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Abstract: Let N be a left R-module with the endomorphism ring S = End(RN). Given two cardinal
numbers α and β and a matrix A ∈ S β×α, N is called flat relative to A in case, for each x ∈ lN(β)(A) = {u ∈
N(β) | uA = 0}, there are a positive integer k, y ∈ Nk and a k × β row-finite matrix C over S such that
CA = 0 and x = yC. It is shown that NS is flat relative to a matrix A if and only if lN(β)(A) is generated
by N. S is called left coherent relative to A if Ker(S S (β) →S S (β)A) is finitely generated. It is shown
that S is left coherent relative to A if and only if HomR(N, lNn(A)) is a finitely generated left S -module
if and only if lNn(A) has an add(N)-precover (add(N) denotes the category of all direct summands of
finite direct sums of copies of RN). Regarding applications, new necessary and sufficient conditions for
epic (monic, having the unique mapping property) add(N)-precovers of lN(β)(A) are investigated. Also,
some new characterizations of left n-semihereditary rings and von Neumann regular rings are given.
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1. Introduction

Let N be a left R-module with the endomorphism ring S = End(RN). Obviously, RNEnd(RN) is right
balanced. In [1], Mao investigated the (m, n)-flatness and (m, n)-coherence of S . Motivated by [2–6],
m and n are superseded by two (possibly infinite) cardinal numbers α and β when investigating some
homological properties of modules and rings so that some known results can be extended.

Recall that a left R-module N with S = End(RN) is flat over S [7, Lemma 19.19] if and only if
for each A ∈ S n×m and x ∈ lNn(A), there are a positive integer k, y ∈ Nk and a k × n matrix C over S
such that CA = 0 and x = yC. A left R-module N with S = End(RN) is called flat relative to a matrix
A ∈ S β×α in case, for each x ∈ lN(β)(A), there are a positive integer k, y ∈ Nk and C ∈RFMk×β(S ) such
that CA = 0 and x = yC. In Section 2, it is shown that NS is flat relative to a matrix A ∈ S β×α if and
only if lN(β)(A) is generated by N. It is shown that NS is flat relative to a matrix A ∈RFMβ×α(S ) if and
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only if TorS
1 (N, S (α)/S (β)A) = 0. Next, N is called (α, β)-flat over its endomorphism ring if NS is flat

relative to all A ∈ S β×α. A united frame is provided to investigate n-projective [8], finite-projective [3],
(m, n)-flat [1,9] and flat modules over their endomorphism rings. The notion of quasi-injectivity is also
extended to quasi-injectivity relative to A. It is proven that the following conditions are equivalent for
a left R-module N which is flat relative to a matrix A ∈RFMβ×α(S ):

(1) S is a left injective ring relative to A (S is called left injective relative to A [6] in case, for every
h ∈ HomS (S (β)A, S ), there exists g ∈ HomS (S (α), S ) such that h = ηg, where η: S (β)A → S (α) is the
inclusion).

(2) If σ: N(β) → N is a left R-homomorphism with lN(β)(A) ⊆ Ker(σ), then σ ∈ AS α.
(3) N is quasi-injective relative to A (N is called quasi-injective relative to A in case, for every

h ∈ HomR(N(β)A,N), there exists g ∈ HomR(N(α),N) such that h = ηg where η : N(β)A → N(α) is the
inclusion).

Thus the condition “β < ∞ or RN is finitely generated” in [6, Proposition 3.11(2)] is superfluous.
At the same time, a new necessary and sufficient condition of left (m, n)-injective endomorphism rings
is given.

Recall that a ring S is said to be left coherent (see [10]) in case each finitely generated left ideal of
S is finitely presented, or equivalently, any finitely generated submodule of any finitely generated free
left S -module is finitely presented. Let N be a left R-module with S =End(RN) and A ∈ S β×α. The ring
S is called left coherent relative to A ∈ S β×α if Ker(S S (β) →S S (β)A) is finitely generated. S is said to
be (α, n)-coherent provided that it is left coherent relative to all matrices A ∈ S n×α. For example:

(1) S is left (m, n)-coherent [1, 9] if it is left coherent relative to all matrices A ∈ S n×m.
(2) S is left coherent [10] if and only if it is left (1, n)-coherent for all positive integers n if and only

if it is left (m, n)-coherent for all positive integers m and n.
(3) S is left π-coherent [11] if and only if it is left (α, β)-coherent for all cardinal numbers β ∈ N

and all cardinal numbers α.
In Section 3, it is shown that the following conditions are equivalent for a left R-module N with

S = End(RN) and a matrix A ∈ S n×α:
(1) S is left coherent relative to A.
(2) HomR(N, lNn(A)) is a finitely generated left S -module.
(3) lNn(A) has an add(N)-precover.
Next, the new necessary and sufficient conditions are investigated for the epic (monic, having the

unique mapping property) add(N)-precovers of lNn(A). For example, it is shown that HomR(N, lNn(A))
is a finitely generated projective left S -module if and only if lNn(A) has an add(N)-cover with the
unique mapping property (Theorem 3.11). Moreover, the specific form of the cover is given. We get
a new necessary and sufficient condition of [1, Proposition 3.4]. Regarding applications, some new
characterizations of left n-semihereditary rings and von Neumann regular rings are obtained.

Throughout this article, R is an associative ring with identity, and all modules are unitary. Let N
be a left R-module with S = End(RN). Note that add(N) denotes the category of all direct summands
of finite direct sums of copies of RN. Let α and β be two fixed cardinal numbers. S β×α (RFMβ×α(S ))
stands for the set of all β× α full (row-finite) matrices over S . We write S (β)(S (β)) to indicate the direct
sum of β copies of S and S α(S α) to indicate the direct product of α copies of S . Elements in S (β) are
regarded as “row vectors”, elements in S (β) are regarded as “column vectors”, and elements in S α(S α)
are regarded similarly. For the left R-module N, elements in N(β)(N(β),Nα,Nα) have similar meanings.
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Thus, we define left R-homomorphisms θ: N → N(β) and σ: N(β) → N as follows:

(x)θ = (x)(θ1, θ2, . . . , θβ),= ((x)θ1, (x)θ2, . . . , (x)θβ),

and

(x1, x2, . . . , xβ)σ = (x1, x2, . . . , xβ)


σ1

σ2
...

