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1. Introduction

The fixed point (FP) theory popularize in different ways by many image authentications which are
proposed in the literature. Recently, new approach based on the FP theory is given in the literature.
It has become an essential stanchion of nonlinear analysis, where it is used to study the existence and
uniqueness of the solutions for many differential and nonlinear integral equations [1–9]. There were
many generalizations of metric space (MS), for instance the first extension of MS was to partial metric
space (PMS) [10] which was done by defining the self distance, another extension was to b-metric
space (bMS) [11] by changing the triangle inequality. In [12] Asadi et al. introduced and extended
PMS to M-metric space (MMS). Also, he showed that every PMS is an M-MS, but inverse is not
true. In 2016, Mlaiki et al. [13] introduced the concept of Mb-metric space (MbMS) which is an
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extension of MMS and they gave an example of an MbMS which is not an MMS with proving some
FP results. BCP [14] was appeared in 1922, to be the base of functional analysis and plays a main role
in several branches of mathematics and applied sciences, which asserts that every contraction mapping
defined in complete MS has an FP. In many directions this principle has been extended and generalized
either by relaxing the contractive stipulations or imposing some more stipulations on space. One of
these generalizations and interesting approaches is interpolative Kannan type contraction which was
introduced by Karapinar [15] and established new FP results on complete MS. In [16] Karapinar et
al., discussed the interpolative Reich-Rus-Ciric type contractions in complete PMSs and deduced new
FPs results. In 2020, Hussain [17] gave a proper extension of [15, 16] by presenting the notion of
fractional convex Reich-type and Kannan type α-η-contractions and established some FP theorems
in the setting of F-complete F-MS. Newly, the notion of fractional symmetric α-η-contraction was
introduced in [18–20] with discussing of applications for solving fractional-order differential equations,
they studied four types of said contraction and obtained FP results in the setting of F-complete F-MS.
In 2022, Nazam et al. [29] introduced (Ψ,Φ)-orthogonal interpolative contractions with showing the
existence of FPs of set-valued (Ψ,Φ)-orthogonal interpolative contractions. In this research article,
we are going to give a splendid generalization of Hussain et al. [19] by introducing four new types
of symmetric fractional α-β-η-Υ-contractions and prove some new FP results in the complete MbMS.
As addition of our main results, we will show existence of FPs for such contractions on closed ball
of mentioned space. As an application, we will investigate existence of solving of fractional-order
differential equations.

2. Preliminaries

In this portion, some elementary discussions about MbMSs will be given. It should be noted that
Mlaiki et al. [13] introduced the notion of MbMS and inaugurated the advanced Banach Contraction
Principle on MbMS. So, the notion of mbξ,µ and Mbξ,µ are defined as follows:

mbξ,µ = min {mb (ξ, ξ) ,mb (µ, µ)} ,

and
Mb

ξ,µ
= max {mb (ξ, ξ) ,mb (µ, µ)} .

Definition 2.1. An MbMS on a non-empty set ∆ is a function mb : ∆2 → R+ that fulfills the assumptions
below, for all ξ, µ, κ ∈ ∆,

(Mb1) mb (ξ, ξ) = mb (µ, µ) = mb (ξ, µ) iff ξ = µ;
(Mb2) mbξ,µ ≤ mb (ξ, µ) ;
(Mb3) mb (ξ, µ) = mb (µ, ξ) ;
(Mb4) There is a coefficient s ≥ 1 so that for all ξ, µ, κ ∈ ∆, we have

mb (ξ, µ) − mbξ,µ ≤ s
[(

mb (ξ, κ) − mbξ,κ

)
+

(
mb (κ, µ) − mbκ,µ

)]
− mb (κ, κ) .

Then the pair (∆,mb) is called an MbMS.

Example 2.2. Let ∆ = [0,∞) and p > 1 be a constant. Define mb : ∆2 −→ [0,∞) by

mb (ξ, µ) = (max {ξ, µ})p + |ξ − µ|p , ∀ξ, µ ∈ ∆.

Then (∆,mb) is an MbMS (with coefficient s = 2p) and not MMS.
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Definition 2.3. Let (∆,mb) be an MbMS. Then

• A sequence {ξn} in ∆ converges to a point ξ if and only if

lim
n→∞

(
mb (ξn, ξ) − mbξn ,ξ

)
= 0.

• A sequence {ξn} in ∆ is called mb-Cauchy sequence iff

lim
n,m→∞

(
mb (ξn, ξm) − mbξn ,ξm

)
and lim

n,m→∞

(
Mbξn ,ξm − mbξn ,ξm

)
exist and finite.
• An MbMS is called mb-complete if every mb-Cauchy sequence {ξn} converges to a point ξ so that

lim
n→∞

(
mb (ξn, ξ) − mbξn ,ξ

)
= 0 and lim

n→∞

(
Mbξn ,ξ − mbξn ,ξ

)
= 0.

Theorem 2.4. Let (∆,mb) be an MbMS with coefficient s ≥ 1 and Γ be a self-mapping on ∆. If there
is k ∈ [0, 1) so that

mb (Γξ,Γµ) ≤ kmb (ξ, µ) , ∀ξ, µ ∈ ∆.

Then Γ has a unique FP ς in ∆.

Example 2.5. [22] Let ∆ = [0, 1] and mb : ∆ × ∆ −→ [0,∞) be defined by

mb (ξ, µ) =

(
ξ + µ

2

)2

, ∀ξ, µ ∈ ∆.

Then (∆,mb) is an MbMS (with coefficient s = 2) which is not an MMS.

The concept of cyclic (α, β)-admissible mapping is showed in the work of [22] as follows:

Definition 2.6. Let ∆ , ∅, α, β : ∆ → [0,∞) be two functions. A mapping Γ : ∆ → ∆ is called cyclic
(α, β)-admissible if for some ξ ∈ ∆,

α (ξ) ≥ 1⇒ β (Γξ) ≥ 1,

and
β (ξ) ≥ 1⇒ α (Γξ) ≥ 1.

Mudhesh et al. [23] extended this work to η-cyclic (α, β)-admissible mappings as following:

Definition 2.7. Let ∆ , ∅, α, β, η : ∆ → [0,∞) be given functions. The mapping Γ : ∆ → ∆ is called
η-cyclic (α, β)-admissible if for some ξ ∈ ∆,

α (ξ) ≥ η (ξ)⇒ β (Γξ) ≥ η (Γξ) ,

and
β (ξ) ≥ η (ξ)⇒ α (Γξ) ≥ η (Γξ) .
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Definition 2.8. [24] Assume that Γ is a self-mapping on a nonempty set ∆, A ⊆ ∆ and let α, η :
∆ × ∆ → [0,∞) be given functions. We say that Γ is semi α-admissible with respect to (wrt) η; if for
some ξ, µ ∈ A ⊆ ∆, we have

α (ξ, µ) ≥ η (ξ, µ)⇒ α (Γξ,Γµ) ≥ η (Γξ,Γµ) .

It should be noted that if A = ∆, then Γ is called α-admissible wrt η.

The following results are well known in the literature:
Let Ψs, where s ≥ 1; denotes the family of all nondecreasing functions ψ : [0,∞) → [0,∞) such

that

• (ψ1)
∑∞

n=1 snψn (t) < +∞ for all t > 0;
• (ψ2) sψ (t) < t for all t > 0;
• (ψ3) sn+1ψn+1 (t) < snsψnψ (t) < snψn (t) ,where ψn is the nth iterate of ψ.

Let Ψ, denotes the family of all nondecreasing functions ψ : [0,∞)→ [0,∞) such that
∑∞

n=1 ψ
n (t) <

+∞ for all t > 0, where ψn stands for the nth iterate of ψ.

Lemma 2.9. Let ψ ∈ Ψ, then the following hold:

(i) (ψn (t))n∈N converges to 0 as n→ ∞∀t ∈ (0,∞) ;
(ii) ψ (t) < t for each t > 0;

(iii) ψ (t) = 0 iff t = 0.

The coming results are very useful in our study which are taken and proved as in [27, 28].
Let (∆,mb) be an MbMS . For all ξ ∈ ∆ and ε > 0, the open ball with the center ξ and the radius ε is

B (ξ, ε) = {µ ∈ ∆ : mb (ξ, µ) − mbξ ,µ < ε}.

Notice that we have ξ ∈ B (ξ, ε) for all ε > 0. Indeed, we get

mb (ξ, ξ) − mbξ ,ξ = mb (ξ, ξ) − mb (ξ, ξ) = 0 < ε.

Similarly, the closed ball with the center ξ and the radius ε is

B
[
ξ, ε

]
= {µ ∈ ∆ : mb (ξ, µ) − mbξ ,µ ≤ ε}.

Lemma 2.10. Let (∆,mb) be an MbMS , ξ ∈ ∆ and ε > 0. The collection of all open balls on
∆, βmb = {B (ξ, ε)}ε>0

ξ∈∆ forms a basis on ∆.

Lemma 2.11. The following inequality holds for all ξ, µ ≥ 2 and r ≥ 1,

(ξ + µ)r
≤ (ξµ)r .
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3. Symmetric fractional α-β-η-Υ-contraction pattern-I

In this portion, we reset FP results for symmetric fractional α-β-η-Υ-contraction of pattern-I in
complete MbMS.

