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Abstract: The main purpose of this study was to produce abundant new types of soliton solutions for 

the Radhakrishnan-Kundu-Lakshmanan equation that represents unstable optical solitons that emerge 

from optical propagations through the use of birefringent fibers. These new types of soliton solutions 

have behaviors that are bright, dark, W-shaped, M-shaped, periodic trigonometric, and hyperbolic and 

were not realized before by any other method. These new forms have been detected by using four 

different techniques, which are, the extended simple equation method, the Paul-Painlevé approach 

method, the Ricatti-Bernoulli-sub ODE, and the solitary wave ansatz method. These new solitons will 

be arranged to create a soliton catalog with new impressive behaviors and they will contribute to future 

studies not only for this model but also for the optical propagations through birefringent fiber. 

Keywords: Radhakrishnan-Kundu-Lakshmanan equation; extended simple equation method; Paul-

Painlevé approach method; Ricatti-Bernoulli-sub ODE; solitary wave ansatz method; optical solitons 

Mathematics Subject Classification: 35C07, 35Q51, 83C15 

 

1. Introduction 

This work focuses on using the extended simple equation method (ESEM) [1–3], the solitary 

wave ansatz method (SWAM) [4–6], the Paul-Painlevé approach method (PPAM) [7–10] and Ricatti-

Bernoulli-sub ODE method (RBSODM) [2,11,12] to solve the Radhakrishnan-Kundu-Lakshmanan 
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equation (RKLE) [13–17] and derive a soliton catalog for this model. The suggested model is one of 

the important models which perfectly treat unstable optical solitons. Recently, this has been discussed 

by some authors who achieved an abundance of results through a group of published articles [18–27]. 

Especially, more concentrated studies have been established through a few published articles 

considered; for example, Ghanbari and Gómez-Aguilar [28] applied the generalized exponential 

rational function method to obtain analytical solutions for the nonlinear RKLE. Additionally, Rehman 

and Ahmad [29] retrieved the optical solitons in birefringent fibers modeled by the RKLE in coupled 

vector form by using the extended rational sine-cosine and sinh-cosh techniques. Yıldırım et al. [30] 

handled dispersive solitons in birefringent fibers by using several numerical schemas, i.e., the Riccati 

function principle, the sine-Gordon function principle, the functional variable principle, and the F-

expansion principle. Yıldırım et al. [31] recovered the bright, dark, and singular solitons of this type 

of model by using the modified simple function principles. 

Most of the achieved results have been limited to polarization-preserving fibers; we will develop 

and construct new solitons to give extended study to this model. Similarly, there are other effective 

approaches to extract the solitary wave solutions for fractional nonlinear partial differential equations, 

see for example, He [32] who used the modified Riemann-Liouville derivative, fractional complex 

transform, exp-function method to extract the solitary wave solution to the nonlinear dispersive 

equations and phi-four equation. Tian and Liu [33] proposed a novel exponential rational function 

method to find the exact solutions for the time fractional Cahn-Allen equation and the time fractional 

phi-four equation. Ji et al. [34] established an approximate Hamilton principle for the transverse 

vibration of a reinforced concrete pillar by considering the dissipation energy, obtained a generalized 

Boussinesq equation, used the exp-function method to solve the equation, and discussed the solution 

properties. 

Moreover, there are other important studies to explain how the solitary waves are affected by the 

unsmooth boundaries; see, for example He et al. [35] who used the fractal Korteweg-de Vries equation 

as an example to show the solution properties of a solitary wave traveling along an unsmooth boundary, 

established a fractal variational principle in a fractal space and obtained its solitary wave solution. He 

et al. [36] explained how the morphology of a shallow-water wave is affected by the unsmooth 

boundary while its peak is rarely changed they also revealed the basic properties of solitary waves in 

fractal space and studied the traveling solitary solution to the Boussinesq equation through the 

application of its fractal variational principle. Liu [37] studied the periodic solution to the fractal phi-

four equation due to its strong nonlinearity. He and Yusry [38] derived the traveling wave 

transformation of the time-fractional Kundu-Mukherjee-Naskar equation by using the modified 

homotopy perturbation method. He [39] obtained both the solitary solutions and periodic solutions of 

the time-fractional Kundu-Mukherjee-Naskar equation by using the semi-inverse method. 