σβ

 = x1σ1 + x2σ2 + · · · + xβσβ,

where x ∈ N, (x1, x2, . . . , xβ) ∈ N(β), θ = (θ1, θ2, . . . , θβ) ∈ S (β), and σ =


σ1

σ2
...

σβ

 ∈ S β.

For any A ∈ S β×α, we define
lS (β)(A) = {s ∈ S (β) | sA = 0},

lN(β)(A) = {u ∈ N(β) | uA = 0}.

If

A =


σ11 σ12 · · · σ1α

σ21 σ22 · · · σ2α
...

...
...

...

σβ1 σβ2 · · · σβα

 ∈ S β×α,

we can define a left R-homomorphism f : N(β) → N(β)A(Nα) as follows:

(x1, x2, . . . , xβ) f = (x1, x2, . . . , xβ)A
= ((x1)σ11 + (x2)σ21 + · · · + (xβ)σβ1, (x1)σ12

+ (x2)σ22 + · · · + (xβ)σβ2, . . . , (x1)σ1α

+ (x2)σ2α + · · · + (xβ)σβα),

for any (x1, x2, . . . , xβ) ∈ N(β). Conversely, if φ: N(β) → Nα is a left R-homomorphism, there exists

A =


σ11 σ12 · · · σ1α

σ21 σ22 · · · σ2α
...

...
...

...

σβ1 σβ2 · · · σβα

 ∈ S β×α,

such that
(x1, x2, . . . , xβ)φ = (x1, x2, . . . , xβ)A,

for any (x1, x2, . . . , xβ) ∈ N(β).
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2. Flatness relative to some matrices

Let α ≥ 1 and β ≥ 1 be two fixed cardinal numbers.

Definition 2.1. Let N be a left R-module with S = End(RN) and A ∈ S β×α. NS is called flat relative
to A in case, for each x ∈ lN(β)(A), there are a positive integer k, y ∈ Nk and C ∈ RFMk×β(S ) such that
CA = 0 and x = yC.

Theorem 2.2. Let N be a left R-module with S = End(RN) and A ∈ S β×α, and the following conditions
are equivalent.

(1) NS is flat relative to A.
(2) The canonical map µ: N ⊗S S (β)A → Nα (µ(x ⊗ bA) = xbA, ∀x ∈ N and b ∈ S (β)) is a

monomorphism.
(3) The canonical map υ: N ⊗S S (β)A → Hom(AS (α),N) (υ(x ⊗ bA)(Ad) = xbAd, ∀x ∈ N, b ∈ S (β)

and d ∈ S (α)) is a monomorphism.
(4) lN(β)(A) is generated by N.

Proof. (1)⇒ (2) Suppose A = (ai j)β×α and the t-th row of A is at = (at j). Note that

µ(
∑

i

(xi ⊗ ai)) =
∑

i

xiai(
∑

i

(xi ⊗ ai) ∈ N ⊗S S (β)A).

If
∑
i

xiai = 0, then

(x1, x2, . . . , xβ)A = 0.

It follows that (x1, x2, . . . , xβ) ∈ lN(β)(A). By (1), there are a positive integer

k, y = (y1, y2, . . . , yk) ∈ Nk

and C ∈ RFMk×β(S ) such that CA = 0 and

(x1, x2, . . . , xβ) = yC.

Hence,
∑
i
(xi ⊗ ai) = 0. Thus, (2) holds.

(2) ⇒ (1) Let A = (ai j)β×α. Suppose the t-th row of A is at = (at j) and et ∈ S (β) with IdN in the t-th
position and 0 elsewhere, t = 1, 2, . . . , β. Define φ: S (β) → S (β)A such that φ(et) = at, t = 1, 2, . . . , β.
Then, φ is an epimorphism of left S -modules with Ker(φ) = lS (β)(A). Let τ: lS (β)(A) → S (β) be the
inclusion map. Consider the following exact sequence:

N ⊗S lS (β)(A) N⊗τ // N ⊗S S (β) N⊗φ // N ⊗S S (β)A // 0.

For any
x = (x1, x2, . . . , xβ) ∈ lN(β)(A),

we get that
∑
i
(xi ⊗ ai) = 0 by (2). Thus,

0 =
∑

i

(xi ⊗ ai) =
∑

i

(xi ⊗ φ(ei))
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in N ⊗ S (β)A. It follows that ∑
i

(xi ⊗ ei) ∈ Ker(N ⊗ φ) = Im(N ⊗ τ).

Hence, there are a positive integer

k, y = (y1, y2, . . . , yk) ∈ Nk

and
c1 = (c11, c12, . . . , c1β), c2 = (c21, c22, . . . , c2β), . . . , ck = (ck1, ck2, . . . , ckβ) ∈ lS (β)(A)

such that ∑
i

(xi ⊗ ei) = y1 ⊗ c1 + y2 ⊗ c2 + · · · + yk ⊗ ck.

Set C = (ci j). Then, C is a k × β row-finite matrix over S such that CA = 0. It is easy to see that

c1 =
∑

i

c1iei, c2 =
∑

i

c2iei, . . . , ck =
∑

i

ckiei.

Then, ∑
i

(xi ⊗ ei) = y1 ⊗ c1 + y2 ⊗ c2 + · · · + yk ⊗ ck

= y1 ⊗
∑

i

c1iei + y2 ⊗
∑

i

c2iei + · · · + yk ⊗
∑

i

ckiei

=
∑

i

y1c1i ⊗ ei +
∑

i

y2c2i ⊗ ei + · · · +
∑

i

ykcki ⊗ ei

=
∑

i

[(y1c1i + y2c2i + · · · + ykcki) ⊗ ei].

It follows that
xi = y1c1i + y2c2i + · · · + ykcki,

that is, x = yC. Thus, (1) holds.
(2)⇔ (3) It is easy to see that υ(x ⊗ bA) = 0 if and only if xbA = 0.
(1)⇒ (4) For any

x = (x1, x2, · · · , xβ) ∈ lN(β)(A),

there are a positive integer k, y = (y1, y2, · · · , yk) ∈ Nk and C ∈ RFMk×β(S ) such that CA = 0 and
x = yC by (1). Let C = (ci j)k×β. Define left R-homomorphisms

fi = (ci1, ci2, · · · , ciβ) : N → N(β)

via
(b) fi = ((b)ci1, (b)ci2, · · · , (b)ciβ), ∀b ∈ N, i = 1, 2, . . . , k.