Definition 3.1. Let Γ : ∆ → ∆ be a mapping on an MbMS (∆,mb) , α, β, η : ∆ → [0,∞) be three
functions and Υ ∈ Ψ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction of pattern-I, if there

exist constants s ≥ 1, a, b, c ∈ (0, 1) and λ =
(
smbξ,µ

) −1
(c−a)(c−b)

∈ [0,∞) such that ∀ξ, µ ∈ ∆� Fix (Γ) ,
whenever α (ξ) β (µ) ≥ η (ξ) η (µ) , we have

s2mb (Γξ,Γµ) ≤ Υ
[
λ (R1 (ξ, µ))

]
, (3.1)

where

R1(ξ, µ) = mb(ξ, µ).
[
mb(ξ,Γξ)

] 1
(a−b)(a−c) .[mb(µ,Γµ)]

1
(a−b)(a−c) .

[mb(ξ,Γξ) + mb(µ,Γµ)]
1

(b−a)(b−c) .[mb(ξ,Γµ) + mb(µ,Γξ)]
1

(c−a)(c−b) .

Example 3.2. Let ∆ = {0, 1
3 ,

1
2 ,

2
3 , 1} and mb : ∆×∆→ R be defined by mb (ξ, µ) =

(
ξ+µ

2

)2
. Then (∆,mb)

is a complete MbMS with s = 2. Define Γ : ∆→ ∆ by

Γ0 = Γ
1
3

= Γ
2
3

= Γ1 = 0, Γ
1
2

=
1
2
,

and α, β, η : ∆→ [0,∞) by

α (ξ) = β (ξ) =

{
1 if ξ ∈ ∆,

0 otherwise
and η (ξ) =

{ 1
2 , if ξ ∈ ∆,

0, otherwise.

Let Υ (t) = 3
4 t. If ξ, µ ∈ ∆. Clearly α (ξ) β (µ) ≥ η (ξ) η (µ) , such that

s2mb

(
Γ

1
3
,Γ

2
3

)
= 0 ≤ Υ[λmb

(
1
3
,

2
3

)
.mb

(
1
3
,Γ

1
3

) 1
(a−b)(a−c)

.mb

(
2
3
,Γ

2
3

) 1
(a−b)(a−c)

.

[mb

(
1
3
,Γ

1
3

)
+ mb

(
2
3
,Γ

2
3

)
]

1
(b−a)(b−c) .[mb

(
1
3
,Γ

2
3

)
+ mb

(
2
3
,Γ

1
3

)
]

1
(c−a)(c−b) ]

= Υ[
λ

4

(
1

36

) 1
(a−b)(a−c)

.

(
1
9

) 1
(a−b)(a−c)

.[
(

1
36

)
+

(
1
9

)
]

1
(b−a)(b−c) .

[
(

1
36

)
+

(
1
9

)
]

1
(c−a)(c−b) ]

= Υ

λ4
(

1
36
×

4
36

) 1
(a−b)(a−c)

.

(
5

36

) 1
(b−a)(b−c)

.

(
5

36

) 1
(c−a)(c−b)


≤ Υ

λ4
(

1
36

+
4

36

) 1
(a−b)(a−c)

.

(
5

36

) 1
(b−a)(b−c)

.

(
5

36

) 1
(c−a)(c−b)


= Υ

λ4
(

5
36

) 1
(a−b)(a−c) + 1

(b−a)(b−c) + 1
(c−a)(c−b)


=

3λ
16
∈ [0,∞) .
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By taking any value of constants λ ∈ [0,∞) and a, b, c ∈ (0, 1) . Clearly, (3.1) holds for all ξ, µ ∈ ∆�

Fix (Γ) . Thus Γ has two FPs of 0 and 1
2 .

Now we state and prove our main theorem.

Theorem 3.3. Let (∆,mb) be a complete MbMS with coifficient s ≥ 1 and Γ is a symmetric fractional
α-β-η-Υ-contraction pattern-I satisfies the following statements:

(i) Γ is an η-cyclic (α, β)-admissible mapping;
(ii) either there is ξ0 ∈ ∆ so that α (ξ0) ≥ η (ξ0) or there is µ0 ∈ ∆ so that β (µ0) ≥ η (µ0);

(iii) Γ is continuous.

Then Γ has an FP ξ∗ ∈ ∆.

Proof. Let ξ0 ∈ ∆ such that α (ξ0) ≥ η (ξ0), and β (ξ0) ≥ η (ξ0) . Define a sequence {ξn} in ∆ by
ξn = Γξn−1∀n ∈ N. If ∃ some n0 ∈ N for which Γξn0 = ξn0 , then ξn0 is an FP of Γ and the proof is done.
Asume that mb

(
ξn0 ,Γξn0

)
> 0, by (i)∃ ξ1 ∈ ∆ such that

α (ξ0) ≥ η (ξ0)⇒ β (ξ1) = β (Γξ0) ≥ η (ξ1) = η (Γξ0) ,

and
β (ξ0) ≥ η (ξ0)⇒ α (ξ1) = α (Γξ0) ≥ η (ξ1) = η (Γξ0) .

Continuing in this way, we get

α (ξn) ≥ η (ξn)⇒ β (ξn+1) ≥ η (ξn+1) .

Similarlly
β (ξn) ≥ η (ξn)⇒ α (ξn+1) ≥ η (ξn+1) .

And hence, For all n ∈ N
α (ξn) β (ξn+1) ≥ η (ξn) η (ξn+1) . (3.2)

If ξn+1 = ξn for sone n ∈ N, then ξn = ξ∗, and the proof is done. So, we assume that for all n ∈ N, ξn+1 ,

ξn accompanied by
mb (Γξn−1,Γξn) = mb (ξn,Γξn) > 0.

From (3.1) and for all n ∈ N, we have

mb (ξn, ξn+1) ≤ s2mb (Γξn−1,Γξn) (3.3)
≤ Υ

[
λ (R1 (ξn−1, ξn))

]
.

Where

R1 (ξn−1, ξn) =


mb(ξn−1, ξn).mb(ξn−1,Γξn−1)

1
(a−b)(a−c) .mb(ξn,Γξn)

1
(a−b)(a−c)

.[mb(ξn−1,Γξn−1) + mb(ξn,Γξn)]
1

(b−a)(b−c)

.[mb(ξn−1,Γξn) + mb(ξn,Γξn−1)]
1

(c−a)(c−b)

 (3.4)

=


mb(ξn−1, ξn).mb(ξn−1, ξn)

1
(a−b)(a−c) .mb(ξn, ξn+1)

1
(a−b)(a−c)

.[mb(ξn−1, ξn) + mb(ξn, ξn+1)]
1

(b−a)(b−c)

.[mb(ξn−1, ξn+1) + mb(ξn, ξn)]
1

(c−a)(c−b)


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≤


mb(ξn−1, ξn)1+ 1

(a−b)(a−c) .mb(ξn, ξn+1)
1

(a−b)(a−c)

.[mb(ξn−1, ξn) + mb(ξn, ξn+1)]
1

(b−a)(b−c)

.[s
(
mb(ξn−1, ξn) − mbξn−1 ,ξn

+ mb(ξn, ξn+1) − mbξn ,ξn+1

)
+mbξn−1 ,ξn+1

]
1

(c−a)(c−b)


≤


mb(ξn−1, ξn)1+ 1

(a−b)(a−c) .mb(ξn, ξn+1)
1

(a−b)(a−c)

.[mb(ξn−1, ξn) + mb(ξn, ξn+1)]
1

(b−a)(b−c)

.[s (mb(ξn−1, ξn) + mb(ξn, ξn+1)) + mbξn−1 ,ξn+1
]

1
(c−a)(c−b)


≤


mb(ξn−1, ξn)1+ 1

(a−b)(a−c) .mb(ξn, ξn+1)
1

(a−b)(a−c)

.[mb(ξn−1, ξn).mb(ξn, ξn+1)]
1

(b−a)(b−c)

.[s (mb(ξn−1, ξn).mb(ξn, ξn+1)) .mbξn−1 ,ξn+1
]

1
(c−a)(c−b)


=


s

1
(c−a)(c−b) mb(ξn−1, ξn)

1
(a−b)(a−c) + 1

(b−a)(b−c) + 1
(c−a)(c−b)

.mb(ξn, ξn+1)
1

(a−b)(a−c) + 1
(b−a)(b−c) + 1

(c−a)(c−b)

.
(
mbξn−1 ,ξn+1

) 1
(c−a)(c−b)

 mb (ξn−1, ξn)

=
(
smbξn−1 ,ξn+1

) 1
(c−a)(c−b) mb (ξn−1, ξn) .

Now fron (3.3) and (3.4), we obtain that

mb (ξn, ξn+1) ≤ s2mb (Γξn−1,Γξn) (3.5)

≤ Υ

(
λ
[
smbξn−1 ,ξn+1

] 1
(c−a)(c−b) mb (ξn−1, ξn)

)
= Υ (mb (ξn−1, ξn))

< mb (ξn−1, ξn) .

From (3.5), we conclude that mb (ξn−1, ξn) is a decreasing sequence with non-negative terms. Thus,
there is a constant % ≥ 0 such that limn→∞mb (ξn−1, ξn) = %. Presume that % > 0. From (3.5), we can
write

mb (ξn, ξn+1) ≤ s2mb (Γξn−1,Γξn) (3.6)
≤ Υ

[
mb (ξn−1, ξn)

]
≤ Υ2 [

mb (ξn−2, ξn−1)
]

≤ Υ3 [
mb (ξn−3, ξn−2)

]
.

.

.

≤ Υn [
mb (ξ0, ξ1)

]
.

