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for βββ and a matrix equality for the covariance matrix of the error term εεε, which can help in combining
the two model equations in certain consistent form. We then give the derivations and presentations
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vectors and matrices in the model.
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1. Introduction

Throughout, let Rm×n stand for the collection of all m × n matrices over the field of real numbers;
A′, r(A), and R(A) stand for the transpose, the rank, and the range (column space) of a matrix A ∈
Rm×n, respectively; and let Im denote the identity matrix of order m. Given an A ∈ Rm×n, the Moore–
Penrose generalized inverse of A, denoted by A+, is defined to be the unique solution G satisfying
the four matrix equations AGA = A, GAG = G, (AG)′ = AG, and (GA)′ = GA. Further, let PA,
EA, and FA stand for the three orthogonal projectors (symmetric idempotent matrices) PA = AA+,
EA = A⊥ = Im − AA+, and FA = In − A+A, which will help in briefly denoting calculation processes
related to generalized inverses of matrices. Further information about the orthogonal projectors PA,
EA, and FA with their applications in the linear statistical models can be found, e.g., in [5, 9]. Two
symmetric matrices A and B of the same size are said to satisfy the inequality A ≽ B in the Löwner
partial ordering if A − B is nonnegative definite. For more results on the Löwner partial ordering of
real symmetric matrices and its applications in statistical analysis, see e.g., [9, 17].
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Consider a general linear model

M : y = Xβββ + εεε, E(εεε) = 0, Cov(εεε) = σ2ΣΣΣ, (1.1)

where it is assumed that y ∈ Rn×1 is a vector of observable random variables, X ∈ Rn×p is a known
model matrix of arbitrary rank (0 ≤ r(X) ≤ min{n, p}), βββ ∈ Rn×1 is a vector of fixed but unknown
parameters, σ2 is an arbitrary positive scaling factor, and ΣΣΣ ∈ Rn×n is a known nonnegative definite
matrix of arbitrary rank (0 ≤ r(ΣΣΣ) ≤ n), for example ΣΣΣ = I.

Below, we present some background details of the work. For a variety of reasons, statisticians may
meet with the situation where certain restrictions are imposed on the unknown coefficient vector βββ and
the observed random vector y in (1.1). For example, it is a regular case to add a system of linear
matrix equations Bβββ = c to the unknown parameter vector under the assumption in (1.1), and there
have been plenty of approaches and discussions addressing how to carry out statistical inference under
linear models with restrictions to their unknown parameters. In addition to the situations imposing
restrictions on unknown parameters, it is necessary to take into account as well the situations of adding
certain limitations and restrictions upon observed random variables in the model from theoretical and
applied points of view. Under the model assumption in (1.1), one of such considerations is assuming
that the observed random vector y satisfies a consistent linear matrix equation

Ay = b, (1.2)

where it is assumed that A ∈ Rm×n is a known matrix with rank(A) = k ≤ min{m, n} and b ∈ Rm×1

is a known vector with b ∈ R(A). A matrix equation as given in (1.2) is usually called adding-up
restrictions to y in (1.1) in the literature. Clearly, the adding-up restrictions include w′y = a or 1 etc.
as its special cases, where w is a column vector. This kind of plausible-sounding restrictions do exist
in statistical practice, which were noticed and approached in certain fields of applied statistics and
attracted sort of consideration. For example, economists explored some situations of the specific kind
where certain adding-up restrictions appeared, in which they presented fitting descriptions of how to
think the restrictions, and gave some of their solutions to a number of corresponding estimation and
inference problems. We refer the reader to [3,4,10,13] for more information on the appearance of such
kind of adding-up restrictions. However, the general situation depicted in (1.2) has not been properly
approached in the statistical literature, yet the very process of mathematical and statistical approaches
of the adding-up restrictions remains hidden.