Note that CA = 0, and then Im( fi) ⊆ lN(β)(A). Thus, we regard fi: N → lN(β)(A), i = 1, 2, . . . , k. It
follows that

x = (x1, x2, · · · , xβ) = (y1, y2, · · · , yk)C = (y1) f1 + (y2) f2 + · · · + (yk) fk.
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Therefore, lN(β)(A) is generated by N by [7, Corollary 8.13(1)].
(4)⇒ (1) Let

x = (x1, x2, · · · , xβ) ∈ lN(β)(A).

By (4), there exist left R-homomorphisms

fi = (ci1, ci2, · · · , ciβ) : N → lN(β)(A)

and yi ∈ N, i = 1, 2, . . . , k, such that

x = (x1, x2, · · · , xβ)
= (y1) f1 + (y2) f2 + · · · + (yk) fk

=

k∑
i=1

((yi)ci1, (yi)ci2, · · · , (yi)ciβ).

Set C = (ci j)k×β ∈ S k×β. Then,
x = (y1, y2, · · · , yk)C.

Note that fi: N → lN(β)(A), i = 1, 2, . . . , k. This means that CA = 0. Thus, (1) holds. □

Example 2.3. (1) Let N be a left R-module with S = End(RN) and A ∈ S . If A is an isomorphism or
A = 0, then N is flat relative to A by Theorem 2.2 (4).

(2) Let N =R R. Then, R is flat relative to any matrix A ∈ S β×α by Theorem 2.2 (4) since S = R =
End(RN).

(3) Let R = Z be an integer ring and N = Z6 an R-module. Define an R-homomorphism A:
Z6 → Z6 via A(x) = 2x,∀x ∈ Z6. Then, there are two exact sequences

0 //Z3
//Z6

A //Z6 , Z6
σ //Z3

// 0,

where σ(x) = 3x,∀x ∈ Z6. Thus, N is flat relative to A by Theorem 2.2 (4).

If A is a row-finite β × α matrix, we have the following.

Corollary 2.4. Let N be a left R-module with S = End(RN) and A ∈ RFMβ×α(S ), and the following
conditions are equivalent:

(1) NS is flat relative to A.
(2) The sequence 0→ N ⊗S S (β)A→ N ⊗S S (α) is exact.
(3) TorS

1 (N, S (α)/S (β)A) = 0.
(4) The canonical map µ: N ⊗S S (β)A → N(α) (µ(x ⊗ aA) = xaA, for each x ∈ N and a ∈ S (β)) is a

monomorphism.

Proof. (2)⇔ (3) is trivial.
(1)⇔ (2) and (2)⇔ (4) follow from Theorem 2.2 since A ∈ RFMβ×α(S ).
If A is an n × α matrix (n is a positive integer), we have the following.

Corollary 2.5. Let N be a left R-module with S = End(RN) and A ∈ S n×α, and the following conditions
are equivalent.

(1) NS is flat relative to A.
(2) For any right S -homomorphism f : S n/AS (α) → N, there is a finitely generated free right S -

module F such that f = f2 f1 for some f1: S n/AS (α) → F and f2: F → N.
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Proof. Let f ∈HomS (S n/AS (α),N). Then, there exists x ∈ lNn(A) such that

(b + AS (α)) f = xb, ∀b ∈ S n.

By (1), there are a positive integer k, y = (y1, y2, · · · , yk) ∈ Nk and C ∈ RFMk×n(S ) such that CA = 0
and x = yC. Define right S -homomorphisms f1: S n/AS (α) → S k by

(b + AS (α)) f1 = Cb(∀b ∈ S n),

f2: S k → N by
(a) f2 = ya(∀a ∈ S k).

Thus, f = f1 f2, and so (2) holds.
Conversely, it is easy to check that (2)⇒ (1).

Definition 2.6. Let N be a left R-module with S = End(RN). N is called (α, β)-flat over its
endomorphism ring if NS is flat relative to all A ∈ S β×α.

Example 2.7. Let N be a left R-module with S = End(RN).
(1) Recall that a right S -module P is said to be (m, n)-presented [9] if there exists an exact sequence

0 → K → S m → P → 0, where K is n-generated of right S -modules. A right S -module N is said to
be (m, n)-flat [1, 9] if Tor1(P,N) = 0 for any (m, n)-presented right S -module P. Thus, N is (m, n)-flat
over its endomorphism ring if it is flat relative to all matrices A ∈ S n×m by Corollary 2.4.

(2) It is easy to see that N is flat over its endomorphism ring if and only if it is (1, n)-flat, for all
positive integers n, if and only if it is (m, n)-flat, for all positive integers m and n, if and only if it is flat
relative to all A ∈ RFM(S ) by Corollary 2.4.

(3) Recall from [8], N is said to be n-projective in case for each right S -epimorphism π: MS → NS

and each n-generated submodule N0 of NS there exists g ∈ HomS (N0,M) such that (x)gπ = (x)i, ∀x ∈
N0, where i: N0 → N is the inclusion. It is easy to check that N is n-projective over its endomorphism
ring if and only if it is (α, n)-flat (for all cardinal numbers α) by Corollary 2.5. Thus, let RN =R R. We
get [6, Proposition 4.1].

(4) Recall from [3], N is finite-projective if and only if it is n-projective for all positive integers n.
Thus, N is finite-projective over its endomorphism ring if and only if it is (α, n)-flat, for all cardinal
numbers α and positive integers n by (3) and Corollary 2.5.

Definition 2.8. A left R-module K is called N-(α, β)-copresented if there exists an exact sequence
0→ K → N(β) → Nα of left R-modules.

Corollary 2.9. Let N be a left R-module with S = End(RN).
(1) [1, Lemma 2.6] N is (m, n)-flat over its endomorphism ring if and only if every

N-(m, n)-copresented left R-module is generated by N.
(2) N is flat over its endomorphism ring if and only if every N-(m, n)-copresented left R-module is

generated by N, for all positive integers m, n.
(3) N is n-projective over its endomorphism ring if and only if N-(α, n)-copresented left R-module

is generated by N, for all cardinal numbers α.
(4) N is finite-projective over its endomorphism ring if and only if N-(α, n)-copresented left R-

module is generated by N, for all cardinal numbers α and positive integers n.
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Lemma 2.10. Suppose N is a left R-module with S = End(RN) and NS is flat relative to a matrix
A ∈ S β×α. If x ∈ lN(β)(A) and

σ =


σ1

σ2
...

