I − P} f , {I − P} f 〉 − |b|2

= 〈∆v{I − P} f , {I − P} f 〉 +
3
2
〈{I − P} f , {I − P} f 〉

− 〈|v|2{I − P} f , {I − P} f 〉 − |b|2

= −|∇v{I − P} f |2L2
v

+
3
2
|{I − P} f |2L2

v
− |v{I − P} f |2L2

v
− |b|2,

where we have used the integration by parts of v, i.e.,

〈∆v{I − P} f , {I − P} f 〉 = −〈∇v{I − P} f ,∇v{I − P} f 〉 = −|∇v{I − P} f |2L2
v
.

Consequently,

|〈L f , f 〉| = |∇v{I − P} f |2L2
v

+
3
2
|{I − P} f |2L2

v
+ |v{I − P} f |2L2

v
+ |b|2

≤ C
(
|{I − P} f |2ν + |b|2

)
.

Furthermore, Sobolev embedding in Lemma 3.1 yields∣∣∣ ∫
R3

∫
R3

a f L f dvdx
∣∣∣ ≤ ∫

R3
|a||〈 f , L f 〉|dx .

∫
R3
|a|

(
|{I − P} f |2ν + |b|2

)
dx

≤ ‖a‖2L∞x
(
‖{I − P} f ‖2ν + ‖b‖2

)
. ‖∇xa‖H1

x
D(t) . E

1
2 (t)D(t).
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Therefore, from (3.2) we have

1
2

d
dt
‖ f ‖2 + λ0‖{I − P} f ‖2ν + ‖b‖2 . E

1
2 (t)D(t).

Step 2. 1 ≤ |α| ≤ 2. Taking ∂αx of (1.2)1 yields

∂t∂
α
x f + v · ∇x∂

α
x f = L∂αx f + ∂αx (aL f ), (3.5)

Multiply above equation by ∂αx f and integrate over R3
v × R

3
x to get

1
2

d
dt

∫
R3

∫
R3
|∂αx f |2dvdx −

∫
R3

∫
R3
∂αx f L(∂αx f )dvdx

=

∫
R3

∫
R3

∑
|β|≤|α|

Cβ
α∂

α−β
x aL(∂βx f )(∂αx f )dvdx.

(3.6)

Case 1. β = 0. The estimates of the last term in above equation is as follows by the definition of
L (1.3): ∫

R3

∫
R3
∂αx aL f∂αx f dvdx =

∫
R3

∫
R3
∂αx a(∆v f +

1
4

(6 − |v|2) f )∂αx f dvdx

=

∫
R3

∫
R3
∂αx a∆v f∂αx f dvdx︸                         ︷︷                         ︸

J1

+
3
2

∫
R3

∫
R3
∂αx a f∂αx f dvdx︸                         ︷︷                         ︸

J2

−

∫
R3

∫
R3
∂αx a|v|2 f∂αx f dvdx︸                             ︷︷                             ︸

J3

. (3.7)

Using the integration by parts of v, Hölder inequality and Sobolev embedding in Lemma 3.1 to get

|J1| =
∣∣∣ ∫
R3

∫
R3
∂αx a∇v f∂αx∇v f dvdx

∣∣∣ ≤ ∫
R3
|∂αx a||∇v f |L2

v
|∂αx∇v f |L2

v
dx

≤ ‖∂αx a‖L2
x
‖∇v f ‖L∞x L2

v
‖∂αx∇v f ‖L2

xL2
v
. ‖∂αx a‖L2

x
‖∇x∇v f ‖H1

x L2
v
‖∂αx∇v f ‖L2

xL2
v

. E
1
2 (t)D(t),

(3.8)

where we have used

‖∇x∇v f ‖H1
x L2

v
. ‖∇x∇vP f ‖H1

x L2
v

+ ‖∇x∇v{I − P} f ‖H1
x L2

v

. ‖∇xa‖H1
x

+ ‖∇xb‖H1
x

+ ‖∇x{I − P} f ‖H1
x L2

ν
. D

1
2 (t),

‖∂αx∇v f ‖L2
xL2

v
. ‖∂αx∇vP f ‖L2

xL2
v

+ ‖∂αx∇v{I − P} f ‖L2
xL2

v

. ‖∂αx a‖L2
x
+ ‖∂αx b‖L2

x
+ ‖∂αx {I − P} f ‖L2

xL2
ν
. D

1
2 (t).