Additionally, He et al. [40] suggested a Hamiltonian-based formulation to quickly determine the 

frequency property of the nonlinear oscillator of complex mechanical systems. Moreover, there exist 

recent studies to extract the soliton solutions in vector form arising in quantum space; see, for example, 

Zhao et al. [41] who proposed a scheme to generate stable vector spatiotemporal solitons through the 

use of a Rydberg electromagnetically induced transparency (EIT) system and found 3D vector 

monopole and vortex solitons for three nonlocal degrees. The obtained results indicate that these 

solitons are generated with low energy and can be propagated stably along the axes. Xu et al. [42] 

studied the 3D self-trapped modes in spinor Bose-Einstein condensates with a spin-orbit coupling that 

is described by coupled Gross-Pitaevskii equations that include beyond-mean-field Lee-Huang-Yang 

terms; they also checked the stability of all 3D states by using linear stability analysis and direct 

simulations to prove that they are stable against small perturbations in propagation on a limited scale. 

https://www.worldscientific.com/doi/abs/10.1142/S0217984919504025
https://www.degruyter.com/search?query=keywordValues%3A%28%22modified%20Riemann-Liouville%20derivative%22%29%20AND%20journalKey%3A%28%22IJNSNS%22%29&documentVisibility=all&documentTypeFacet=article
https://www.degruyter.com/search?query=keywordValues%3A%28%22fractional%20complex%20transform%22%29%20AND%20journalKey%3A%28%22IJNSNS%22%29&documentVisibility=all&documentTypeFacet=article
https://www.degruyter.com/search?query=keywordValues%3A%28%22fractional%20complex%20transform%22%29%20AND%20journalKey%3A%28%22IJNSNS%22%29&documentVisibility=all&documentTypeFacet=article
https://www.degruyter.com/search?query=keywordValues%3A%28%22exp-function%20method%22%29%20AND%20journalKey%3A%28%22IJNSNS%22%29&documentVisibility=all&documentTypeFacet=article
https://www.degruyter.com/search?query=keywordValues%3A%28%22Phi-four%20equation%22%29%20AND%20journalKey%3A%28%22IJNSNS%22%29&documentVisibility=all&documentTypeFacet=article
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Huang et al. [43] investigated the squeezing of two-component quantum optical solitons slowly 

moving in a tripod-type atomic system with double (EIT), finding that the quantum squeezing of vector 

soliton pairs is generated by a giant Kerr nonlinearity, which is provided by EIT and that the outcome 

of the squeezing can be optimized by the selection of the propagation distance and angle; they also 

obtained the atomic spin squeezing for short propagation distances. 

The RKLE with the Kerr-Law of nonlinearity in the absence of the four-wave mixing (4WM) 

represents the basic case of fiber nonlinearity; this model according to [14,16,28–31], can be written 

in the following form: 

𝑖𝑄𝑡 + 𝑎𝑄𝑥𝑥 + 𝑏|𝑄2|𝑄 = 𝑖𝜆(|𝑄|2𝑄)𝑥 − 𝑖𝛾𝑄𝑥𝑥𝑥.      (1.1) 

Here, 𝑄 is the complex-valued function in terms of two independent variables 𝑥 and 𝑡 that 

represent time independence and limited components respectively. The first term denotes limited 

evolution, while 𝑎 and 𝑏, respectively, denote the group velocity dispersion and coefficients of the 

Kerr-Law of nonlinearity; the parameters 𝜆 and 𝛾 which appear on the right-hand side of Eq (1.1) 

measure the third order dispersion. In the absence of 4WM for birefringent fibers, the RKLE with 