For the purpose of making inference in the contexts of (1.1) and (1.2), we merge the two model
equations in the following form

N : y = Xβββ + εεε, Ay = b, E(εεε) = 0, Cov(εεε) = σ2ΣΣΣ. (1.3)

In this case, we can substitute (1.1) into (1.2) to lead to AXβββ+Aεεε = b, and rewrite (1.3) in the following
equivalent form

N : y = Xβββ + εεε, b = AXβββ + Aεεε, E(εεε) = 0, Cov(εεε) = σ2ΣΣΣ. (1.4)

Given the model equations as such in (1.3) or (1.4), we are confronted with the task of how to
properly merge the adding-up restrictions in the estimation and inference procedure of the unknown
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parameter vector βββ. There have been several attempts in the past to solve the problem of choosing
possible merge procedures. Unfortunately, when faced to such a question, professional statisticians
have no definitive answers or rather they have different methods which have been suggested and
implemented in the literature, none of them being completely convincing in the sense that it has been
shown to be better than the others. The purpose of this article is to focus attention on dealing with the
adding-up restrictions in (1.3) with some new thoughts and methodologies. The author will offer a
feasible algebraic method to reconcile the second adding-up restrictions with the first regression
equation in (1.3), and then use the method to solve some basic estimation and inference problems
associated with N .

The rest of this paper is organized as follows. In Section 2, we introduce some basic formulas,
facts, and results in matrix theory, as well as two groups of existing results related to the ordinary least-
squares estimators (OLSE) and the best linear unbiased estimators (BLUEs) of unknown parametric
vectors under (1.1). In Section 3, we show how to transform N in (1.3) into two kinds of linear
models with implicit and explicit restrictions to the unknown parameter vectorβββ respectively via certain
suitable equivalent explanation of the adding-up restrictions. In Sections 4 and 5, we presents the
description of the estimability of unknown parametric vector Kβββ under the transformed models, and
give the definitions and the derivations of analytical expressions of the OLSEs and BLUEs of Kβββ
through the transformed models. Section 6 gives some concluding remarks and a group of research
problems concerning general linear models with adding-up restrictions.

2. Some preliminaries

In this section, we introduce some fundamental formulas and facts about matrix operations that have
related applications to statistics, especially linear statistical models. It was properly known that the
theory of generalized inverses of matrices is a major and dependable source of methods and techniques
that was brought into the theory of linear statistical models for regression in 1950s, and thereby it
played a key role for carrying out statistical estimation and inference in a wide variety of situations;
see e.g., [2,9,14]. In this section, we shall present a group of well-known formulas, facts, and results in
linear algebra and matrix theory, which we shall use as resource to simplify various matrix expressions
that involve generalized inverses of matrices.

Lemma 2.1 ( [7]). Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rl×n. Then,

(a) r[A, B] = r(A) + r(EAB) = r(B) + r(EBA).

(b) r
[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC).

In particular,

(c) r[A, B] = r(A)⇔ EAB = 0⇔ R(B) ⊆ R(A).

(d) r
[
A
C

]
= r(A)⇔ CFA = 0⇔ R(C′) ⊆ R(A′).

Lemma 2.2 ( [8]). Let A ∈ Rm×n and B ∈ Rm×k, Then, the linear matrix equation AX = B is solvable
for X if and only if r[A, B] = r(A), or equivalently, AA+B = B. In this case, the general solution of
the equation can be written in the parametric form X = A+B + ( In − A+A )U, where U ∈ Rn×k is an
arbitrary matrix.
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There were different established inference theories and methods that we can adopt to estimate
the unknown parameter vector βββ in (1.1), the two best-known tools were OLSEs and BLUEs. We turn
now to reviewing some basic definitions and existing facts in linear model theory regarding the
estimability, as well as the OLSEs and BLUEs of a given unknown parametric vector under (1.1), see
e.g., [1, 9, 11, 12, 18].

Definition 2.3. Let M be as given in (1.1) and let K ∈ Rk×p be given. The vector Kβββ of parametric
functions is said to be estimable under M if there exists an L ∈ Rk×n such that E(Ly − Kβββ) = 0 holds
for all βββ in M .

Definition 2.4. Let M be as given in (1.1), and let K ∈ Rk×p be given.