σβ

 ∈ rS βlS (β)(A),

then x ∈ Ker(σ).

Proof. Set
x = (x1, x2, · · · , xβ) ∈ lN(β)(A).

Since NS is flat relative to A, there are a positive integer k, y = (y1, y2, · · · , yk) ∈ Nk and C ∈ RFMk×β(S )
such that CA = 0 and x = yC. Suppose C = (ci j)k×β. Then, (ci1, ci2, · · · , ciβ)A=0, that is,

(ci1, ci2, · · · , ciβ) ∈ lS (β)(A), i = 1, 2, . . . , k.

If

σ =


σ1

σ2
...

σβ

 ∈ rS βlS (β)(A),

then
(ci1, ci2, · · · , ciβ)σ = 0, i = 1, 2, . . . , k.

Note that

x = y1(c11, c12, · · · , c1β) + y2(c21, c22, · · · , c2β) + · · · + yk(ck1, ck2, · · · , ckβ).

Thus,
(x)σ = (y1(c11, c12, · · · , c1β) + y2(c21, c22, · · · , c2β) + · · · + yk(ck1, ck2, · · · , ckβ))σ

= y1(c11, c12, · · · , c1β)σ + y2(c21, c22, · · · , c2β)σ + · · · + yk(ck1, ck2, · · · , ckβ)σ
= 0.

It follows that x ∈ Ker(σ).

Definition 2.11. Let N be a left R-module with S = End(RN) and A ∈ RFMβ×α(S ).
(1) N is called quasi-injective relative to A in the case that for every h ∈ HomR(N(β)A,N), there

exists g ∈ HomR(N(α),N) such that h = ηg, i.e., the following diagram commutes:

N(β)A
η //

h
��

N(α)

g
{{

N

where η: RN(β)A→R N(α) is the canonical inclusion.
(2) N is called quasi-(β, α)-injective [6, Definition 3.8] if it is quasi-injective relative to all A ∈

RFMβ×α(S ).
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(3) S is called quasi-injective relative to A (i.e., S is left injective relative to A [6]) in the case that
for every h ∈ HomS (S (β)A, S ), there exists g ∈ HomS (S (α), S ) such that h = ηg, i.e., the following
diagram commutes:

S (β)A
η //

h
��

S (α)

g
{{

S

where η: S S (β)A→S S (α) is the canonical inclusion.

Lemma 2.12. Let N be a left R-module with S = End(RN), A ∈ RFMβ×α(S ) and S left injective relative
to A. Then,

(1) If σ: N(β) → N is a left R-homomorphism with lN(β)(A) ⊆ Ker(σ), then σ ∈ AS α.
(2) N is quasi-injective relative to A.

Proof. (1) Let σ: N(β) → N be a left R-homomorphism with lN(β)(A) ⊆ Ker(σ). If

(t1, t2, . . . , tβ) ∈ lS (β)(A),

then
(a)(t1, t2, . . . , tβ)A = 0,

for any a ∈ N. Thus,
(a)(t1, t2, . . . , tβ) ∈ lN(β)(A).

Since
lN(β)(A) ⊆ Ker(σ), (a)(t1, t2, . . . , tβ)σ = 0,

for any a ∈ N, it follows that
(t1, t2, . . . , tβ)σ = 0,

that is, σ ∈ rS β
lS (β)(A). Note that S is left injective relative to A. Then, rS β

lS (β)(A) = AS α by
Definition 2.11 (3) and [6, Theorem 3.10]. Therefore, σ ∈ AS α.

(2) Let η: RN(β)A →R N(α) be the canonical inclusion, π: RN(β) →R N(β)A be the canonical
epimorphism, and ψ: N(β)A → N be any left R-homomorphism. Clearly, lN(β)(A) ⊆ Ker(πψ). By (1),
there exists a left R-homomorphism τ ∈ S α such that πψ = Aτ. Thus,

((x1, x2, · · · , xβ)A)ψ = ((x1, x2, · · · , xβ)π)ψ
= (x1, x2, · · · , xβ)(πψ)
= (x1, x2, · · · , xβ)(Aτ)
= (x1, x2, · · · , xβ)(πητ)
= ((x1, x2, · · · , xβ)A)ητ,

for any (x1, x2, · · · , xβ) ∈ N(β). It follows that ψ = ητ.

Theorem 2.13. Let N be a left R-module with S = End(RN), A ∈ RFMβ×α(S ) and NS flat relative to A.
Then, the following conditions are equivalent.

(1) S is left injective relative to A.
(2) If σ: N(β) → N is a left R-homomorphism with lN(β)(A) ⊆ Ker(σ), then σ ∈ AS α.
(3) N is quasi-injective relative to A.
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Proof. (1)⇒ (2)⇒ (3) follows from Lemma 2.12.
(3) ⇒ (1) Let η: RN(β)A →R N(α) be the canonical inclusion and σ ∈ rS β

lS (β)(A). Define a left
R-homomorphism ψ: N(β)A→ N via

((x1, x2, . . . , xβ)A)ψ = ((x1, x2, . . . , xβ))σ,

for any (x1, x2, . . . , xβ) ∈ N(β). Since NS is flat relative to A, lN(β)(A) ⊆ Ker(σ) by Lemma 2.10. This
means that ψ is well-defined. By (3), there exists a left R-homomorphism τ: N(α) → N such that
ψ = ητ. Set

A =


σ11 σ12 · · · σ1α

σ21 σ22 · · · σ2α
...

...
...

...

σβ1 σβ2 · · · σβα

 .
Then, for any

(x1, x2, . . . , xβ) ∈ N(β), ((x1, x2, . . . , xβ))σ = ((x1, x2, . . . , xβ)A)ψ = ((x1, x2, . . . , xβ)A)ητ
= (x1σ11 + x2σ21 + · · · + xβσβ1, x1σ12 + x2σ22 + · · ·

+ xβσβ2, . . . , x1σ1α + x2σ2α + · · · + xβσβα)τ
= ((x1, x2, . . . , xβ))Aτ,

which implies that σ = Aτ, it follows that S is left injective relative to A by Definition 2.11 (3)
and [6, Theorem 3.10].