Kerr-Law of nonlinearity [30,31] (and references therein) by dividing Eq (1.1), it can be converted to 

the following two equations: 

𝑖𝑈𝑡 + 𝑎1𝑈𝑥𝑥 + [𝑏1|𝑈|
2 + 𝑐1|𝑉|

2]𝑈 = 𝑖[𝜆1(|𝑈|
2𝑈)𝑥 + 𝜃1(|𝑉|

2𝑈)𝑥] − 𝑖𝛾1𝑈𝑥𝑥𝑥,  (1.2) 

𝑖𝑉𝑡 + 𝑎2𝑉𝑥𝑥 + [𝑏2|𝑉|
2 + 𝑐2|𝑈|

2]𝑉 = 𝑖[𝜆2(|𝑉|
2𝑉)𝑥 + 𝜃2(|𝑈|

2𝑉)𝑥] − 𝑖𝛾1𝑉𝑥𝑥𝑥.   (1.3) 

When Eq (1.2) theorizes the transformations 𝑈(𝜂) = 𝑅𝑗(𝜂)𝑒
𝑖𝜓1(𝑥,𝑡) and Eq (1.3) theorizes the 

transformations 𝑉(𝜂) = 𝑅�̃�(𝜂)𝑒
𝑖𝜓2(𝑥,𝑡)  with 𝜂 = 𝑥 − 𝜈𝑡  and 𝜓 = −𝑘𝑥 + 𝑤𝑡 + 𝜃0 , where 𝑘 , 𝜃0 , 

and 𝑤 are the frequency, phase constant, and wave number, respectively, and 𝑅𝑗 denotes the soliton 

amplitude, the following real and imaginary parts will emerge: 

(𝑎𝑗 + 3𝑘𝛽𝑗)𝑅𝑗
″ − (𝑤 + 𝑎𝑗𝑘

2 + 𝛽𝑗𝑘
3]𝑅𝑗 + (𝑏𝑗 − 𝑘𝜆𝑗)𝑅𝑗

3 + 𝑐𝑗𝑅𝑗𝑅�̃�
2 − 𝑘𝛾𝑗𝑅�̃�

3 = 0,  (1.4) 

𝛽𝑗𝑅𝑗
″ − (𝑣 + 2𝑘𝑎𝑗 + 3𝛽𝑗𝑘

2]𝑅𝑗
′ − 3𝜆𝑗𝑅𝑗

′𝑅𝑗
2 − 3𝛾𝑗𝑅�̃�

2𝑅�̃�
′ = 0.    (1.5) 

When 𝑅𝑗 = 𝑅�̃�, Eqs (1.4) and (1.5) respectively become 

(𝑎𝑗 + 3𝑘𝛽𝑗)𝑅𝑗
″ − (𝑤 + 𝑎𝑗𝑘

2 + 𝛽𝑗𝑘
3]𝑅𝑗 + (𝑏𝑗 − 𝑘𝜆𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗)𝑅𝑗

3 = 0,   (1.6) 

𝛽𝑗𝑅𝑗
″ − (𝜈 + 2𝑘𝑎𝑗 + 3𝛽𝑗𝑘

2]𝑅𝑗 − (𝜆𝑗 + 𝛾𝑗)𝑅𝑗
3 = 0.     (1.7) 

Generally, these two equations are the same if and only if 

𝑏𝑖 = −
2𝑘𝛽𝑗𝛾𝑗 + 2𝑘𝛽𝑗𝜆𝑗 + 𝑎𝑗𝛾𝑗 + 𝑎𝑗𝜆𝑗 + 𝛽𝑗𝑐𝑖

𝛽𝑗
, 

𝑤 =
8𝑘3𝛽𝑗

2+8𝑘2𝑎𝑗𝛽𝑗+3𝑘𝜈𝛽𝑗+2𝑘𝑎𝑗
2+𝜈𝑎𝑗

𝛽𝑗
.       (1.8) 

Now, we aim to concentrate on solving Eqs (1.6) and (1.7). 