Taking limit as n→ ∞ in (3.6), and from properties of Υ, we obtain

0 ≤ lim
n→+∞

mb (ξn, ξn+1) ≤ lim
n→+∞

Υn [
mb (ξ0, ξ1)

]
= 0.
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Which yield that
lim

n→+∞
mb (ξn, ξn+1) = 0. (3.7)

Now, we prove that {ξn} is an Mb-Cauchy sequence in (∆,mb) . Recall that from (Mb2) and for all
n ∈ N, we have

0 ≤ mbξn ,ξn+1
≤ mb (ξn, ξn+1) .

Since from (3.7), we have
lim
n→∞

mbξn ,ξn+1
= 0, (3.8)

which denotes that
lim
n→∞

mb (ξn, ξn) = 0, or lim
n→∞

mb (ξn+1, ξn+1) = 0. (3.9)

Therefore,
lim

m,n→∞
mbξn ,ξm = lim

m,n→∞
min{mb (ξn, ξn) ,mb (ξm, ξm)} = 0. (3.10)

Hence,
lim

m,n→∞

(
Mbξm ,ξn − mbξm ,ξn

)
= lim

m,n→∞
| mb (ξn, ξn) − mb (ξm, ξm) |= 0.

Next, we shall prove that limm,n→∞

(
mb (ξm, ξn) − mbξm ,ξn

)
= 0. Suppose on the contrary that

lim
m,n→∞

(
mb (ξm, ξn) − mbξm ,ξn

)
, 0,

then there exist ε > 0 and subsequence {ςk} ⊂ N such that

mb
(
ξςk , ξnk

)
− mbξςk ,ξnk

≥ ε. (3.11)

Suppose that ςk is the smallest integer which satisfies (3.11) such that

mb
(
ξςk−1, ξnk

)
− mbξςk−1 ,ξnk

< ε. (3.12)

By (Mb4) in (3.11) and using (3.12), we get

ε ≤ mb
(
ξςk , ξnk

)
− mbξςk ,ξnk

(3.13)

≤ s
[(

mb
(
ξςk , ξςk−1

)
− mbξςk ,ξςk−1

)
+

(
mb

(
ξςk−1, ξnk

)
− mbξςk−1 ,ξnk

)]
−mb

(
ξςk−1, ξςk−1

)
≤ sε + s

[
mb

(
ξςk , ξςk−1

)
− mbξςk ,ξςk−1

]
− mb

(
ξςk−1, ξςk−1

)
.

Letting k → ∞ in (3.13), using (3.7)–(3.9), then

ε ≤ lim
k→∞

(
mb

(
ξςk , ξnk

)
− mbξςk ,ξnk

)
≤ sε. (3.14)

Utilizing (3.10) and from (3.14), we have

ε ≤ lim
k→∞

mb
(
ξςk , ξnk

)
≤ sε. (3.15)
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Similarly from (Mb4) and (3.11), we obtain

ε ≤ mb
(
ξςk , ξnk

)
− mbξςk ,ξnk

(3.16)

≤ s
[(

mb
(
ξςk , ξςk+1

)
− mbξςk ,ξςk+1

)
+

(
mb

(
ξςk+1, ξnk

)
− mbξςk+1 ,ξnk

)]
−mb

(
ξςk+1, ξςk+1

)
≤ s


(
mb

(
ξςk , ξςk+1

)
− mbξςk ,ξςk+1

)
+s

[(
mb

(
ξςk+1, ξnk+1

)
− mbξςk+1 ,ξnk+1

)
+

(
mb

(
ξnk+1, ξnk

)
− mbξnk+1 ,ξnk

)]
−mb

(
ξnk+1, ξnk+1

)


−mb
(
ξςk+1, ξςk+1

)
=

 s
(
mb

(
ξςk , ξςk+1

)
− mbξςk ,ξςk+1

)
+ s2

(
mb

(
ξςk+1, ξnk+1

)
− mbξςk+1 ,ξnk+1

)
+s2

(
mb

(
ξnk+1, ξnk

)
− mbξnk+1 ,ξnk

)
− smb

(
ξnk+1, ξnk+1

)
− mb

(
ξςk+1, ξςk+1

)
 .

Similar to (3.13), we find that

ε ≤ mb
(
ξςk+1, ξnk+1

)
− mbξςk+1 ,ξnk+1

(3.17)

≤

 s
(
mb

(
ξςk+1, ξςk

)
− mbξςk+1 ,ξςk

)
+ s2

(
mb

(
ξςk , ξnk

)
− mbξςk ,ξnk

)
+s2

(
mb

(
ξnk , ξnk+1

)
− mbξnk ,ξnk+1

)
− smb

(
ξnk+1, ξnk+1

)
− mb

(
ξςk , ξςk

)
 .

Utilizing (3.16) and (3.17), then

ε ≤ mb
(
ξςk , ξnk

)
− mbξςk ,ξnk

(3.18)

≤

 s
(
mb

(
ξςk , ξςk+1

)
− mbξςk ,ξςk+1

)
+ s2

(
mb

(
ξςk+1, ξnk+1

)
− mbξςk+1 ,ξnk+1

)
+s2

(
mb

(
ξnk+1, ξnk

)
− mbξnk+1 ,ξnk

)
− smb

(
ξnk+1, ξnk+1

)
− mb

(
ξςk+1, ξςk+1

)


≤


s
(
mb

(
ξςk , ξςk+1

)
− mbξςk ,ξςk+1

)
+ s2


s[mb

(
ξςk+1, ξςk

)
− mbξςk+1 ,ξςk

]
+s2[mb

(
ξςk , ξnk

)
− mbξςk ,ξnk

]
+s2[mb

(
ξnk , ξnk+1

)
− mbξnk ,ξnk+1

]
−smb

(
ξnk+1, ξnk+1

)
− mb

(
ξςk , ξςk

)


+s2
(
mb

(
ξnk+1, ξnk

)
− mbξnk+1 ,ξnk

)
− smb

(
ξnk+1, ξnk+1

)
− mb

(
ξςk+1, ξςk+1

)


.

Taking limit as k → ∞ in (3.18) , and using (3.7)–(3.9) and (3.14), we get

ε ≤ lim
k→∞

s2
(
mb

(
ξςk+1,ξnk+1

)
− mbξςk+1 ,ξnk+1

)
≤ s5ε.

Therefore

ε

s2 ≤ lim
k→∞

(
mb

(
ξςk+1, ξnk+1

)
− mbξςk+1 ,ξnk+1

)
≤ s3ε. (3.19)
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From (3.10), we have
ε

s2 ≤ lim
k→∞

mb
(
ξςk+1, ξnk+1

)
≤ s3ε. (3.20)

Now, from (3.1), we obtain

s2mb
(
ξςk+1, ξnk+1

)
= s2mb

(
Γξςk ,Γξnk

)
≤ Υ

[
λ
(
R1

(
ξςk , ξnk

))]
,

where

R1
(
ξςk , ξnk

)
= mb

(
ξςk , ξnk

)
.mb

(
ξςk ,Γξςk

) 1
(a−b)(a−c) .mb

(
ξnk ,Γξnk

) 1
(a−b)(a−c)

.[mb
(
ξςk ,Γξςk

)
+ mb

(
ξnk ,Γξnk

)
]

1
(b−a)(b−c)

.[mb
(
ξςk ,Γξnk

)
+ mb

(
ξnk ,Γξςk

)
]

1
(c−a)(c−b)

= mb
(
ξςk , ξnk

)
.mb

(
ξςk , ξςk+1

) 1
(a−b)(a−c) .mb

(
ξnk , ξnk+1

) 1
(a−b)(a−c)

.[mb
(
ξςk , ξςk+1

)
+ mb

(
ξnk , ξnk+1

)
]

1
(b−a)(b−c)

.[mb
(
ξςk , ξnk+1

)
+ mb

(
ξnk , ξςk+1

)
]

1
(c−a)(c−b) .

By taking limit as k → ∞ in the above equation and using (3.7) and (3.8), we obtain

0 ≤ lim
k→∞

R1
(
ξςk , ξnk

)
≤ 0⇒ lim

k→∞
R1

(
ξςk , ξnk

)
= 0. (3.21)

Thence, it follows from (3.20), (3.21) and (iii) of Lemma 2.9 that

ε = s2
(
ε

s2

)
≤ s2 lim

k→∞
mb

(
ξςk+1, ξnk+1

)
= s2 lim

k→∞
mb

(
Γξςk ,Γξnk

)
≤ Υ

[
λ lim

k→∞
R1

(
ξςk , ξnk

)]
< Υ

[
lim
k→∞

R1
(
ξςk , ξnk

)]
= Υ [0]
= 0.

Hence, we conclude that ε < 0 which is a contradiction. Thus, limm,n→∞

(
mb (ξm, ξn) − mbξm ,ξn

)
= 0,

therefore {ξn} is an Mb-Cauchy sequence in ∆. Since ∆ is complete, there exist some ξ∗ ∈ ∆ such that
ξn → ξ∗ as n→ ∞. Since Γ is continuous then limn→∞ Γξn = Γξ∗, therefore we have

lim
n→∞

(
mb (ξn+1, ξ

∗) − mbξn+1 ,ξ
∗

)
= 0. and lim

n→∞

(
Mbξn+1 ,ξ

∗ − mbξn+1 ,ξ
∗

)
= 0. (3.22)

Since from (3.9) and (3.22), we get

lim
n→∞

(
mb (ξn+1, ξ

∗) − mbξn+1 ,ξ
∗

)
= 0 (3.23)

= lim
n→∞

mb (ξn+1, ξ
∗)

= lim
n→∞

mb (Γξn, ξ
∗)

= mb (Γξ∗, ξ∗) .