Corollary 2.14. Let N be a left R-module with S = End(RN) and NS flat. Then, the following conditions
are equivalent.

(1) S is a left (α, β)-injective ring.
(2) N is quasi-(α, β)-injective.

Remark 2.15. From Remark 2.7, Corollary 2.14 and Theorem 2.2, we get that the condition “β < ∞
or RN is finitely generated” in [6, Proposition 3.11(2)] is superfluous.

Corollary 2.16. Let N be a left R-module with S = End(N) and NS (m, n)-flat. Then, the following
conditions are equivalent.

(1) S is a left (m, n)-injective ring.
(2) N is quasi-(m, n)-injective.

3. Coherence relative to some matrices

Definition 3.1. Let N be a left R-module with S = End(RN) and A ∈ S β×α. S is called left coherent
relative to A if Ker(S S (β) →S S (β)A) is finitely generated.

Example 3.2. (1) Let N be a left R-module with S = End(RN) and A ∈ S . If A is an isomorphism or
A = 0, then S is coherent relative to A by the definition.

(2) Let N =R R and S = End(RN) � R. [12, Example 2.2] shows that S is left coherent relative to
any A ∈ S but not right coherent relative to any A ∈ S .
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Recall that a right S -module NS is said to be S -Mittag Leffler (S -ML) [13] in the case the canonical
map µN,I: N ⊗ S I → N I defined via µN,I(x ⊗ (si)) = (xsi) (∀x ∈ N and (si) ∈ S I) is a monomorphism
for every set I. It is well known that NS is finitely presented if and only if N is finitely generated and
S -ML.

Remark 3.3. In [5, Theorem 4] and [6, Chapter 5], a ring S is said to be left coherent relative to A ∈
S β×α if S (β)A is a left S -ML module. Note that S (β)A is a β-generated submodule of S α in Definition 3.1.
Hence, if β is finite, S (β)A is finitely presented if and only if S (β)A is S -ML. Therefore, the left coherence
relative to A here coincides with the definition in [5, 6] when β is finite.

Definition 3.4. Let N be a left R-module with S = End(RN). S is called left (α, n)-coherent if it is
left coherent relative to all matrices A ∈ S n×α.

Remark 3.5. Let N be a left R-module with S = End(RN).
(1) S is left (m, n)-coherent (a ring S is called left (m, n)-coherent [9] if every n-generated left

submodule of the free left S -module S m is finitely presented) if it is left coherent relative to all A ∈
S n×m.

(2) It is easy to see that S is left coherent if and only if it is left (1, n)-coherent for all positive
integers n if and only if it is left (m, n)-coherent for all positive integers m and n.

(3) S is left π-coherent (a ring S is called left π-coherent [11] if every finitely generated torsionless
left S -module is finitely present) if and only if it is left (α, β)-coherent for all β ∈ N and all cardinal
numbers α.

The following example is taken from [14].

Example 3.6. Let S be a commutative ring and C be a cyclic S -module generated by an element a.
Let R be the upper triangular matrix ring

R =
(

S C
0 S

)
and M = Re, with

e =
(

0 0
0 1

)
.

Then, ReR = M and End(RM) � eRe � S . If S is coherent but not Noetherian (e.g., the polynomial ring
on a denumerable set of indeterminates over a field), then End(RM) is a coherent ring. Let x, y1, y2, · · ·

be indeterminates over a field K, S = K[x2, x3, yi, xyi] (see [15, p. 110]). Then, S is coherent relative
to any A ∈ S (i.e., S is (1,1)-coherent) but not coherent relative to

A =
(

x2

x3

)
.

In fact, Ker(S S (2) →S S (2)A) is generated by (x4, x3) and (xyi, yi). Moreover, there is a submodule X of
M such that

X � R/
(

lS (a) C
0 S

)
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by [14]. Thus, X is not generated by M since(
1 0
0 0

)
e = 0

and (
1 0
0 0

)
x , 0,∀0 , x ∈ X.

Let C be a class of left R-modules and M be a left R-module. Following [16], we say that a
homomorphism φ: C → M is a C -precover of M if C ∈ C and the abelian group homomorphism
Hom(C

′

, φ): Hom (C
′

,C) → Hom (C
′

,M) is surjective for each C
′

∈ C . A C -precover φ: C → M is
called a C -cover if every endomorphism f : C → C such that fφ = φ is an isomorphism. C -covers
may not exist in general, but if they exist, they are unique up to isomorphisms.

Theorem 3.7. Let N be a left R-module with S = End(RN) and A ∈ S n×α. Then, the following are
equivalent.

(1) S is left coherent relative to A.
(2) HomR(N, lNn(A)) is a finitely generated left S -module.
(3) lNn(A) has an add(N)-precover.

Proof. Consider the exact sequence of left R-modules

0 // lNn(A) // Nn φ // NnA,

which leads to the exact sequence of left S -modules

0 // HomR(N, lN(β)(A)) // HomR(N,Nn)
φ∗ // HomR(N,NnA).

Thus, HomR(N,Nn) � S n, and im(φ∗) � S nA.
(1) ⇒ (2) Since S is left coherent relative to A, HomR(N, lNn(A)) is finitely generated by the

definition.
(2) ⇒ (3) Since HomR(N, lNn(A)) is a finitely generated left S -module, there is a generating set

{ fi ∈ HomR(N, lNn(A)) : 1 ≤ i ≤ k} of HomR(N, lNn(A)). Define a left R-homomorphism f : Nk → lNn(A)
via

((x1, x2, . . . , xk)) f =
k∑

i=1

(xi) fi,∀xi ∈ N.

Thus, f is an add(N)-precover of lNn(A). In fact, let m be any positive integer and ϕ: Nm → lNn(A)
be any left R-morphism. Suppose

ϕ =


ϕ1

ϕ2
...

ϕm

 ,
where ϕi ∈ HomR(N, lNn(A)), i = 1, 2, . . . ,m. Then, there exist left R-endomorphisms of N: gi j ∈ S (1 ≤

i ≤ m, 1 ≤ j ≤ k) such that ϕi =
k∑

j=1
gi j f j. Define a left R-homomorphism

g = (gi j)m×k : Nm → Nk.
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It is easy to check that ϕ = g f . So, f is an add(N)-precover of lNn(A).
(3)⇒ (1) By (3), lNn(A) has an add(N)-precover Nk → lNn(A). Then, there exists an exact sequence

of left S -homomorphisms
HomR(N,Nk)→ HomR(N, lNn(A))→ 0.