(a) The OLSE of the parametric vector βββ under (1.1), denoted by OLSEM (βββ), is defined to be

β̂ββ = argmin
βββ

( y − Xβββ )′( y − Xβββ ). (2.1)

The OLSE of Kβββ under (1.1) is defined to be OLSEM (Kβββ) = KOLSEM (βββ).
(b) The BLUE of the vector of parametric functions Kβββ under (1.1), denoted by BLUEM (Kβββ), is

defined to be linear statistic Ly, where L is a matrix such that Cov(Ly−Kβββ) = min in the Löwner
partial ordering subject to E(Ly −Kβββ) = 0.

As we know that the concepts of OLSE and BLUE have a long history and deep roots in parametric
regression analysis, both of which have many nice and optimal algebraic and statistical properties, and
therefore are the most welcome linear statistical inference techniques in parametric regression theory
and the related applications. The conventionality of OLSEs/BLUEs under linear regression models
really attracted statisticians’ attention in the development of regression theory, and numerous formulas
and facts regarding the OLSEs/BLUEs of βββ and Kβββ under (1.1) were established via various precise
and analytical algebraic operations of the given vectors and matrices and their generalized inverses.
Specifically, the results in the following two lemmas were highly recognized in the domain of linear
statistical models.

Lemma 2.5. Let M be as given in (1.1), and let K ∈ Rk×p be given. Then, the general expression of
OLSEs of βββ in M can be written as

OLSEM (βββ) = X+y + FXv, (2.2)

where v ∈ Rp×1 is arbitrary; and the OLSE of Kβββ under M can be written as

OLSEM (Kβββ) = KX+y +KFXv. (2.3)

Lemma 2.6. Let M be as given in (1.1), K ∈ Rk×p, and suppose Kβββ is estimable under M , namely,
R(K′) ⊆ R(X′). Then, the BLUE of Kβββ under M can be written as

BLUEM (Kβββ) = PK;X;ΣΣΣy, (2.4)

where PK;X;ΣΣΣ is the solution of the matrix equation

G[ X, ΣΣΣX⊥ ] = [ K, 0 ]. (2.5)
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This equation is always solvable for G, that is, R([ K, 0 ]′) ⊆ R([X, ΣΣΣX⊥]′). In this case, the general
solution of (2.5) can be expressed as

PK;X;ΣΣΣ = [K, 0][X, ΣΣΣX⊥]+ + U[X, ΣΣΣX⊥]⊥, (2.6)

where U ∈ Rk×n is arbitrary. Moreover, the following results hold.

(a) r[X, ΣΣΣX⊥] = r[X, ΣΣΣ] and R[X, ΣΣΣX⊥] = R[X, ΣΣΣ].
(b) The product PK;X;ΣΣΣΣΣΣ can be uniquely written as PK;X;ΣΣΣΣΣΣ = [K, 0][X, ΣΣΣX⊥]+ΣΣΣ.
(c) The expectation and covariance matrix of BLUEN (Kβββ) are given by

E(BLUEM (Kβββ)) = Kβββ and Cov(BLUEM (Kβββ)) = [K, 0][X, ΣΣΣX⊥]+ΣΣΣ([K, 0][X, ΣΣΣX⊥]+)′.

(d) The matrix PK;X;ΣΣΣ is unique if and only if r[X, ΣΣΣ] = n.
(e) BLUEM (Kβββ) is unique if and only if if and only if y ∈ R[X, ΣΣΣ] holds with probability 1.

Apparently, the representations and derivations of the OLSEs and BLUEs in the above two existing
lemmas do not require to specify the mathematical forms of the distributions of the error term vector
εεε, and thereby we are able to actively utilize the clear and exact expressions of the OLSEs and BLUEs
to solve many algebraic and computational problems in the context of (1.1).

3. Transformations of N into linear models with implicit and explicit restrictions to unknown
parameters

Because the adding-up equation is directly put on the random vector y in (1.1), where no information
of βββ explicitly appears in the equation, we should be careful to include the equation in the estimation
and inference procedure of (1.1). In other words, we have to seek some alternative methods to approach
estimation and inference problems of unknown parameters in the model. To this purpose, we show in
this section how to make use of the complete information associated with the adding-up restrictions
and to convert (1.3) into certain ordinary linear models with implicit and explicit restrictions to the
unknown parametric vector βββ, respectively.