So, that is Γξ∗ = ξ∗ and ξ∗ is an FP of Γ. �
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Theorem 3.4. Let (∆,mb) be a complete MbMS with coefficient s ≥ 1 and Γ is a symmetric fractional
α-β-η-Υ-contraction pattern-I fulfilling the affirmations below:

(i) Γ is an η-cyclic (α, β)-admissible mapping;
(ii) either there is ξ0 ∈ ∆ so that α (ξ0) ≥ η (ξ0) or there is µ0 ∈ ∆ so that β (µ0) ≥ η (µ0);

(iii) if {ξn} is a sequence in ∆ such that ξn → ξ∗ as n → ∞, and β (ξn) ≥ η (ξn) for all n ∈ N, then
β (ξ∗) ≥ η (ξ∗).

Then Γ has an FP ξ∗ ∈ ∆.

Proof. In the definitive lines of the proof of Theorem 3.3, we acquire β (ξ∗) ≥ η (ξ∗). Now we show
that mb (Γξ∗, ξ∗) = 0. ξn → ξ∗ as n→ ∞, from (Mb4), we have

0 ≤

∣∣∣∣(mb (ξn+1,Γξ
∗) − mbξn+1 ,Γξ

∗

)
−

(
mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗

)∣∣∣∣ (3.24)

≤

∣∣∣∣∣∣∣ s
((

mb (ξn+1, ξ
∗) − mbξn+1 ,ξ

∗

)
−

(
mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗

))
− mb (ξ∗, ξ∗)

−
(
s
((

mb (ξ∗, ξ∗) − mbξ∗ ,ξ∗

)
−

(
mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗

))
− mb (ξ∗, ξ∗)

) ∣∣∣∣∣∣∣ .
So taking limit as n→ ∞ in (3.24) and using of (3.9) and (3.22), we get

0 ≤ lim
n→∞

∣∣∣∣(mb (ξn+1,Γξ
∗) − mbξn+1 ,Γξ

∗

)
−

(
mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗

)∣∣∣∣ ≤ 0,

this implies that

lim
n→∞

(
mb (ξn+1,Γξ

∗) − mbξn+1 ,Γξ
∗

)
= mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗ = mb (ξ∗,Γξ∗) . (3.25)

Now from (3.3) and (3.25), we have

mb (ξn+1,Γξ
∗) − mbξn+1 ,Γξ

∗ ≤ s2mb (Γξn,Γξ
∗) − mbΓξn ,Γξ∗

(3.26)
≤ Υ

[
λ (R1 (ξn, ξ

∗))
]

≤ Υ


λmb (ξn, ξ

∗) .mb (Γξ∗, ξ∗)
1

(a−b)(a−c) .mb (ξn,Γξn)
1

(a−b)(a−c)

.[mb (Γξ∗, ξ∗) + mb (ξn,Γξn)]
1

(b−a)(b−c)

.[mb (Γξn, ξ
∗) + mb (ξn,Γξ

∗)]
1

(c−a)(c−b)

 .
By taking limit as n→ ∞ in (3.26) and since Υ ∈ Ψ, we get

lim
n→∞

mb (ξn+1,Γξ
∗) − mbξn+1 ,Γξ

∗ = 0. (3.27)

Therefore, from (3.25) and (3.27), we get mb (ξ∗,Γξ∗) = 0 and ξ∗ is an FP of Γ. �

The example below supports Theorems 3.3 and 3.4.

Example 3.5. Let ∆ = [0, 1] and mb : ∆ × ∆ −→ [0,∞) defined by

mb(ξ, µ) =

(
ξ + µ

2

)2

, ∀ξ, µ ∈ ∆.
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Clearly, (∆,mb) is an MbMS with s = 2. Define Γ : ∆→ ∆ by

Γξ =

{
ξ2

9 , if ξ ∈ (0, 1],
0, otherwise.

Describe the functions α, β, η : ∆→ [0,∞) as,

α (ξ) = β (ξ) =

{
2, if ξ ∈ (0, 1],
0, otherwise

, η (ξ) =

{
1, if ξ ∈ (0, 1],
0, otherwise.

Clearly for all ξ, µ ∈ (0, 1], α(ξ) = 2 ≥ 1 = η(ξ)⇒ β(Γξ) = 2 ≥ 1 = η(Γξ), and β(ξ) = 2 ≥ 1 = η(ξ)⇒
α(Γξ) ≥ η(Γξ). So, Γ is η-cyclic (α, β)-admissible mapping. Now if {ξn} is a sequence in ∆ such that
ξn → ξ∗ as n→ ∞ and β (ξn) ≥ η (ξn) . Then β (ξ∗) ≥ η (ξ∗) whenever, α(ξ)β(µ) ≥ η(ξ)η(µ), such that

s2mb (Γξ,Γµ) = 4mb

(
ξ2

9
,
µ2

9

)
= 4

(
ξ2 + µ2

18

)2

≤

(
ξ + µ

18

)2

=
4
9

[
1
9

(
ξ + µ

2

)2]

≤
4
9

1
9


(
ξ+µ

2

)2
.(3ξ

4 )2 1
(a−b)(a−c) .(

3µ
4

)2 1
(a−b)(a−c) .(

(3ξ
4 )2 + (3µ

4 )2
) 1

(b−a)(b−c)
.
(
( 2ξ+µ

4 )2 + ( ξ+2µ
4 )2

) 1
(c−a)(c−b)




= Υ
[
λ (R1 (ξ, µ))

]
.

That is achieved when we take Υ(t) = 4t
9 and constants λ = 1

9 ∈ [0,∞), a, b, c ∈ (0, 1), for all ξ, µ ∈
∆\Fix(Γ). Otherwise, for ξ = µ = 0, we obtain that Γ is η-cyclic (α, β)-admissible mapping, whenever
α(ξ)β(µ) ≥ η(ξ)η(µ), and

s2mb (Γξ,Γµ) = 0 ≤ Υ
[
λ (R1 (ξ, µ))

]
.

Therefore, all affirmations of Theorems 3.3 and 3.4 are satisfied. Hence Γ has an FP ξ∗ = 0 ∈ ∆. (Note
that 9 is an another FP of Γ, but it does not belong to ∆.

4. Symmetric fractional α-β-η-Υ-contraction pattern-II

In this portion, we devote our efforts to introduce the notion of symmetric fractional α-β-η-Υ-
contraction pattern-II and some FP results are obtained via a complete MbMS.

Definition 4.1. Let Γ : ∆ → ∆ be a mapping on an MbMS (∆,mb) , α, β, η : ∆ → [0,∞) be three
functions and Υ ∈ Ψ.We say that Γ is a symmetric fractional α-β-η-Υ-contraction of pattern-II provided

that there are constants s ≥ 1, a, b, c ∈ (0, 1) and λ =
(
smbξ,µ

) −c
(c−a)(c−b)

∈ [0,∞) such that ∀ξ, µ ∈ ∆� Fix
(Γ) , whenever α (ξ) β (µ) ≥ η (ξ) η (µ) , we have

s2mb (Γξ,Γµ) ≤ Υ
[
λ (R2 (ξ, µ))

]
, (4.1)

where

R2(ξ, µ) = mb(ξ, µ).
[
mb(ξ,Γξ)

] a
(a−b)(a−c) .[mb(µ,Γµ)]

a
(a−b)(a−c) .

[mb(ξ,Γξ) + mb(µ,Γµ)]
b

(b−a)(b−c) .[mb(ξ,Γµ) + mb(µ,Γξ)]
c

(c−a)(c−b) .
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Now we show and demonstrate our next theorem.

Theorem 4.2. Let (∆,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction
of pattern-II fulfilling the same affirmations of Theorem 3.3:

Then Γ has an FP in ∆.

Proof. By the same steps as in proof of Theorem 3.3, we deduce that Γ has an FP ξ∗ ∈ ∆. �

Theorem 4.3. Let (∆,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction
of pattern-II fulfilling the same affirmations of Theorem 3.4:

Then Γ has an FP in ∆.

Proof. Similar to the same steps as in proof of Theorem 3.4, we conclude that ξ∗ is an FP of Γ. �

5. Symmetric fractional α-β-η-Υ-contraction pattern-III

In this segment, the notion of symmetric fractional α-β-η-Υ-contraction pattern-III and some FP
results are established via a complete MbMS:

Definition 5.1. Let (∆,mb) be an MbMS with a self-map Γ : ∆ → ∆, α, β, η : ∆ → [0,∞) be three
functions and Υ ∈ Ψ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction pattern-III along

with constants s ≥ 1, a, b, c ∈ (0, 1) and λ =
(
smbξ,µ

) −c2
(c−a)(c−b)

∈ [0,∞) such that ∀ξ, µ ∈ ∆� Fix (Γ) ,
whenever α (ξ) β (µ) ≥ η (ξ) η (µ) , we have

s2mb (Γξ,Γµ) ≤ Υ
[
λ (R3 (ξ, µ))

]
, (5.1)

where

R3(ξ, µ) = max


mb (ξ, µ) ,mb (ξ,Γξ)

a2
(a−b)(a−c) .mb (µ,Γµ)

a2
(a−b)(a−c)

.[mb (ξ,Γξ) + mb (µ,Γµ)]
b2

(b−a)(b−c)

.[mb (ξ,Γµ) + mb (µ,Γξ)]
c2

(c−a)(c−b)

 .
Now, we declare and demonstrate our next theorem.