Note that HomR(N,Nk) � S k. It follows that HomR(N, lNn(A)) is a finitely generated left S -module.
Hence, S is a left coherent ring relative to A.

Proposition 3.8. Let N be a left R-module with S = End(RN) and A ∈ S n×α. Then, the following are
equivalent.

(1) S is left coherent relative to A, and NS is flat relative to A.
(2) lNn(A) has an epic add(N)-precover.

Proof. (1) ⇒ (2) Since NS is flat relative to A, there exists a left R-epimorphism g: N(I) → lNn(A) by
Theorem 2.2. For any y ∈ lNn(A), there is an element x ∈ N(I) such that (x)g = y. Let πi: N(I) → N be
the canonical projection and ηi: N → N(I) be the canonical injection. Thus,

I∑
i=1

(x)πiηi = x

by [7, Proposition 6.21]. Since S is left coherent relative to A, lNn(A) has an add(N)-precover f :
Nk → lN(β)(A) by Theorem 3.7. Hence, there exist left R-homorphisms θi: N → Nk such that ηig = θi f .
It follows that

πiηig = πiθi f .

So,

y = (x)g = (
I∑

i=1

(x)πiηi)g = (
I∑

i=1

(x)πiηig) = (
I∑

i=1

(x)πiθi) f .

Thus, f is an epic add(N)-precover of lNn(A), and so (2) holds.
(2)⇒ (1) follows by Theorem 3.7 and Theorem 2.2.
Let RN =R R.

Corollary 3.9. Let A ∈ Rn×α. Then, the following are equivalent.
(1) R is left coherent relative to A.
(2) lRn(A) is a finitely generated left R-module.

Corollary 3.10. (1) R is left coherent if and only if each finitely generated left ideal of R is finitely
presented.

(2) R is left (m, n)-coherent if and only if each n-generated submodule of Rm is finitely presented.
(3) R is left π-coherent if and only if each finitely generated left R-module is finitely presented.

Recall that a C -cover φ: C → X of X is said to have the unique mapping property [17] if for any
homomorphism, f : C′ → X with C′ ∈ C , there is a unique homomorphism g: C′ → C such that
gφ = f .

Theorem 3.11. Let N be a left R-module with S = End(RN) and A ∈ S n×α. The following are
equivalent.
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(1) lNn(A) has an add(N)-cover with the unique mapping property.
(2) HomR(N, lNn(A)) is a finitely generated projective left S -module.
(3) lNn(A) has an add(N)-cover f : H → lNn(A) such that HomR(N, ke f r( f )) = 0.
(4) S is left coherent relative to A, and HomR(N, lNn(A)) is a projective left S -module.
Moreover, N ⊗S HomR(N, lNn(A)) → lNn(A) is an add(N)-cover of lNn(A) with the unique mapping

property.

Proof. (1)⇔ (3) and (2)⇔ (4) are trivial by Theorem 3.7.
(1) ⇒ (2) In view of (1), we get that lNn(A) has an add(N)-precover f : H → lNn(A)(H ∈ add(N))

with the unique mapping property. Consider the following exact sequence of left R-modules 0 →
Ker( f )→ H → lNn(A), which induces the following sequence of left S -modules:

0→ HomR(N,Ker( f ))→ HomR(N,H)→ HomR(N, lNn(A))→ 0.

Note that f has the unique mapping property. Then, HomR(N,Ker( f )) = 0. It follows that
HomR(N,H) � HomR(N, lNn(A)). Thus, HomR(N, lNn(A)) is a finitely generated projective left
S -module because H is a direct summand of Nk, for some integer k.

(2) ⇒ (1) Since HomR(N, lNn(A)) is a finitely generated left S -module, lNn(A) has an
add(N)-precover f : N t → lNn(A) by Theorem 3.7. Let i: Ker( f ) → N t be the inclusion. This induces
the following exact sequence of left S -modules:

0 // HomR(N,Ker( f ))
i∗ // HomR(N,N t)

f∗ // HomR(N, lN(n)(A)) // 0.

Note that HomR(N, lNn(A)) is projective, and then i∗ is a split monomorphism. Suppose that

e1 = (IdN , 0, 0, . . . , 0), e2 = (0, IdN , 0, . . . , 0), . . . , et = (0, 0, 0, . . . , IdN)

are the generated elements of HomR(N,N t). If ρ ∈ HomR(N,N t), then there exist si ∈ S (i = 1, 2, . . . , t)
such that

ρ = s1e1 + s2e2 + · · · + stet.

Thus,
a ⊗ ρ = a ⊗ (s1e1 + s2e2 + · · · + stet) = (a)s1 ⊗ e1 + (a)s2 ⊗ e2 + · · · + (a)st ⊗ et,

for any a⊗ρ ∈ N ⊗S HomR(N,N t). We suppose that HomR(N,Ker( f )) is a submodule of HomR(N,N t).
There is a left S -module Q � HomR(N, lNn(A)) such that HomR(N,N t) = HomR(N,Ker( f )) ⊕ Q. So,
there are elements gi ∈ HomR(N,Ker( f )) and hi ∈ Q such that ei = gi ⊕ hi, i = 1, 2, . . . , t. For any
τ ∈ HomR(N,Ker( f )), there exist ξi ∈ S (i = 1, 2, . . . , t) such that

τ = ξ1e1 + ξ2e2 + · · · + ξtet,

which implies that

τ = ξ1(g1 + h1) + ξ2(g2 + h2) + · · · + ξt(gt + ht) = ξ1g1 + ξ2g2 + · · · + ξtgt + ξ1h1 + ξ2h2 + · · · + ξtht.

It follows that
τ = ξ1e1 + ξ2e2 + · · · + ξtet = ξ1g1 + ξ2g2 + · · · + ξtgt.
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It is easy to check that

b⊗τ = b⊗(ξ1g1+ξ2g2+· · ·+ξtgt) = (b)ξ1⊗g1+(b)ξ2⊗g2+· · ·+(b)ξt⊗gt, ∀b⊗τ ∈ N⊗S HomR(N,Ker( f )).