Similarly, we can easily get
|J2| . E

1
2 (t)D(t), |J3| . E

1
2 (t)D(t).
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Case 2. β = 1. The estimates of the last term in (3.6):∫
R3

∫
R3
∂α−βx aL(∂βx f )(∂αx f )dvdx =

∫
R3

∫
R3
∂α−βx a∆v∂

β
x f∂αx f dvdx︸                               ︷︷                               ︸

J4

+
3
2

∫
R3

∫
R3
∂α−βx a∂βx f∂αx f dvdx︸                               ︷︷                               ︸

J5

−

∫
R3

∫
R3
∂α−βx a|v|2∂βx f∂αx f dvdx︸                                   ︷︷                                   ︸

J6

. (3.9)

Using the similar techniques to estimate J1, we have

|J4| =
∣∣∣ ∫
R3

∫
R3
∂α−βx a∂βx∇v f∂αx∇v f dvdx

∣∣∣ ≤ ∫
R3
|∂α−βx a||∂βx∇v f |L2

v
|∂αx∇v f |L2

v
dx

≤ ‖∂α−βx a‖L3
x
‖∂βx∇v f ‖L6

xL2
v
‖∂αx∇v f ‖L2

xL2
v
. ‖∂α−βx a‖H1

x
‖∇x∂

β
x∇v f ‖L2

xL2
v
‖∂αx∇v f ‖L2

xL2
v

. E
1
2 (t)D(t).

(3.10)

Similarly, we can easily get
|J5| . E

1
2 (t)D(t), |J6| . E

1
2 (t)D(t).

Case 3. β = α. It holds that∫
R3

∫
R3

aL(∂αx f )(∂αx f )dvdx =

∫
R3

∫
R3

a∆v∂
α
x f∂αx f dvdx︸                         ︷︷                         ︸

J7

+
3
2

∫
R3

∫
R3

a∂αx f∂αx f dvdx︸                         ︷︷                         ︸
J8

−

∫
R3

∫
R3

a|v|2∂αx f∂αx f dvdx︸                             ︷︷                             ︸
J9

(3.11)

Using the similar techniques to estimate J1, we have

|J7| =
∣∣∣ ∫
R3

∫
R3

a∂αx∇v f∂αx∇v f dvdx
∣∣∣ ≤ ∫

R3
|a||∂αx∇v f |L2

v
|∂αx∇v f |L2

v
dx

. ‖a‖L∞x ‖∂
α
x∇v f ‖L2

xL2
v
‖∂αx∇v f ‖L2

xL2
v
. ‖∇xa‖H1

x
‖∂αx∇v f ‖2L2

xL2
v

. E
1
2 (t)D(t).

(3.12)

Similarly, we can easily get
|J8| . E

1
2 (t)D(t), |J9| . E

1
2 (t)D(t).

Take the summation over 1 ≤ |α| ≤ 2 to get

1
2

d
dt

∑
|α|≤2

‖∂αx f ‖2 + λ0

∑
|α|≤2

‖∂αx {I − P} f ‖2ν +
∑
|α|≤2

‖∂αx b‖2 . E
1
2 (t)D(t).

Thus we complete the proof of Lemma 3.2.
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3.2. Estimates of macroscopic dissipation

Now we give the estimate of the macroscopic component a by the macroscopic equations.