Theorem 5.2. Let (∆,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction
of pattern-III that satisfies the same assertions of Theorem 3.3:

Then Γ has an FP in ∆.

Proof. Let ξ0 ∈ ∆ such that α (ξ0) ≥ η (ξ0) and β (ξ0) ≥ η (ξ0) . For all n ∈ N,we build an iteration {ξn}
∞
n=1

such that ξ1 = Γξ0, ξ2 = Γξ1 = Γ2ξ0. By proceeding in this manner, we obtain ξn+1 = Γξn = Γn+1ξ0.

Now from (i), we can conclude that for all n ∈ N,

α (ξn) β (ξn+1) ≥ η (ξn) η (ξn+1) . (5.2)

If ξn+1 = ξn for some n ∈ N, then ξn = ξ∗ is an FP of Γ. So, we assume that ξn , ξn+1 accompanied by
mb (Γξn−1,Γξn) = mb (ξn,Γξn) for every n ∈ N.
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From (5.1), we own

mb (ξn, ξn+1) ≤ s2mb (Γξn−1,Γξn) ≤ Υ
[
λ (R3 (ξn−1, ξn))

]
, (5.3)

where by the same steps in (3.4), we deduce that

R3 (ξn−1, ξn) = max{mb (ξn−1, ξn) ,
[
smbξn−1 ,ξn+1

] c2
(c−a)(c−b)

.mb (ξn, ξn+1)}.

Now if

R3 (ξn−1, ξn) =
[
smbξn−1 ,ξn+1

] c2
(c−a)(c−b)

.mb (ξn, ξn+1) . (5.4)

Then, from (5.3) and (5.4), we get

mb (ξn, ξn+1) ≤ s2mb (Γξn−1,Γξn)

≤ Υ

(
λ
[
smbξn−1 ,ξn+1

] c2
(c−a)(c−b)

.mb (ξn, ξn+1)
)

= Υ (mb (ξn, ξn+1))

< mb (ξn, ξn+1) ,

which gives a contradiction, thus

R3 (ξn−1, ξn) = mb (ξn−1, ξn) . (5.5)

Now, from (5.3) and (5.5), we conclude that

mb (ξn, ξn+1) ≤ s2mb (Γξn−1,Γξn) (5.6)
≤ Υ

[
λ (R3 (ξn−1, ξn))

]
< mb (ξn−1, ξn) ,

The rest of the proof follows along the same lines as the proof of Theorem 3.3. So, we find that Γ has
an FP ξ∗ ∈ ∆. �

Theorem 5.3. Let (∆,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction
of pattern-III fulfilling the same affirmations of Theorem 3.4:

Then Γ has an FP in ∆.

Proof. In the same style of the proof of Theorem 3.4, we obtain that ξ∗ is an FP of Γ. �

The example below supports Theorems 5.2 and 5.3.

Example 5.4. Let ∆ = [0, 1] and mb : ∆ × ∆ −→ [0,∞) defined by

mb(ξ, µ) =

(
ξ + µ

2

)2

, ∀ξ, µ ∈ ∆.

Clearly, (∆,mb) is an MbMS with s = 2. Define Γ : ∆→ ∆ by

Γξ =

{ 1
15 , if ξ ∈ [0, 1),
1, if ξ = 1.

AIMS Mathematics Volume 8, Issue 4, 9118–9145.



9132

Describe the functions α, β, η : ∆→ [0,∞) as,

α (ξ) = β (ξ) =

{
2, if ξ ∈ [0, 1),
0, otherwise,

, η (ξ) =

{
1, if ξ ∈ [0, 1),
0, otherwise.

Clearly Γ is an η-cyclic (α, β)-admissible mapping. Now if {ξn} is a sequence in ∆ such that ξn → ξ∗ as
n → ∞ and β (ξn) ≥ η (ξn) . Then β (ξ∗) ≥ η (ξ∗) whenever, α(ξ)β(µ) ≥ η(ξ)η(µ), and for ξ ∈ [0, 1), µ =

1, we have

s2mb (Γξ,Γµ) = 22mb (Γξ,Γ1) = 4
 1

15 + 1
2

2

= 4
(

8
15

)2

= 4
(

8
3 × 5

)2

=
4
5

64
5

(
1
3

)2
≤ Υ

[
λ (R3 (ξ, 1))

]
.

That is satisfied when we define Υ : [0,∞) → [0,∞) by Υ (t) = 4t
5 . and we choose the constants

λ = 64
5 ∈ [0,∞), a, b, c ∈ (0, 1). Therefore, all affirmations of Theorems 5.2 and 5.3 are satisfied.

Hence Γ has two FPs 1
15 and 1 ∈ ∆.

6. Symmetric fractional α-β-η-Υ-contraction pattern-IV

This portion is consecrated to presenting a symmetric fractional α-β-η-Υ-contraction of pattern-IV
in the framework of complete MbMS. Furthermore, new fixed point results are obtained in the said
space.

Definition 6.1. Let (∆,mb) be an MbMS with a self-map Γ : ∆ → ∆, α, β, η : ∆ → [0,∞) be three
functions and Υ ∈ Ψ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction pattern-IV along

with constants s ≥ 1, a, b, c ∈ (0, 1) and λ =
(
smbξ,µ

) −c3
(c−a)(c−b)

∈ [0,∞) with a + b + c < 1 such that
∀ξ, µ ∈ ∆� Fix (Γ) , whenever α (ξ) β (µ) ≥ η (ξ) η (µ) , we have

s2mb (Γξ,Γµ) ≤ Υ
[
λ (R4 (ξ, µ))

]
, (6.1)

where

R4(ξ, µ) = [mb(ξ, µ)]
a3

(a−b)(a−c) .
[
mb(ξ,Γξ)

] a3
(a−b)(a−c) .

[mb(ξ,Γξ) + mb(µ,Γµ)]
b3

(b−a)(b−c) .[mb(ξ,Γµ) + mb(µ,Γξ)]
c3

(c−a)(c−b) .

Now, we declare and demonstrate our next theorem.

Theorem 6.2. Let (∆,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction
of pattern-IV that satisfies the same assertions of Theorem 3.3:

Then Γ has an FP in ∆.
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Proof. Take any ξ0 ∈ ∆ such that α (ξ0) ≥ η (ξ0) and β (ξ0) ≥ η (ξ0) . For all n ∈ N, we build an iteration
{ξn}

∞
n=1 such that ξ1 = Γξ0, ξ2 = Γξ1 = Γ2ξ0. By proceeding in this manner, we obtain ξn+1 = Γξn =

Γn+1ξ0. Now from (i), we can conclude that for all n ∈ N,

α (ξn) β (ξn+1) ≥ η (ξn) η (ξn+1) . (6.2)

If ξn+1 = ξn for some n ∈ N, then ξn = ξ∗ is an FP of Γ. So, we assume that ξn , ξn+1 accompanied by
mb (Γξn−1,Γξn) = mb (ξn,Γξn) for every n ∈ N. Now, from (6.1), we have

mb (ξn, ξn+1) ≤ s2mb (Γξn−1,Γξn) ≤ Υ
[
λR4 (ξn−1, ξn)

]
,

where by the same steps in (3.4), we deduce that

R4 (ξn−1, ξn) ≤ (mb (ξn−1, ξn) .mb (ξn, ξn+1))a+b+c

≤ max {mb (ξn−1, ξn) ,mb (ξn, ξn+1)} .

If max {mb (ξn−1, ξn) ,mb (ξn, ξn+1)} = mb (ξn, ξn+1) , then

mb (ξn, ξn+1) ≤ Υ
[
mb (ξn, ξn+1)

]
≤ mb (ξn, ξn+1) ,

which is a contradiction, thus

mb (ξn, ξn+1) ≤ Υ
[
mb (ξn−1, ξn)

]
(6.3)

≤ mb (ξn−1, ξn) ,

The rest of the proof follows along the same lines as the proof of Theorem 3.3. So, we find that Γ has
an FP ξ∗ ∈ ∆. �

Theorem 6.3. Consider a complete MbMS (∆,mb) and let Γ be a symmetric fractional
α-β-η-Υ-contraction of pattern-IV fulfilling the same affirmations of Theorem 3.4:

Then Γ has an FP in ∆.

Proof. By the same way of the proof of Theorem 3.4, we canclud that Γ has an FP in ∆. �

The example below supports Theorem 6.2.

Example 6.4. Let ∆ = [0,∞), p > 1 and mb : ∆ × ∆ −→ [0,∞) defined by

mb(ξ, µ) = max{ξ, µ}p + |ξ − µ|p, ∀ξ, µ ∈ ∆.

Clearly, (∆,mb) is an MbMS with s = 2p. Define Γ : ∆→ ∆ by

Γξ =

{
ξ+0.5
128 , if ξ ∈ (0, 1],
0, otherwise.