Consider the following diagram with exact rows:

0 // N ⊗S HomR(N,Ker( f ))
IdN⊗i∗ //

σ′′

��

N ⊗S HomR(N,N t)

σ

��

IdN⊗ f∗// N ⊗S HomR(N, lNn(A))

σ′

��

// 0

0 // Ker( f ) i // N t f // lNn(A)

where (a ⊗ ei)σ = (a)ei and (a ⊗ gi)σ′′ = (a)gi, for any a ∈ N. Thus, σ and σ′′ are both isomorphisms.
Clearly, the first row in the diagram above is split.

Let φ ∈ HomR(N,N ⊗ Hom(N,N t)). If x ∈ N, we write

(x)φ = a1x ⊗ e1 + a2x ⊗ e2 + · · · + atx ⊗ et.

Suppose that si: N → N are left R-morphisms via (x)si = aix. Thus, si is well-defined. It follows that

(x)φ = x ⊗ (s1e1 + s2e2 + · · · + stet),

for any x ∈ N. Let ϕ ∈ HomR(N,N ⊗ Hom(N,Ker( f ))). Similarly, we can get that

(x)ϕ = x ⊗ (s1g1 + s2g2 + · · · + stgt),

for any x ∈ N (We may regard HomR(N,N ⊗ Hom(N,Ker( f )) as a direct summand of HomR(N,N ⊗
Hom(N,N t))). Since IdN ⊗ i∗ is a split monomorphism and HomR(N, lNn(A)) is projective, we have the
following diagram with split exact rows:

0 // HomR(N,N ⊗S HomR(N,Ker( f )))
(IdN⊗i∗ )∗ //

(σ′′ )∗

��

HomR(N,N ⊗S HomR(N,Nt))

σ∗

��

(IdN⊗ f∗ )∗// HomR(N,N ⊗S HomR(N, lNn (A)))

(σ′ )∗

��

// 0

0 // HomR(N,Ker( f ))
i∗ // HomR(N,Nk)

f∗ // HomR(N, lNn (A)) // 0.

Note that (σ′′)∗ and σ∗ are isomorphisms. By the five lemma, (σ′)∗ is also an isomorphism. Since
HomR(N, lNn(A)) is a finitely generated projective left S -module, N⊗HomR(N, lNn(A)) ∈ add(N). Thus,
N ⊗S HomR(N, lNn(A))→ lNn(A) is an add(N)-cover with the unique mapping property.

Theorem 3.12. Let N be a left R-module with S = End(RN) and A ∈ S n×α. The following are
equivalent.

(1) lNn(A) has a monic add(N)-cover.
(2) S is left coherent relative to A, and any left R-homomorphism f : L1 → lNn(A) factors through a

left R-module in add(N), where L1 is a quotient-module of any left R-module L ∈ add(N).

Proof. (1) ⇒ (2) S is left coherent relative to A by Theorem 3.7. By (1), lNn(A) has a monic add(N)-
cover g: P → lNn(A)(P ∈ add(N)). Let L1 be a quotient-module of any left R-module L ∈ add(N).
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For any f ∈ Hom(L1, lNn(A)), there is a left R-homomorphism ψ: P → L such that ψg = π f , where π:
L→ L1 is the canonical epimorphism. Consider the following diagram:

L π //

ψ

��

L1
//

f
��

s
||

0.

0 // P
g // lNn(A)

Define a left R-homomorphism s: L1 → P via ((x)π)s = (x)ψ, for any x ∈ L. Clearly, s is well-
defined. In fact, if (x)π = 0, then

(x)ψg = ((x)π) f = 0.

It follows that (x)ψ = 0 since g is monic. It is easy to see that f = sg, i.e., f factors through a left
R-module P ∈ add(N).

(2) ⇒ (1) Since S is left coherent relative to A, lNn(A) has an add(N)-precover f : F → lNn(A)
by Theorem 3.7. Let F1 = F/Ker( f ), θ: F1 → lNn(A) be the induced monomorphism of f and π:
F → F1 be the canonical epimorphism. By (2), there is a left R-module H ∈ add(N) and left R-
homomorphisms g: H → lNn(A) and h: F1 → H such that θ = hg. Note that f is a precover. There
exists a left R-homomorphism φ: H → F such that g = φ f . Thus,

θ = hg = hφ f = hφπθ,

and so IdF1 = hφπ since θ is monic. Hence, F1 ∈ add(N). It is easy to see that θ is a monic add(N)-cover
of lNn(A).

Corollary 3.13. Let N be a left R-module with S = End(RN).
(1) [1, Theorem 3.1] S is left (m, n)-coherent if and only if each N-(m, n)-copresented left R-module

has an add(N)-precover.
(2) [1, Corollary 3.3] S is left (m, n)-coherent, and NS is (m, n)-flat if and only if each N-(m, n)-

copresented left R-module has an epic add(N)-precover.
(3) S is left (m, n)-coherent, and HomR(N,K) is a projective left S -module, for each N-(m, n)-

copresented left R-module K, if and only if each N-(m, n)-copresented left R-module has an add(N)-
cover with the unique mapping property.

(4) S is left (m, n)-coherent, and any left R-homomorphism f : L1 → K factors through a module in
add(N), where K is any N-(m, n)-copresented left R-module and L1 is a quotient-module of any left R-
module L ∈ add(N), if and only if each N-(m, n)-copresented left R-module has a monic add(N)-cover.

Proposition 3.14. Let N be a left R-module with S = End(RN) and A ∈ S n×α. The following are
equivalent.

(1) lNn(A) has a monic add(N)-cover, and NS is flat relative to A.
(2) lNn(A) ∈ add(N).

Proof. (2)⇒ (1) is trivial.
(1) ⇒ (2) By (1), we get that lNn(A) has a monic add(N)-precover f : H → lN(n)(A)(H ∈ add(N)).

Since NS is flat relative to A, f is epic by Theorem 3.7 and Corollary 3.8. Thus, f is an isomorphism
and (1) holds.
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Corollary 3.15. Let N be a left R-module with S = End(RN), A ∈ S n×α and NS flat (as a right S -
module). Then, the following are equivalent.

(1) lNn(A) has an add(N)-cover with the unique mapping property.
(2) lNn(A) has a monic add(N)-cover.
(3) lNn(A) ∈ add(N).
(4) HomR(N, lNn(A)) is a finitely generated projective left S -module.