Given that y in (1.1) is a random vector, we then take the expectation and covariance matrix of both
sides of the equation Ay − b = 0 with respect to y to obtain

E(Ay − b) = AXβββ − b = 0 and Cov(Ay − b) = σ2AΣΣΣA′ = 0. (3.1)

Since the matrixΣΣΣ in (1.3) is positive semi-definite, it is easy to verify that the matrix equality AΣΣΣA′ = 0
is equivalent to ΣΣΣ = FAΣΣΣFA. The adding-up equation in (1.2) thereby suggests the following facts

AXβββ = b and ΣΣΣ = FAΣΣΣFA. (3.2)

This treatment is by no means profound and difficult to understand under the assumption in (1.3), and
thus we can view them as the best mathematical interpretation that can be given about the adding-up
restrictions. Recognizing the key role of (3.2) in the interpretation of (1.2), we are able subsequently
to deal with the adding-up equation in carrying out inference under (1.3). There are basically two
algebraic methods to merge the adding-up equation into (1.1) via (3.2). Below, we perspicuously
illustrate the algebraic processes.
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(I) Firstly, substituting the first equation into the second equation in (1.3) and noting (3.2), we can
equivalently rewrite (1.3) in the following implicitly restricted linear model

Na :
[
y
b

]
=

[
X

AX

]
βββ +

[
εεε

Aεεε

]
, E
[
εεε

Aεεε

]
= 0, Cov

[
εεε

Aεεε

]
= σ2

[
FAΣΣΣFA 0

0 0

]
. (3.3)

(II) Also replacing Ay = b and ΣΣΣ in (1.3) with (3.2) produces with probability 1 the following
explicitly restricted linear model

Nb : y = Xβββ + εεε, AXβββ = b, E(εεε) = 0, Cov(εεε) = σ2FAΣΣΣFA. (3.4)

Apparently, the two alternative forms in (3.3) and (3.4) are in compliance with N in (1.3), and thereby
they can conveniently help solve various estimation and inference problems under N . It is easily seen
that (3.3) and (3.4) are nothing but two ordinary linear statistical models with implicit and explicit
restrictions to unknown parameters in the models. This fact enables us to adopt different approach
processes to carry out common estimation and inference under (1.3) via (3.3) and (3.4), and thereby
this alternative way in fact makes clear insights actionable into the connotation of the model in (1.3).

As a classic subject of study in regression analysis, there has been some general discussion regarding
estimation and inference problems of a linear statistical model with implicit and explicit restrictions to
unknown parameters in the model; see, e.g., [19] and references therein. In light of the existing theory
pertaining to this topic, we are now able to make statistical inference of (1.3) via the two alternative
forms in (3.3) and (3.4) through the well-organized employment of ordinary theory and methodology
of dealing linear regression models under various assumptions.

4. Estimation results under Na

For convenience of representation, we adopt the notation

ŷ =
[
y
b

]
, X̂ =

[
X

AX

]
, Σ̂ΣΣ =

[
FAΣΣΣFA 0

0 0

]
in the sequel. We first describe the consistency problem in the context of (3.3). Note that the matrix
equality

[X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+[X̂, Σ̂ΣΣ] = [X̂, Σ̂ΣΣ]

holds from the definition of the Moore–Penrose generalized inverse. Therefore, it turns out under the
assumptions in (3.2) that

E([X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ŷ − ŷ) = [X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+X̂βββ − X̂βββ = 0,

Cov([X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ŷ − ŷ) = σ2([X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ − I)̂ΣΣΣ([X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ − I)′ = 0.

These two equalities imply [X̂, Σ̂ΣΣ][X̂, Σ̂ΣΣ]+ŷ = ŷ holds with probability 1, or equivalently,

ŷ ∈ R[X̂, Σ̂ΣΣ] (4.1)

holds with probability 1. In view of this fact, we adopt the following definition.
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Definition 4.1. Na in (3.3) is said to be consistent if (4.1) holds with probability 1.