Describe the functions α, β, η : ∆→ [0,∞) as,

α (ξ) = β (ξ) =

{
2, if ξ ∈ (0, 1],
0, otherwise,

, η (ξ) =

{
1, if ξ ∈ (0, 1],
0, otherwise.
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Clearly for all ξ, µ ∈ (0, 1], Γ is an η-cyclic (α, β)-admissible mapping, whenever α(ξ)β(µ) ≥ η(ξ)η(µ),
we have

s2mb (Γξ,Γµ) = 22pmb

(
ξ + 0.5

128
,
µ + 0.5

128

)
≤ 22pmb

(
ξ

64
,
µ

64

)
= 22p

(
max{

ξ

64
,
µ

64
}p + |

ξ

64
−
µ

64
|p
)

=
22p

64p
(max{ξ, µ}p + |ξ − µ|p) =

22p

26p mb (ξ, µ) =
1

24p mb (ξ, µ)

≤
1

22p

[
1
2p

(R3 (ξ, µ))
]

= Υ
[
λ (R3 (ξ, µ))

]
.

That is achieved when we take Υ(t) = t
22p and constants λ = 1

2p ∈ [0,∞), a, b, c ∈ (0, 1), for all
ξ, µ ∈ ∆\Fix(Γ). Otherwise, we can obtain that Γ is η-cyclic (α, β)-admissible mapping, whenever
α(ξ)β(µ) ≥ η(ξ)η(µ), and

s2mb (Γξ,Γµ) = 0 ≤ Υ
[
λ (R1 (ξ, µ))

]
.

Therefore, all affirmations of Theorem 6.2 are satisfied. Hence Γ has two FPs 0 and
1

254
∈ ∆.

By taking η (ξ) = η (µ) = 1, in Theorems 3.3, 3.4, 4.2 and 4.3, we derive the following corollaries.

Corollary 6.5. Let (∆,mb) be a complete MbMS and Γ be a symmetric fractional α-β-Υ-contraction of
pattern-I fulfilling the accompanying affirmations:

(i) Γ is a cyclic (α, β)-admissible mapping;
(ii) there is an ξ0 ∈ ∆ so that α(ξ0) ≥ 1 or there is a µ0 ∈ ∆ so that β(µ0) ≥ 1;

(iii) Γ is continuous.

Then Γ has an FP in ∆.

Corollary 6.6. Let (∆,mb) be a complete MbMS and Γ be a symmetric fractional α-β-Υ-contraction of
pattern-I fulfilling the accompanying affirmations:

(i) Γ is a cyclic (α, β)-admissible mapping;
(ii) there is an ξ0 ∈ ∆ so that α(ξ0) ≥ 1 or there is a µ0 ∈ ∆ so that β(µ0) ≥ 1;

(iii) if {ξn} is a sequence in ∆ such that ξn → ξ∗ as n→ ∞, and β(ξn) ≥ 1 ∀n ∈ N, then β(ξ∗) ≥ 1.

Hence, Γ has an FP in ∆.

Corollary 6.7. Let (∆,mb) be a complete MbMS, and Γ be a symmetric fractional α-β-Υ-contraction
of pattern-II fulfilling the same affirmations in Corollary 6.5.

Then Γ has an FP in ∆.

Corollary 6.8. Let (∆,mb) be a complete MbMS, and Γ be a symmetric fractional α-β-Υ-contraction
of pattern-II fulfilling the same affirmations in Corollary 6.6.

Then Γ has an FP in ∆.

Note. In a similar action, we can deduce the Corollaries 6.5–6.8 for symmetric fractional α-β-Υ-
contractions of pattern III and IV respectively.
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7. Symmetric fractional α-η-Υ-contraction on closed ball

In this portion, we derive some fixed point results for symmetric fractional contraction mappings
on a closed ball of MbMS.

Theorem 7.1. Let (∆,mb) be a complete MbMS, ξ0 be an arbitrary point in a closed ball B[ξ0, ε],
α, η:∆ × ∆ → [0,∞) be semi α-admissible mappings wrt η on B[ξ0, ε] with α(ξ0, ξ1) ≥ η(ξ0, ξ1) and
Υ ∈ Ψ. Let Γ : ∆ → ∆ be a continuous semi α-admissible mapping satisfying (3.1) for all ξ, µ ∈
B[ξ0, ε] ⊆ ∆\Fix(Γ), α(ξ, µ) ≥ η(ξ, µ). Moreover, for all ε > 0

mb (ξ0, ξ1) − mbξ0 ,ξ1
≤

n∑
i=0

si+1Υi [mb (ξ0, ξ1)
]
≤ ε. (7.1)

Then Γ has an FP in B[ξ0, ε] ⊆ ∆.

Proof. Since ξ0 ∈ B[ξ0, ε] there exists ξ1 ∈ ∆ such that ξ1 = Γξ0 and ξ2 ∈ ∆ such that ξ2 = Γξ1.

Continuing in this process, we construct a sequence {ξn} of points in ∆ such that, ξn = Γξn. As
α(ξ0, ξ1) ≥ η(ξ0, ξ1) and it is semi α-admissible mapping wrt η, we have α(Γξ0,Γξ1) ≥ η(Γξ0,Γξ1)
from which we deduce that α(ξ1, ξ2) ≥ η(ξ1, ξ2) which also implies that α(Γξ1,Γξ2) ≥ η(Γξ1,Γξ2).
Continuing in this way, we obtain α(Γξn−1,Γξn) ≥ η(Γξn−1,Γξn). which leads to
α(ξn, ξn+1) ≥ η(ξn, ξn+1). for all n ∈ N. Now, we show that ξn ∈ B[ξ0, ε] for all n ∈ N. Utilizing
inequality (7.1), we have

mb (ξ0, ξ1) − mbξ0 ,ξ1
≤

n∑
i=0

si+1Υi [mb (ξ0, ξ1)
]
≤ ε,∀ε > 0.

That is ξ1 ∈ B[ξ0, ε]. Let ξ2, ξ3, ..., ξ j ∈ B[ξ0, ε] for some j ∈ N. Now, we can write

mb

(
ξ j, ξ j+1

)
≤ s2mb

(
Γξ j−1,Γξ j

)
≤ Υ

[
λ
(
R1

(
ξ j−1, ξ j

))]
, (7.2)

where, by the same steps in (3.4), we deduce that

R1

(
ξ j−1, ξ j

)
≤

(
smbξ j−1 ,ξ j+1

) 1
(c−a)(c−b) mb

(
ξ j−1, ξ j

)
. (7.3)

Therefore, from (7.2), (7.3) and similar to (3.3) and (3.4), we conclude that

mb

(
ξ j, ξ j+1

)
< Υ j [mb (ξ0, ξ1)

]
,∀ j ∈ N. (7.4)

Using (Mb4) and (7.4), we have

mb

(
ξ0, ξ j+1

)
− mbξ0 ,ξ j+1

≤ s
[(

mb (ξ0, ξ1) − mbξ0 ,ξ1

)
+

(
mb

(
ξ1, ξ j+1

)
− mbξ0 ,ξ j+1

)]
− mb (ξ1, ξ1)

≤ s
[
mb (ξ0, ξ1) + smb (ξ1, ξ2) + s2mb (ξ2, ξ3) + ... + s jmb

(
ξ j, ξ j+1

)]
= smb (ξ0, ξ1) + s2mb (ξ1, ξ2) + s3mb (ξ2, ξ3) + ... + s j+1mb

(
ξ j, ξ j+1

)
< smb (ξ0, ξ1) + s2Υ (mb (ξ0, ξ1)) + s3Υ (mb (ξ0, ξ1)) + ... + s j+1Υ jmb (ξ0, ξ1)
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<

j∑
i=0

si+1Υi (mb (ξ0, ξ1))

< ε.

Thus ξ j+1 ∈ B[ξ0, ε]. Hence by induction, we get ξn ∈ B[ξ0, ε] ∀n ∈ N, therefore {ξn} is a sequence in
B[ξ0, ε]. As Γ is simi α-admissible wrt η on B[ξ0, ε], so α (ξn, ξn+1) ≥ η (ξn, ξn+1) . Also inequality (7.4)
can be written as

mb (ξn, ξn+1) < Υn [
mb (ξ0, ξ1)

]
∀n ∈ N. (7.5)

As
∑∞

i=1 siΥi (t) < ∞, then for some k ∈ N the series
∑∞

i=1 siΥi
[
Υk−1 (mb (ξ0, ξ1)

]
, converges. Fix ε > 0,

then there exists k(ε) ∈ N, such that

∞∑
i=1

siΥi
[
Υn−1 (mb (ξ0, ξ1)

]
< ε. (7.6)

Let n,m ∈ N with n > m > k(ε) and from (Mb4), (7.5), (7.6) and (Υ3), we get

mb (ξn, ξm) − mbξn ,ξm ≤

m−1∑
i=n

si−n+1mb (ξi, ξi+1)

≤

m−1∑
i=n

si−n+1Υi [mb (ξi, ξi+1)
]

<

m−n∑
i=n

si−nΥi−n
[
Υn−1 (mb (ξ0, ξ1))

]
<

m−n∑
i=n

siΥi
[
Υk(ε)−1 (mb (ξ0, ξ1))

]
< ε.

The convergence of the series
∑m−n

i=n siΥi
[
Υk−1 (mb (ξ0, ξ1))

]
leads to

lim
n,m→∞

(
mb (ξn, ξm) − mbξn ,ξm

)
= 0.