2. ESEM 

To describe the ESEM, let us first propose the general form of a nonlinear partial differential 

equation which is 
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Ψ(𝑅𝑗 , (𝑅𝑗)𝑥, (𝑅𝑗)𝑡, (𝑅𝑗)𝑥𝑥, (𝑅𝑗)𝑡𝑡, ⋯ ) = 0.      (2.1) 

Here, Ψ is in terms of 𝑅(𝑥, 𝑡) and its partial derivatives that include the highest order derivatives 

and nonlinear terms; when Eq (2.1) theorizes the transformation 𝑅𝑗(𝑥, 𝑡) = 𝑅𝑗(𝜂) with 𝜂 = 𝑥 − 𝑣𝑡 it 

will be converted to the following ordinary differential equation (ODE): 

Φ(𝑅𝑗
′, 𝑅𝑗

′′, 𝑅𝑗
′′′, ⋯ ) = 0.        (2.2) 

Here, Φ is in terms of 𝑅𝑗(𝜂) and its total derivatives. 

The form of the solution in the framework of this method is as follows: 

𝑅𝑗(𝜂) = ∑ 𝐴𝑗𝜑
𝑗(𝜂)𝑀

𝑗=−𝑀 .        (2.3) 

The integer 𝑀 appearing in Eq (2.3) can be calculated by theorizing Eq (2.3) to the homogeneous 

balance between the highest order derivative term and the nonlinear term, while the arbitrary constants 

𝐴𝑗 can be defined later; the function 𝜑(𝜂) realizes the following equation: 

𝜑′(𝜁) = 𝑎0 + 𝑎1𝜑 + 𝑎2𝜑
2 + 𝑎3𝜑

3.       (2.4) 

Here, 𝑎0, 𝑎1, 𝑎2, and 𝑎3 are arbitrary parameters through which the following two cases [44–46] 

are extracted: 

Case 1. If 𝑎1 = 𝑎3 = 0, Eq (2.4) becomes the Riccati equation, which has the following solutions : 

𝜑(𝜂) =
√𝑎0𝑎2

𝑎2
tan (√𝑎0𝑎2(𝜂 + 𝜂0)) , 𝑎0𝑎2 > 0,      (2.5)

 

𝜑(𝜂) =
√−𝑎0𝑎2

𝑎2
tanh (√−𝑎0𝑎2𝜂 −

𝜌 ln𝜂0

2
) , 𝑎0𝑎2 < 0, 𝜂 > 0, 𝜌 = ∓1.   (2.6)

 
Case 2. If 𝑎0 = 𝑎3 = 0, Eq (2.4) becomes the Bernoulli equation, which has the following solutions : 

𝜑(𝜂) =
𝑎1 Exp(𝑎1(𝜂+𝜂0))

1−𝑎1 Exp(𝑎1(𝜂+𝜂0))
, 𝑎1 > 0,       (2.7) 

𝜑(𝜂) =
−𝑎1 Exp(𝑎1(𝜂+𝜂0))

1+𝑎2 Exp(𝑎1(𝜂+𝜂0))
, 𝑎1 < 0.       (2.8) 

Thus, the general solution to the ansatz Eq (2.4), is as follows: 

𝜑(𝜂) = −
1

𝑎2
(𝑎1 −√4𝑎1𝑎2 − 𝑎1

2 tan(
√4𝑎1𝑎2−𝑎1

2

2
(𝜂 + 𝜂0))) , 4𝑎1𝑎2 > 𝑎1

2, 𝑎2 > 0. (2.9) 

𝜑(𝜂) =
1

𝑎2
(𝑎1 +√4𝑎1𝑎2 − 𝑎1

2 tanh(
√4𝑎1𝑎2−𝑎1

2

2
(𝜂 + 𝜂0))) , 4𝑎1𝑎2 > 𝑎1

2, 𝑎2 < 0. (2.10)

 

Here, 𝜂0 denotes the integration constancy. 