Lemma 3.3. It holds that

d
dt

∑
|α|≤1

∫
R3
∂αx b∇x∂

α
x adx +

∑
|α|≤1

‖∇x∂
α
x a‖2 .

∑
|α|≤1

‖∇x∂
α
x b‖2 +

∑
|α|≤1

‖∇x∂
α
x {I − P} f ‖2

+
∑
|α|≤1

‖∂αx b‖2 + E
1
2 (t)D(t).

(3.13)

Proof. Firstly, multiplying (1.2)1 by µ
1
2 and vµ

1
2 respectively, then integrating with respect to v over R3

to obtain
∂ta + ∇x · b = 0, (3.14)

and
∂tb + ∇xa + ∇x · 〈v ⊗ vµ

1
2 , {I − P} f 〉 + (a + 1)b = 0. (3.15)

Secondly, taking ∂αx of (3.15) for |α| ≤ 1 to get

∂αx∂tb + ∇x∂
α
x a + ∇x · 〈v ⊗ vµ

1
2 , ∂αx {I − P} f 〉 + ∂αx (ab) + ∂αx b = 0.

Multiply the above equation by ∇x∂
α
x a and integrate with respect to x to obtain

‖∇x∂
α
x a‖2 = −

∫
R3
∂αx∂tb∇x∂

α
x adx −

∫
R3
∇x · 〈v ⊗ vµ

1
2 , ∂αx {I − P} f 〉∇x∂

α
x adx

−

∫
R3
∂αx (ab)∇x∂

α
x adx −

∫
R3
∂αx b∇x∂

α
x adx.

(3.16)

Using (3.14) to get ∫
R3
∂αx∂tb∇x∂

α
x adx =

d
dt

∫
R3
∂αx b∇x∂

α
x adx −

∫
R3
∂αx b∇x∂

α
x∂tadx

=
d
dt

∫
R3
∂αx b∇x∂

α
x adx − ‖∇x∂

α
x b‖2.

(3.17)

By Young’s inequality, we have∣∣∣ ∫
R3
∇x · 〈v ⊗ vµ

1
2 , ∂αx {I − P} f 〉∇x∂

α
x adx

∣∣∣ . ∫
R3
|∇x∂

α
x {I − P} f |L2

v
|∇x∂

α
x a|dx

. η‖∇x∂
α
x a‖2 + Cη‖∇x∂

α
x {I − P} f ‖2,

(3.18)

and ∣∣∣ ∫
R3
∂αx b∇x∂

α
x adx

∣∣∣ . η‖∇x∂
α
x a‖2 + Cη‖∂

α
x b‖2, (3.19)

where η > 0 is a sufficiently small universal constant and Cη > 0. Using Sobolev embedding in
Lemma 3.1 to derive∣∣∣ ∫

R3
∂αx ab∇x∂

α
x adx

∣∣∣ . ‖∂αx a‖L2
x
‖b‖L∞x ‖∇x∂

α
x a‖L2

x

. ‖∂αx a‖L2
x
‖∇xb‖H1

x
‖∇x∂

α
x a‖L2

x
. E

1
2 (t)D(t),
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and ∣∣∣ ∫
R3

a∂αx b∇x∂
α
x adx

∣∣∣ . ‖a‖L∞x ‖∂αx b‖L2
x
‖∇x∂

α
x a‖L2

x

. ‖∇xa‖H1
x
‖∂αx b‖L2

x
‖∇x∂

α
x a‖L2

x
. E

1
2 (t)D(t).

Thus we can obtain∣∣∣ ∫
R3
∂αx (ab)∇x∂

α
x adx

∣∣∣ =
∣∣∣ ∫
R3

(∂αx ab + a∂αx b)∇x∂
α
x adx

∣∣∣
≤

∫
R3
|∂αx a||b||∇x∂

α
x a|dx +

∫
R3
|a||∂αx b||∇x∂

α
x a|dx . E

1
2 (t)D(t).