By the same way, we can show that limn,m→∞

(
Mbξn ,ξm − mbξn ,ξm

)
= 0. Therefore, {ξn} is an mb-Cauchy

sequence in B[ξ0, ε]. Since every closed set in a complete MbMS is complete. So, there exists ξ∗ ∈
B[ξ0, ε] such that ξn → ξ∗ as n→ ∞. Since Γ is continuous then limn→∞ Γξn = Γξ∗ and

lim
n→∞

(
mb (ξn, ξ

∗) − mbξn ,ξ∗

)
= 0. (7.7)

We will show that Γξ∗ = ξ∗. Suppose that mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗ > 0. So, by (Mb4), we have

mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗ ≤ s
[(

mb (ξ∗, ξn+1) − mbξ∗ ,ξn+1

)
+

(
mb (ξn+1,Γξ

∗) − mbξn+1 ,Γξ
∗

)]
(7.8)

−mb (ξn+1, ξn+1)
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≤ s
(
mb (ξ∗, ξn+1) − mbξ∗ ,ξn+1

)
+ s

(
mb (Γξn,Γξ

∗) − mbξn+1 ,Γξ
∗

)
= s

(
mb (ξ∗, ξn+1) − mbξ∗ ,ξn+1

)
+

1
s

(
s2mb (Γξn,Γξ

∗)
)
− smbξn+1 ,Γξ

∗

≤ s
(
mb (ξ∗, ξn+1) − mbξ∗ ,ξn+1

)
+

1
s
Υ

[
λR1 (ξn, ξ

∗)) − smbξn+1 ,Γξ
∗

= s
(
mb (ξ∗, ξn+1) − mbξ∗ ,ξn+1

)
+

1
s
Υ


λ

mb(ξn, ξ
∗).mb(ξn,Γξn)

1
(a − b)(a − c)

.mb(ξ∗,Γξ∗)

1
(a − b)(a − c)

.[mb(ξn,Γξn) + mb(ξ∗,Γξ∗)]

1
(b − a)(b − c)

.[mb(ξn,Γξ
∗) + mb(ξ∗,Γξn)]

1
(c − a)(c − b)


− smbξn+1 ,Γξ

∗ .

(7.9)

Taking limit as n→ ∞ in (7.8) and utilizing (7.7), we get

mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗ ≤
1
s
Υ

λ
mb (ξ∗,Γξ∗) .mb (ξ∗, ξ∗)

1
(a−b)(a−c) .mb (ξ∗,Γξ∗)

1
(a−b)(a−c)

.
[
mb (ξ∗, ξ∗) + mb (ξ∗,Γξ∗)

] 1
(b−a)(b−c)

.
[
mb (ξ∗,Γξ∗) + smb (ξ∗, ξ∗) + mbξ∗ ,Γξn

] 1
(c−a)(c−b)


−smbξ∗ ,Γξ∗

≤
1
s2 sΥ

λ
mb (ξ∗,Γξ∗) .mb (ξ∗, ξ∗)

1
(a−b)(a−c) + 1

(b−a)(b−c) + 1
(c−a)(c−b)

.
[
mb (ξ∗,Γξ∗)

] 1
(a−b)(a−c) + 1

(b−a)(b−c) + 1
(c−a)(c−b)

.
[
smbξ∗ ,Γξ∗

] 1
(c−a)(c−b)


−smbξ∗ ,Γξ∗

<
1
s2 mb (ξ∗,Γξ∗) − smbξ∗ ,Γξ∗by(Υ3)

< mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗ .

Which is a contradiction. Therefore mb (ξ∗,Γξ∗) − mbξ∗ ,Γξ∗ = 0 implies that mb (ξ∗,Γξ∗) = mbξ∗ ,Γξ∗ . So,
that is Γξ∗ = ξ∗ and ξ∗ ∈ B[ξ0, ε] is an FP of Γ. �

In a similar conductance, we can state and prove the same Theorems fulfill symmetric fractional
α-β-Υ-contraction mappings (4.1), (5.1) and (6.1) on closed ball.

The example below supports Theorem 7.1.

Example 7.2. Let ∆ = [0,∞), p > 1 and mb : ∆ × ∆ −→ [0,∞) is defined by

mb(ξ, µ) = max{ξ, µ}p + |ξ − µ|p, ∀ξ, µ ∈ ∆.

Clearly, (∆,mb) is an MbMS with s = 2p. Define Γ : ∆→ ∆ by

Γξ =

{ ξ

e5 , if ξ ∈ [0, 10],
4ξ − 45, if ξ ∈ (10,∞).
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Describe the functions α, η : ∆ × ∆→ [0,∞) as,

α (ξ, µ) =

{
2, if ξ, µ ∈ [0, 10],
1, if ξ, µ ∈ (10,∞),

, η (ξ, µ) =

{
1, if ξ, µ ∈ [0, 10],
0, if ξ, µ ∈ [0,∞].

Considering ξ0 = 1, ε = 180, then B[ξ0, ε] = [0, 10] and mb (ξ0,Γξ0) = mb (1,Γ1) = mb

(
1,

1
e5

)
=

1 + (1−
1
e5 )p. Therefore, α(1,Γ1) = 2 ≥ η(1,Γ1) = 1. Now for all ξ, µ ∈ [0, 10], Γ is a continuous semi

α-admissible mapping wrt η, whenever α(ξ, µ) ≥ η(ξ, µ), we have

s2mb (Γξ,Γµ) = 22pmb

(
ξ

e5 ,
µ

e5

)
= 22p

(
max{

ξ

e5 ,
µ

e5 }
p + |

ξ

e5 −
µ

e5 |
p
)

=
22p

e5p
(max{ξ, µ}p + |ξ − µ|p) ≤

2p

e5p

[
22pmb (ξ, µ)

]
≤ Υ

[
λ (R1 (ξ, µ))

]
.

That is achieved when we choose Υ(t) = 2pt
e5p and constants λ = 22p ∈ [0,∞), a, b, c ∈ (0, 1), for all

ξ, µ ∈ ∆\Fix(Γ). Also, for all n ≥ 0 and p > 1, we obtain

mb (ξ0, ξ1) ≤
n∑

i=0

si+1Υi [mb (ξ0, ξ1)
]

≤

n∑
i=0

si+1Υi

[
1 +

(
1 −

1
e5

)p]
= 22

[
1 +

(
1 −

1
e5

)p] n∑
i=0

(
22p

e5p

)i

≤ 180 = ε.

Note that for 20, 21 ∈ ∆ and for p = 2, we have α(20, 21) ≥ η(20, 21) and we can calculate

s2mb (Γ20,Γ21) > Υ [λR1 (20, 21)] .

So that condition (3.1) does not hold. Therefore, all affirmations of Theorem 7.1 are satisfied. Hence
Γ has an FP ξ∗ = 0 ∈ B

[
ξ0, ε

]
. (Note that 15 is an another FP of Γ, which belongs to ∆ but it does not

belong to B
[
ξ0, ε

]
.

8. An application to fractional-order differential equation

In this portion, we shall apply Theorem 4.2 to discuss the existence and uniqueness of the bounded
solution to fractional order differential equations (FODE), which have recently proved to be significant
tools in the modeling of many phenomena in numerious fields of science and building. Consider a
function f : (0, 1) → R. The conformable fractional derivative of order α of f at t > 0 is defined
in [26] as follows:

Dα f (t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

. (8.1)
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The conformable fractional integral associated with (8.1) is defined in [25, 26] as following:

Iα0 f (t) =

∫ t

0
sα−1 f (s)ds. (8.2)

We consider the following boundary value problem (BVP) of a fractional order differential equation: Dα
t ξ(t) = λ(t, ξ(t),Dα−1

t ξ(t), t, α ∈ (0, 1)
ξ(0) = 0, ξ(1) =

∫ 1

0
ξ(s)ds.

(8.3)

The BVP (8.3) can be expressed as the integral equation as follows:

ξ(t) = λ

∫ 1

0
G(t, s) f (s, ξ(s))ds. (8.4)

Where G(t, s) is defined as the Green function under the assumption of (8.1), which is given by

G(s, t) =

{
−2tsα + sα−1, 0 ≤ s ≤ t ≤ 1
−2tsα, 0 ≤ t ≤ s ≤ 1

(8.5)

and
∫ 1

0
ξ(s)ds denotes the Riemann integrable of ξ with respect to s and f : [0, 1] × R → R is a

continuous function. Consider

ξ(t) = c0 + c1t + λ

∫ 1

0
sα−1 f (s, ξ(s))ds, (8.6)

when ξ(0) = 0, then c0 = 0, ξ(1) = c1 + λ
∫ 1

0
sα−1 f (s, ξ(s))ds, and from the condition ξ(1) =

∫ 1

0
ξ(s)ds,

we have ∫ 1

0
ξ(s)ds =

∫ 1

0
c1sds + λ

∫ 1

0

∫ s

0
vα−1 f (v, ξ(v))dvds

=
1
2

c1 + λ

∫ 1

0

∫ 1

v
vα−1 f (v, ξ(v))dvds

=
1
2

c1 + λ

∫ 1

0
(1 − v)vα−1 f (v, ξ(v))dvds

=
1
2

c1 + λ

∫ 1

0
(sα−1 − sα) f (s, ξ(s))ds,

this implies that

1
2

c1 = λ

∫ 1

0
sα−1 f (s, ξ(s))ds + λ

∫ 1

0
(sα−1 − sα) f (s, ξ(s))ds

= −λ

∫ 1

0
sα f (s, ξ(s))ds

hence,

c1 = −2λ
∫ 1

0
sα f (s, ξ(s))ds.
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It follows from (8.6), c0 and c1 that