Finally, by combining Eqs (2.3) and (2.4) we can determine the unknown constants through the 

extracted system by equating the coefficients of various powers of 𝜑𝑗 to zero. Then, the target solution 

can be obtained by substituting these achieved constants into Eq (2.4). 

Now, we will apply the ESEM to extract new types of solitons for the RKLE of Eq (1.6) as follows: 
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(𝑎𝑗 + 3𝑘𝛽𝑗)𝑅𝑗
″ − (𝑤 + 𝑎𝑗𝑘

2 + 𝛽𝑗𝑘
3]𝑅𝑗 + (𝑏𝑗 − 𝑘𝜆𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗)𝑅𝑗

3 = 0;  (2.11) 

by implementing the balance between 𝑅𝑗
′′  and 𝑅𝑗

3  appearing in Eq (2.11) leads to 3𝑀 = 2𝑀 + 1 

implying that 𝑀 = 1; hence, according to the suggested method, the solution of Eq (1.6) is as follows: 

𝑅𝑗(𝜁) =
𝐴−1

𝜑
+ 𝐴0 + 𝐴1𝜑.        (2.12) 

Here, 𝜑′ = 𝑎0 + 𝑎1𝜑 + 𝑎2𝜑
2 + 𝑎3𝜑

3. 

Case 1. Regarding the first family in which 𝑎1 = 𝑎3 = 0 ⇒ 𝜑′ = 𝑎0 + 𝑎2𝜑
2, we have the following: 

𝑅𝑗
′ = −

𝑎0𝐴−1

𝜑2 + 𝐴1𝑎0 + 𝐴1𝑎2𝜑
2 − 𝑎2𝐴−1.      (2.13) 

𝑅𝑗
′′ =

2𝑎0
2𝐴−1

𝜑3 +
2𝑎0𝑎2𝐴−1

𝜑
+ 2𝐴1𝑎0𝑎2𝜑 + 2𝐴1𝑎2

2𝜑3.      (2.14) 

𝑅𝑗
2 = 𝐴1

2𝜑2 + 2𝐴0𝐴1𝜑 + (𝐴0
2 + 2𝐴−1𝐴1) +

𝐴−1
2

𝜑2 +
2𝐴−1𝐴0

𝜑
.    (2.15) 

𝑅𝑗
3 = 𝐴1

3𝜑3 + 3𝐴0𝐴1
2𝜑2 + 3(𝐴1𝐴0

2 + 𝐴−1𝐴1
2)𝜑 + (𝐴0

3 + 6𝐴−1𝐴0𝐴1) +
𝐴−1
3

𝜑3 +
3𝐴0𝐴−1

2

𝜑2 + 3
𝐴−1𝐴0

2+𝐴1𝐴−1
2

𝜑
. (2.16) 

By combining Eqs (2.11)–(2.16) and collecting and equating the coefficients of various powers 

of 𝜑𝑖 to zero, we derive the system of equations, and, by solving this system, we get the following 

eight acceptable results: 

𝐴0 = 0, 𝑎0 = −𝑖𝐴−1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 𝑎2 = 𝑖𝐴1√

𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 

𝑤 = 𝑎𝑗𝑘
2 + 4𝑏𝑗𝐴−1𝐴1 + 4𝑐𝑗𝐴−1𝐴1 − 𝑘3𝛽𝑗 − 4𝑘𝐴1𝐴−1 − 4𝑘𝐴1𝐴−1𝛾𝑗 .   (2.17) 

𝐴0 = 0, 𝑎0 = −𝑖𝐴−1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 𝑎2 = −𝑖𝐴1√

𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗
2𝑎𝑗 + 6𝑘𝛽𝑗

, 

𝑤 = 𝑎𝑗𝑘
2 + 2𝑏𝑗𝐴−1𝐴1 + 2𝑐𝑗𝐴−1𝐴1 − 𝑘3𝛽𝑗 − 2𝑘𝐴1𝐴−1 − 2𝑘𝐴1𝐴−1𝛾𝑗 .   (2.18) 