(3.20)

Combining (3.17)–(3.20) with (3.16) to derive, for |α| ≤ 1

d
dt

∑
|α|≤1

∫
R3
∂αx b∇x∂

α
x adx +

∑
|α|≤1

‖∇x∂
α
x a‖2 .

∑
|α|≤1

‖∇x∂
α
x b‖2 +

∑
|α|≤1

‖∇x∂
α
x {I − P} f ‖2

+
∑
|α|≤1

‖∂αx b‖2 + E
1
2 (t)D(t),

where we take η > 0 sufficiently small enough. Thus the proof of Lemma 3.3 is completed.

4. Global existence

This section is devoted to proving our main result based on the continuation argument. First, we
need to close the a priori estimate.

Proposition 4.1. There is a small positive constant M > 0 such that if

sup
0≤t≤T

E( f (t)) ≤ M

for any 0 < T < ∞, then it holds that

d
dt
E(t) +D(t) ≤ 0. (4.1)

Proof. Taking the linear combination (3.1) + κ × (3.13) with κ > 0 sufficiently small to get

d
dt

( ∑
|α|≤2

‖∂αx f ‖2 + κ
∑
|α|≤1

∫
R3
∂αx b∇x∂

α
x adx

)
+ κ

∑
|α|≤1

‖∇x∂
α
x a‖2

+ λ0

∑
|α|≤2

‖∂αx {I − P} f ‖2ν +
∑
|α|≤2

‖∂αx b‖2 . E
1
2 (t)D(t).

(4.2)

Noticing that ∑
|α|≤1

∣∣∣ ∫
R3
∂αx b∇x∂

α
x adx

∣∣∣ ≤ 1
2

∑
|α|≤1

[
‖∂αx b‖2 + ‖∇x∂

α
x a‖2

]
≤

∑
|α|≤2

‖∂αx f ‖2,

AIMS Mathematics Volume 8, Issue 7, 16115–16126.
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then we have
−κ

∑
|α|≤2

‖∂αx f ‖2 ≤ κ
∑
|α|≤1

∫
R3
∂αx b∇x∂

α
x adx ≤ κ

∑
|α|≤2

‖∂αx f ‖2,

i.e.,

(1 − κ)
∑
|α|≤2

‖∂αx f ‖2 ≤
∑
|α|≤2

‖∂αx f ‖2 + κ
∑
|α|≤1

∫
R3
∂αx b∇x∂

α
x adx ≤ (1 + κ)

∑
|α|≤2

‖∂αx f ‖2.

Consequently, let κ > 0 be small enough, it holds∑
|α|≤2

‖∂αx f ‖2 + κ
∑
|α|≤1

∫
R3
∂αx b∇x∂

α
x adx ∼

∑
|α|≤2

‖∂αx f ‖2 ∼ E(t).

By (4.2) and the definition ofD(t) (2.2), it derives to

d
dt
E(t) +D(t) . E

1
2 (t)D(t).

Finally, choosing M > 0 to be small enough, then the desired estimate (4.1) is obtained.

Proof of Theorem 2.1. Firstly, the local-in-time existence and uniqueness of the solutions to the Cauchy
problem (1.2) can be established by performing the standard arguments as in [13]. To extend the local
solution into the global one, we can deduce that

E(t) +

∫ t

0
D(s)ds ≤ E(0),

from (4.1) in Proposition 4.1 by virtue of the smallness assumption on E(0). Combining this with the
local existence, the global existence of solution and uniqueness follows immediately from the standard
continuity argument. This completes the proof of the global existence and the uniform estimate of
Theorem 2.1.

5. Conclusions

This paper proves the global existence to the Cauchy problem on a nonlinear Fokker- Planck
equation near Maxwellian with small-amplitude initial data by a refined nonlinear energy method.
And the regularity assumption on the initial data is much weaker by virtue of the Sobolev embedding
inequalities.
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