The OLSEs and BLUEs of unknown parameters in a given linear statistical model were recognized
as two principal estimations in the domain of linear regression models, which were deeply approached
and utilized in the development of statistical science. In the following, we introduce the definitions of
the OLSEs and BLUEs of vectors of parametric functions, and then presents the exact and analytical
formulas for calculating the OLSEs and BLUEs under (3.3).

Definition 4.2. Let Na be as given in (3.3), and let K ∈ Rk×p be given. The vector Kβββ of parametric
functions is said to be estimable under Na if there exists an L ∈ Rk×(n+m) such that E(Lŷ − Kβββ) = 0
holds for all βββ under Na.

Definition 4.3. Let Na be as given in (3.3), and let K ∈ Rk×p be given.

(a) The OLSE of the parametric vector βββ under (3.3), denoted by OLSENa(βββ), is defined to be

β̂ββ = argmin
βββ

( ŷ − X̂βββ )′( ŷ − X̂βββ ).

The OLSE of Kβββ under (3.3) is defined to be OLSENa(Kβββ) = KOLSENa(βββ).
(b) The BLUE of the vector of parametric functions Kβββ under N , denoted by BLUENa(Kβββ), is

defined to be a linear statistic Lŷ, where L is a matrix such that Cov(Lŷ − Kβββ) = min in the
Löwner partial ordering subject to E(L̂y −Kβββ) = 0.

Now applying the above definitions to Na in (3.3), we obtain the following results.

Theorem 4.4. Let Na be as given in (3.3), and let K ∈ Rk×p be given. Then, Kβββ is estimable under Na

⇔R(K′) ⊆ R(X′). In particular, Xβββ is always estimable under Na.

Proof. It follows from E(L̂y −Kβββ) = 0⇔ LX̂βββ −Kβββ = 0 for all βββ⇔ LX̂ = K⇔ R(K′) ⊆ R(X̂′)⇔
R(K′) ⊆ R(X′) by Lemma 2.2. □

Referring to Lemmas 2.5 and 2.6, we obtain the following two results about the OLSEs and BLUEs
under (3.3).

Theorem 4.5. Let Na be as given in (3.3) and suppose Kβββ is estimable under Na. Then, the OLSE of
βββ under Na can be written as OLSENa(βββ) = X̂+ŷ + FXv, where v ∈ Rp×1 is arbitrary; and the OLSE of
Kβββ under Na can be uniquely written as

OLSENa(Kβββ) = KX̂+ŷ, E(OLSENa(Kβββ)) = Kβββ, Cov(OLSENa(Kβββ)) = σ
2KX̂+Σ̂ΣΣ(KX̂+)′.

Theorem 4.6. Let Na be as given in (3.3) and suppose Kβββ is estimable under Na. Then, the BLUE of
Kβββ under Na can be written as

BLUENa(Kβββ) = PK;X̂;̂ΣΣΣ̂y,

where PK;X̂;̂ΣΣΣ is the solution of the matrix equation G[X̂, Σ̂ΣΣX̂⊥] = [K, 0]. This equation is always
solvable for G, that is, R([K, 0]′) ⊆ R([X̂, Σ̂ΣΣX̂⊥]′). In this case, the general solution of the matrix
equation can be expressed as

G = PK;X̂;̂ΣΣΣ = [K, 0][X̂, Σ̂ΣΣX̂⊥]+ + UE[X̂, Σ̂ΣΣX̂⊥],

where U ∈ Rk×(n+m) is arbitrary. Moreover, the following results hold.
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(a) r[X̂, Σ̂ΣΣX̂⊥] = r[X̂, Σ̂ΣΣ ] and R[X̂, Σ̂ΣΣX̂⊥] = R[X̂, Σ̂ΣΣ].
(b) The product PK;X̂;̂ΣΣΣΣ̂ΣΣ can be uniquely written as PK;X̂;̂ΣΣΣΣ̂ΣΣ = [K, 0][X̂, Σ̂ΣΣX̂⊥]+Σ̂ΣΣ.
(c) The expectation and covariance matrix of BLUENa(Kβββ) are given by

E(BLUENa(Kβββ)) = Kβββ and Cov(BLUENa(Kβββ)) = [K, 0][X̂, Σ̂ΣΣX̂⊥]+Σ̂ΣΣ([K, 0][X̂, Σ̂ΣΣX̂⊥]+)′.