Proof. (2)⇒ (1) is trivial.
(2)⇔ (3) follows by the above Corollary.
(1)⇔ (4) follows by Proposition 3.11.
(1) ⇒ (2) By the definition of having unique mapping property, we get that lNn(A) has an add(N)-

cover f : H → lNn(A) such that HomR(N,Ker( f )) = 0. Note that H ∈ add(N). Let η: lNn(A) → Nn

be the canonical inclusion and π: Nk → H be the canonical projection. It follows that Ker(π fη)
is generated by N since NS is flat by Theorem 2.2 and Remark 2.7. Thus, Ker(π f ) and Ker( f ) are
both generated by N. However, HomR(N,Ker( f )) = 0, and then Ker( f ) = 0. It follows that f is a
monomorphism.

Let RN =R R.

Corollary 3.16. Let A ∈ Rn×α. Then, the following are equivalent.
(1) lRn(A) has a finitely generated projective cover with the unique mapping property.
(2) lRn(A) has a monic finitely generated projective cover.
(3) lRn(A) is a finitely generated projective left R-module.

Corollary 3.17. Let a ∈ R. Then, the following are equivalent.
(1) lR(a) has a finitely generated projective cover with the unique mapping property.
(2) lR(a) has a monic finitely generated projective cover.
(3) lR(a) is a finitely generated projective left R-module.

Theorem 3.18. Let N be a left R-module with S = End(RN) and A ∈ RFMn×α(S ). The following are
equivalent.

(1) S nA is a projective left S -module, and NS is flat relative to A.
(2) lNn(A) is a direct summand of Nn.

Proof. Let K = lNn(A). Then, there is an exact sequence

0 // K i // Nn φ // NnA.

Note that A ∈ RFMn×α(S ). Then, 0 // NnA // N(α) is exact. These yield the following diagram
of left S -modules:

0 // HomR(N,K)
i∗ // HomR(N,Nn)

&&

φ∗ // HomR(N,NnA)

0 // S nA

''

77

// S (α)

0

88

0,
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where HomR(N,Nn) � S n and im(φ∗) � S nA.
(2) ⇒ (1) Since K is a direct summand of Nn, i∗ is split by the diagram above. It follows that S nA

is a projective left S -module. According to (2), we get that K is finitely generated by N. Thus, N is
flat relative to A by Theorem 2.2.

(1)⇒ (2) Since S nA is projective, i∗ is a spilt monomorphism by the diagram above. Thus, IdN ⊗ i∗
is a split monomorphism. Since NS is flat relative to A, we have the following exact sequence by
Corollary 2.4:

0 // N ⊗S HomR(N,K)
IdN⊗i∗ // N ⊗S S n // N ⊗S S (α).

Consider the following exact sequence:

0 // N ⊗S HomR(N,K)

σ

��

IdN⊗i∗ // N ⊗S S n

�

��

// N ⊗S S (α)

�
��

0 // K i // Nn // N(α).

By the five lemma, σ is an isomorphism. Note that IdN ⊗ i∗ is a spilt monomorphism. Then, i is
split by the above diagram. Hence, K = lNn(A) is a direct summand of Nn.

Recall that R is a left n-semihereditary ring [18,19] if every n-generated right ideal of R is projective,
or equivalently, if every n-generated submodule of a projective right R-module is projective.

Corollary 3.19. [1, Theorem 3.6] Let N be a left R-module with S = End(RN). The following are
equivalent.

(1) S is a left n-semihereditary ring, and NS is (m, n)-flat over its endomorphism.
(2) K is a direct summand of Nn, for any K = Ker(RNn →R Nm).

Proof. It is trivial by Remark 3.5 (1) and Theorem 3.18.
It is well known that S is a von Neumann regular ring if and only if every left (right) S -module

is (1,1)-injective if and only if every left (right) S -module is (m, n)-injective if and only if every left
(right) S -module is (1, 1)-flat if and only if every left (right) S -module is (m, n)-flat.

Corollary 3.20. Let N be a quasi-(m, n)-injective left R-module with S = End(RN). The following are
equivalent.

(1) S is a left n-semihereditary ring, and NS is (m, n)-flat.
(2) S is a von Neumann regular ring.

Proof. (1) ⇒ (2) By (1) and Corollary 2.16, S is a left (m, n)-injective ring, and so is S (I), for any set
I. Since S is a left n-semihereditary ring, each quotient-module of an (m, n)-injective left S -module is
(m, n)-injective by [19, Theorem 3]. It follows that every left S -module is (m, n)-injective. Thus, S is
a von Neumann regular ring.

(2)⇒ (1) It is trivial. □

4. Conclusions

Remark 4.1. It would be interesting to extend the results to coherent [14, 20], n-coherent [18] and
π-coherent [11] endomorphism rings. For example, a left R-module M is called finitely
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N-copresented [20] if there exist positive integers m, n and an exact sequence 0 → M → Nm → Nn of
left R-modules. Let WD(S ) denote the weak global dimension of S . Then, S is left coherent if and
only if every finitely N-copresented module has an add(N)-precover by Theorem 3.7. S is left
coherent, and WD(S ) ≤ 2 if and only if every finitely N-copresented module has an add(N)-cover
with the unique mapping property if and only if HomR(N,K) is a finitely generated projective left
S -module (K is any finitely N-copresented module) by [20, Lemma 1.7] and Theorem 3.11. S is left
coherent, NS is flat over its endomorphism ring, and WD(S ) ≤ 2 if and only if every finitely
N-copresented module belongs to add(N) by [20, Lemma 1.7] and Corollary 3.15. S is
semihereditary (S is called semihereditary if every finitely generated right ideal of R is projective),
and NS is flat over its endomorphism ring if and only if every finitely N-copresented module belongs
to add(N) by Theorem 3.18.

Remark 4.2. The computation of the endomorphism rings is an important problem in computational
number theory as well as in cryptography. For instance, it is important in the computation of class
polynomials, which play an important role in explicit class field theory. There are many calculations
and much research on endomorphism rings, such as [21–24], etc. According to the calculation of
endomorphism ring S , we can choose the specific matrix A ∈ S n×α and then discuss the flatness
and coherence relative to A. Moreover, according to the corresponding matrix, we can study relative
flatness such as [18, 25–27], etc.

Remark 4.3. Let N be a left R-module with the endomorphism ring S = End(RN). Duality to flat
modules and add(N)-covers, injective modules and add(N)-envelopes may also be studied similarly.
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