ξ(t) = −2λt
∫ 1

0
sα f (s, ξ(s))ds + λ

∫ t

0
sα−1 f (s, ξ(s))ds

= −2λt
∫ t

0
sα f (s, ξ(s))ds − 2λt

∫ 1

t
sα f (s, ξ(s))ds + λ

∫ t

0
sα−1 f (s, ξ(s))ds

= λ

∫ t

0
(−2tsα + sα−1) f (s, ξ(s))ds + λ

∫ 1

t
(−2tsα) f (s, ξ(s))ds

= λ

∫ t

0
G(t, s) f (s, ξ(s))ds.

Let Cα(I) be the space of all continuous functions de. . . ned on I, where I = [0, 1], α > 0 and let

mb(ξ, µ) = ‖
ξ + µ

2
‖2∞ = maxt∈I

(
|
ξ(t) + µ(t)

2
|

)2

for all ξ, µ ∈ Cα(I). Then (Cα(I),mb) is a complete

MbMS with a constant δ = 2.
Now we consider the BVP (8.3) under the following stipulations:

(1) there exist a function ω : R→ (0, 1), δ ≥ 1 and ρ, σ, % : R→ R are three functions such that for all
t ∈ I and ξ, µ ∈ R with ρ(ξ)σ(µ) ≥ %(ξ)%(µ), then

| f (s, ξ(s)) + f (s, µ(s))| ≤

√
4ω(t)
10δ2 ℵ(ξ(s), µ(s)),

where, For all a, b, c ∈ (0, 1)

ℵ(ξ(s), µ(s)) = |
ξ(s) + µ(s)

2
|2.|
ξ(s) + Γξ(s)

2
|

2a
(a − b)(a − c) .|

µ(s) + Γµ(s)
2

|

2a
(a − b)(a − c)

.

[
|
ξ(s) + Γξ(s)

2
| + |

µ(s) + Γµ(s)
2

|2
] b
(b − a)(b − c)

.

[
|
ξ(s) + Γµ(s)

2
| + |

µ(s) + Γξ(s)
2

|2
] c
(c − a)(c − b)

,

(2) there exists ξ1 ∈ Cα(I) such that for all t ∈ I,

ρ (ξ1(t))σ
(∫ 1

0
G(t, s) f (s, ξ1(s))ds

)
≥ % (ξ1(t)) %

(∫ 1

0
G(t, s) f (s, ξ1(s))ds

)
,

(3) for all t ∈ I and for all ξ, µ ∈ Cα(I), there are ξ1, µ1 ∈ Cα(I), such that

ρ(ξ(t)) ≥ %(ξ(t))

implies

σ

(∫ 1

0
G(t, s) f (s, ξ1(s))ds

)
≥ %

(∫ 1

0
G(t, s) f (s, ξ1(s))ds

)
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and
σ(µ(t)) ≥ %(µ(t))

implies

ρ

(∫ 1

0
G(t, s) f (s, µ1(s))ds

)
≥ %

(∫ 1

0
G(t, s) f (s, µ1(s))ds

)
,

(4) for any cluster point ξ of a sequence {ξn} of points in Cα(I) with ρ(ξn)σ(ξn+1) ≥ %(ξn)%(ξn+1), such
that

lim
n→∞

inf ρ(ξn)σ(ξ) ≥ lim
n→∞

%(ξn)%(ξ).

Now, we present our main theorem in this part.

Theorem 8.1. Under the postulates (1)–(4), the BVP (8.3) has at least one solution ξ∗ ∈ Cα(I).

Proof. We known that ξ∗ ∈ Cα(I) is a solution of (8.3) if and only if ξ∗ ∈ Cα(I) is a solution of the
fractional order integral equation:

ξ(t) = λ

∫ 1

0
G(t, s) f (s, ξ(s))ds,∀λ, t ∈ I.

We define a map Γ : Cα(I)→ Cα(I) by

Γξ(t) = λ

∫ 1

0
G(t, s) f (s, ξ(s))ds,∀λ, t ∈ I.

Then, problem (8.3) is equivalent to find ξ∗ ∈ Cα(I) that is a fixed point of Γ. Let ξ, µ ∈ Cα(I), such
that ρ(ξ(t))σ(ξ(t)) ≥ 0, for all t ∈ I. Using stipulation (1), we get

[
| Γξ(t) + Γµ(t) |

]2
=

[
| λ ||

∫ 1

0
G(t, s) f (s, ξ(s))ds +

∫ 1

0
G(t, s) f (s, µ(s))ds |

]2

≤

[
| λ |

∫ 1

0
G(t, s) | (s, ξ(s)) + f (s, µ(s)) | ds

]2

≤

| λ | ∫ 1

0
G(t, s)ds

√
4ω(t)
10δ2 ℵ(ξ(s), µ(s))

2

=

[
| λ |

∫ 1

0
G(t, s)ds

]2
4ω(t)
10δ2 ℵ(ξ(s), µ(s))

≤

[
| λ |

∫ 1

0
G(t, s)ds

]2
4ω(t)
10δ2 |

ξ(s) + µ(s)
2

|2

.|
ξ(s) + Γξ(s)

2
|

2a
(a−b)(a−c) .|

µ(s) + Γµ(s)
2

|
2a

(a−b)(a−c)

.

[
|
ξ(s) + Γξ(s)

2
| + |

µ(s) + Γµ(s)
2

|2
] b

(b−a)(b−c)

.

[
|
ξ(s) + Γµ(s)

2
| + |

µ(s) + Γξ(s)
2

|2
] c

(c−a)(c−b)

AIMS Mathematics Volume 8, Issue 4, 9118–9145.
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≤ max
t∈I

[∫ 1

0
G(t, s)ds

]2
4ω(t)
10δ2 ||

ξ(s) + µ(s)
2

||2∞

.||
ξ(s) + Γξ(s)

2
||

2a
(a−b)(a−c)
∞ .||

µ(s) + Γµ(s)
2

||
2a

(a−b)(a−c)
∞

.

[
||
ξ(s) + Γξ(s)

2
||2∞ + ||

µ(s) + Γµ(s)
2

||2∞

] b
(b−a)(b−c)

.

[
||
ξ(s) + Γµ(s)

2
||2∞ + ||

µ(s) + Γξ(s)
2

||2∞

] c
(c−a)(c−b)

≤
4ω(t)
10δ2 ||

ξ(s) + µ(s)
2

||2∞

.||
ξ(s) + Γξ(s)

2
||

2a
(a−b)(a−c)
∞ .||

µ(s) + Γµ(s)
2

||
2a

(a−b)(a−c)
∞

.

[
||
ξ(s) + Γξ(s)

2
||2∞ + ||

µ(s) + Γµ(s)
2

||2∞

] b
(b−a)(b−c)

.

[
||
ξ(s) + Γµ(s)

2
||2∞ + ||

µ(s) + Γξ(s)
2

||2∞

] c
(c−a)(c−b)

.

Thus,
δ2mb (Γξ,Γµ) ≤ Υ

[
λR2(ξ, µ)

]
,

where, Υ(t) =
ω(t)

5
t, λ =

1
2

and

R2(ξ, µ) =


mb(ξ, µ).

[
mb(ξ,Γξ)

] a
(a−b)(a−c) .[mb(µ,Γµ)]

a
(a−b)(a−c)

.[mb(ξ,Γξ) + mb(µ,Γµ)]
b

(b−a)(b−c)

.[mb(ξ,Γµ) + mb(µ,Γξ)]
c

(c−a)(c−b)

 .
For each ξ, µ ∈ Cα(I) such that ρ(ξ(t))σ(µ(t)) ≥ %(ξ(t))%(µ(t)) for all t ∈ I. We define α, β, η : Cα(I) →
[0,∞) by

α(ξ) = β(ξ) =

{
2, if ρ(ξ(t))σ(µ(t)) ≥ 0, t ∈ I
0, otherwise,

and η(ξ) =

{ 1
4 , if ρ(ξ(t))σ(µ(t)) ≥ 0, t ∈ I
0, otherwise.

Then, for all ξ, µ ∈ Cα(I), & α(ξ) ≥ η(ξ) and β(µ) ≥ η(µ). If α(ξ) ≥ η(ξ) and β(µ) ≥ η(µ). for each
ξ, µ ∈ C(I), then ρ(ξ(t)) ≥ %(ξ(t)) and σ(µ(t)) ≥ %(µ(t)). From stipulation (3), we have ρ(Γξ(t)) ≥
%(Γξ(t)) and σ(Γµ(t)) ≥ %(Γµ(t)), and so α(Γξ) ≥ η(Γξ) and β(Γµ) ≥ η(Γµ). Thus, Γ is η-cyclic α-
admissible mapping. From stipulation (2) there subsist ξ1 ∈ Cα(I) parallel to α(ξ)β(µ) ≥ η(ξ)η(µ).
By stipulation (4), we have that for any cluster point ξ of a sequence {ξn} of points in Cα(I) with
ρ(ξn)σ(µn+1) ≥ %(ξn)%(µn+1) implies that α(ξn)β(µn+1) ≥ η(ξn)η(µn+1) and limn→∞ inf α(ξn)β(µn+1) ≥
limn→∞ inf η(ξn)η(µn+1). So, all affirmations of Theorem 4.2 are satisfied and then Γ has an FP ξ∗ ∈

Cξ(I), which is a solution of the BVP (8.3). �

9. Conclusions

Four classes of symmetric fractional contractions are produced in this paper. The focus was on a
new idea of symmetric fractional α-β-η-Υ-contraction pattern-I, pattern-II, pattern-III and pattern-IV
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in the setting of MbMS and the fifth class studied the same results on closed ball of the said space.
The main results were suported by two nontrivial examples and an application for the existence and
uniqueness of the bounded solution to (FODE). This paper generalized many results in the litrature.
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