(d) The matrix PK;X̂;̂ΣΣΣ is unique if and only if r[X̂, Σ̂ΣΣ] = m + n.
(e) BLUENa(Kβββ) is unique if and only if ŷ ∈ R[X̂, Σ̂ΣΣ] holds with probability 1.

5. Estimation results under Nb

In what follows, we denote Ã = AX and Σ̃ΣΣ = FAΣΣΣFA. Recall a well-known fact that the matrix
equation Ãβββ = b is solvable for βββ if and only if b ∈ R(Ã). By Lemma 2.2, the general solution of βββ
and the corresponding Kβββ can be written in the following parametric forms

βββ = Ã+b + FÃγγγ, (5.1)

Kβββ = KÃ+b +KFÃγγγ, (5.2)

where γγγ ∈ Rp×1 is arbitrary. Substitution of (5.1) into (3.4) yields

Ñb : z = XFÃγγγ + εεε, E(εεε) = 0, Cov(εεε) = σ2Σ̃ΣΣ, (5.3)

where z = y − XÃ+b. This is a new linear model with the unknown parameter vector γγγ. Hence, the
estimablility, the OLSE, and the BLUE of the vector of parametric functions KFÃγγγ can be obtained
from various existing results as follows.

Definition 5.1. Let Nb be as given in (3.4), and let K ∈ Rk×p be given. The vector Kβββ of parametric
functions is said to be estimable under Nb if there exist L ∈ Rk×n and c ∈ Rk×1 such that E(Ly+c−Kβββ) =
0 holds under Nb.

Lemma 5.2. Let Nb be as given in (3.4), and let K ∈ Rk×p be given. Then, Kβββ is estimable under Nb

if and only if R(K′) ⊆ R(X′).

Theorem 5.3. Let Nb be as given in (3.4), let K ∈ Rk×p be given, and suppose Kβββ is estimable
under (3.4). Then, the OLSE of βββ under Nb can be written as

OLSENb(βββ) = (Ã+ − FÃ(XFÃ)+XÃ+)b + FÃ(XFÃ)+y + FÃFXFÃ
u, (5.4)

where u ∈ Rp×1 is arbitrary. The OLSE of Kβββ under Nb can be uniquely written as

OLSENb(Kβββ) = (KÃ+ −KFÃ(XFÃ)+XÃ+)b +KFÃ(XFÃ)+y, (5.5)

E( OLSENb(Kβββ) ) = Kβββ, Cov( OLSENb(Kβββ) ) = σ2KFÃ(XFÃ)+Σ̃ΣΣ(KFÃ(XFÃ)+)′.

Proof. According to Lemma 2.5, the OLSE of γγγ in (5.3) can be written as

γ̂γγ = (XFÃ)+z + FXFÃ
u,

where u ∈ Rp×1 is arbitrary. Substitution of this formula into (5.1) gives the OLSE of βββ in (3.4):

OLSENb(βββ) = Ã+b + FÃ(XFÃ)+z + FÃFXFÃ
u = (Ã+ − FÃ(XFÃ)+XÃ+)b + FÃ(XFÃ)+y + FÃFXFÃ

u,

establishing (5.4) and (5.5). □
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Theorem 5.4. Let Nb be as given in (3.4) and suppose Kβββ is estimable under (3.4). Then, the BLUE
of Kβββ under Nb can be written as

BLUENb(Kβββ) = (K − PKFÃ;XFÃ ;̃ΣΣΣX)Ã+b + PKFÃ;XFÃ ;̃ΣΣΣy, (5.6)

where PKFÃ;XFÃ ;̃ΣΣΣ = [ KFÃ, 0 ][ XFÃ, Σ̃ΣΣEXFÃ
]++U1E[ XFÃ, Σ̃ΣΣEXFÃ

], and U1 ∈ R
k×n is arbitrary.Moreover,

the following results hold.

(a) r[XFÃ, Σ̃ΣΣEXFÃ
] = r[XFÃ, Σ̃ΣΣ] and R[XFÃ, Σ̃ΣΣEXFÃ

] = R[XFÃ, Σ̃ΣΣ].
(b) The product PKFÃ;XFÃ ;̃ΣΣΣΣ̃ΣΣ can be uniquely written as PKFÃ;XFÃ ;̃ΣΣΣΣ̃ΣΣ = [KFÃ, 0][XFÃ, Σ̃ΣΣEXFÃ

]+Σ̃ΣΣ.
(c) The expectation and covariance matrix of BLUENb(Kβββ) are given by

E(BLUENb(Kβββ)) = Kβββ and Cov(BLUENb(Kβββ)) = PKFÃ;XFÃ ;̃ΣΣΣΣ̃ΣΣP′
KFÃ;XFÃ ;̃ΣΣΣ

.

(d) The matrix PKFÃ;XFÃ ;̃ΣΣΣ is unique if and only if r
[
X Σ̃ΣΣ

Ã 0

]
= r(Ã) + n.

(e) BLUENb(Kβββ) is unique if and only if
[
y
b

]
∈ R

[
X Σ̃ΣΣ

Ã 0

]
holds with probability 1.

Proof. According to Lemma 2.6, the BLUE of KFÃγγγ under (5.3) is given by

BLUENb(KFÃγγγ) = PKFÃ;XFÃ ;̃ΣΣΣz.

Substitution of this BLUE into the equality in (5.2) gives the BLUE of Kβββ under (3.4)

BLUENb(Kβββ) = KÃ+b + BLUENb(KFÃγγγ) = KÃ+b + PKFÃ;XFÃ ;̃ΣΣΣ( y − XÃ+b ),

as required for (5.6).
Result (a) follows from Lemma 2.6(a). Result (b) follows from Lemma 2.6(b). Result (c) follows

from (5.6).
It can be seen from (5.6) that PKFÃ;XFÃ ;̃ΣΣΣ is unique if and only if E[ XFÃ, Σ̃ΣΣEXFÃ

] = 0, i.e.,

r[ XFÃ, Σ̃ΣΣEXFÃ
] = n. Also see from (a) and Lemma 2.1(b) that r[ XFÃ, Σ̃ΣΣEXFÃ

] = r[ XFÃ, Σ̃ΣΣ ]

= r
[
X Σ̃ΣΣ

Ã 0

]
− r(Ã), so that Result (d) follows.

It can be seen from (5.6) and that BLUENb(Kβββ) is unique if and only if E[ XFÃ, Σ̃ΣΣEXFÃ
](y−XÃ+b) = 0,

i.e.,

r[y − XÃ+b, XFÃ, Σ̃ΣΣEXFÃ
] = r[XFÃ, Σ̃ΣΣ] (5.7)

holds with probability 1 by Lemma 2.1(c). In this situation, it is necessary to simplify the rank equality
by removing the generalized inverses on both sides of (5.7). In fact by Lemma 2.1(b) and elementary
block matrix operations,

r[y − XÃ+b, XFÃ, Σ̃ΣΣEXFÃ
] = r

[
y − XÃ+b X Σ̃ΣΣ

0 Ã 0

]
− r(Ã) = r

[
y X Σ̃ΣΣ

b Ã 0

]
− r(Ã),
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r[ XFÃ, Σ̃ΣΣ ] = r[ XFÃ, Σ̃ΣΣ ] = r
[
X Σ̃ΣΣ

Ã 0

]
− r(Ã).

So that (5.7) is equivalent to r
[
y X Σ̃ΣΣ

b Ã 0

]
= r
[
X Σ̃ΣΣ

Ã 0

]
, i.e.,

[
y
b

]
∈ R

[
X Σ̃ΣΣ

Ã 0

]
holds by Lemma 2.1(c), as

required for Result (e). □

6. Conclusions

The author proposed and investigated some estimation and inference problems regarding a linear
statistical model with adding-up restrictions to the observable random variables in the model, and
obtained a group of formulas and facts about estimations and inferences in the context of (1.3),
including the computational processes to derive the OLSEs and BLUEs under the model assumptions
via a series of careful algebraic operations of the given vectors and matrices. Based on the findings
obtained in the preceding sections, there is no doubt to say that this approach clearly demonstrates a
normal procedure of dealing with adding-up restrictions in the context of linear statistical models.
Hopefully, this study will add to what is out there with regard to the subject, and also is compatible
with the previous contributions.

Given the resolutions to the adding-up restrictions, we may say some additional remarks pertaining
to further research problems under the model assumption. Recall that the OLSEs and BLUEs are
defined by different optimality criteria in mathematics and statistics. Therefore, their expressions and
properties are not necessarily the same, and thereby it is natural to seek possible connections between
these estimation results. It is, in fact, a subject area in regression analysis is to characterize relationships
between different OLSEs and BLUEs, which has deep roots with strong statistical explanation and
usefulness in the domain of linear statistical models and applications; see, e.g., [6, 15, 16, 20, 21] and
references therein for the background and study of this subject. Based on the exact and analytical
expressions of OLSEs and BLUEs obtained, we can consider in depth various additional topics in the
statistical inference of general linear statistical models with adding-up restrictions. Particularly, it is
natural to speculate on the relationship between the OLSEs and BLUEs under the two models in (1.1)
and (1.3), and therefore we put forward the following five clear and reasonable equalities between the
OLSEs and BLUEs under the two models in (1.1) and (1.3):

(a) OLSEM (Kβββ) = OLSEN (Kβββ),
(b) OLSEM (Kβββ) = BLUEN (Kβββ),
(c) BLUEM (Kβββ) = OLSEN (Kβββ),
(d) BLUEM (Kβββ) = BLUEN (Kβββ),
(e) OLSEN (Kβββ) = BLUEN (Kβββ).

The five equalities describe the direct relevances of the four estimators under the two models, and thus
it would be of interest to make a deep-going study of the equalities from theoretical and practical
points of view. As a matter of fact, these kinds of equalities were properly considered with clear
objective intention in the statistical inference of linear statistical models in the past several decades.
Unquestionably, the equalities in (a)–(e) not only can be classified as certain statistical inference
problems, but also can be alternatively converted to certain matrix equality problems in term of the
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clear and analytical expressions of the OLSEs and BLUEs obtained in the preceding sections. In order
to resolve these proposed equivalence problems, we need to prepare a complex of preliminary
methods and techniques in matrix algebra, including many formulas and facts about generalized
inverses of matrices and the matrix rank methodology. Nevertheless, this sort of future investigations
together with the current theoretical and methodological advances in this research area will definitely
provide considerable insight into the intrinsic natures hidden behind the adding-up restrictions, so that
we believe that the algebraic treatments presented in this article will sufficiently prompt other similar
studies regarding different kinds of regression models with adding-up restrictions to observable
random variables under various assumptions. The five equalities describe the direct relevances of the
four estimators under the two models, and thus it would be of interest to make a deep-going study of
the equalities from theoretical and practical points of view. As a matter of fact, these kinds of
equalities were properly considered with clear objective intention in the statistical inference of linear
statistical models in the past several decades. Unquestionably, the equalities in (a)–(e) not only can be
classified as certain statistical inference problems, but also can be alternatively converted to certain
matrix equality problems in term of the clear and analytical expressions of the OLSEs and BLUEs
obtained in the preceding sections. In order to resolve these proposed equivalence problems, we need
to prepare a complex of preliminary methods and techniques in matrix algebra, including many
formulas and facts about generalized inverses of matrices and the matrix rank methodology.
Nevertheless, this sort of future investigations together with the current theoretical and
methodological advances in this research area will definitely provide considerable insight into the
intrinsic natures hidden behind the adding-up restrictions, so that we believe that the algebraic
treatments presented in this article will sufficiently prompt other similar studies regarding different
kinds of regression models with adding-up restrictions to observable random variables under various
assumptions.
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