𝐴0 = 0, 𝑎0 = 𝑖𝐴−1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 𝑎2 = 𝑖𝐴1√

𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗
2𝑎𝑗 + 6𝑘𝛽𝑗

, 

𝑤 = 𝑎𝑗𝑘
2 + 2𝑏𝑗𝐴−1𝐴1 + 2𝑐𝑗𝐴−1𝐴1 − 𝑘3𝛽𝑗 − 2𝑘𝐴1𝐴−1 − 2𝑘𝐴1𝐴−1𝛾𝑗 .   (2.19) 

𝐴0 = 0, 𝑎0 = −𝑖𝐴−1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 𝑎2 = −𝑖𝐴1√

𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗
2𝑎𝑗 + 6𝑘𝛽𝑗

, 

𝑤 = 𝑎𝑗𝑘
2 + 4𝑏𝑗𝐴−1𝐴1 + 4𝑐𝑗𝐴−1𝐴1 − 𝑘3𝛽𝑗 − 4𝑘𝐴1𝐴−1 − 4𝑘𝐴1𝐴−1𝛾𝑗 .   (2.20) 

𝐴0 = 𝐴1 = 0, 𝑎0 = −𝑖𝐴−1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 

𝑤 = −𝑎𝑗𝑘
2 − 𝑘3𝛽𝑗 − 2𝑖𝑘𝑎2𝑎𝑗𝐴−1√

𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

2𝑎𝑗+6𝑘𝛽𝑗
− 6𝑖𝑘𝑎2𝛽𝑗𝐴−1√

𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

2𝑎𝑗+6𝑘𝛽𝑗
.  (2.21) 
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𝐴0 = 𝐴1 = 0, 𝑎0 = 𝑖𝐴−1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 

𝑤 = −𝑎𝑗𝑘
2 − 𝑘3𝛽𝑗 + 2𝑖𝑘𝑎2𝑎𝑗𝐴−1√

𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

2𝑎𝑗+6𝑘𝛽𝑗
+ 6𝑖𝑘𝑎2𝛽𝑗𝐴−1√

𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

2𝑎𝑗+6𝑘𝛽𝑗
.  (2.22) 

𝐴0 = 𝐴−1 = 0, 𝑎2 = 𝑖𝐴1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 

𝑤 = −𝑎𝑗𝑘
2 − 𝑘3𝛽𝑗 + 2𝑖𝑘𝑎0𝑎𝑗𝐴1√

𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

2𝑎𝑗+6𝑘𝛽𝑗
+ 6𝑖𝑘𝑎0𝛽𝑗𝐴1√

𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

2𝑎𝑗+6𝑘𝛽𝑗
.  (2.23) 

𝐴0 = 𝐴−1 = 0, 𝑎2 = −𝑖𝐴1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 

𝑤 = −𝑎𝑗𝑘
2 − 𝑘3𝛽𝑗 − 2𝑖𝑘𝑎0𝑎𝑗𝐴1√

𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

2𝑎𝑗+6𝑘𝛽𝑗
− 6𝑖𝑘𝑎0𝛽𝑗𝐴1√

𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

2𝑎𝑗+6𝑘𝛽𝑗
.  (2.24) 

These eight different results will generate eight different solutions; for simplicity, we will study 

only the first and the second results. 

Consider Eq (2.17), i.e., the first result: 

𝐴0 = 0, 𝑎0 = −𝑖𝐴−1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 𝑎2 = 𝑖𝐴1√

𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗
2𝑎𝑗 + 6𝑘𝛽𝑗

, 

𝑤 = 𝑎𝑗𝑘
2 + 4𝑏𝑗𝐴−1𝐴1 + 4𝑐𝑗𝐴−1𝐴1 − 𝑘3𝛽𝑗 − 4𝑘𝐴1𝐴−1 − 4𝑘𝐴1𝐴−1𝛾𝑗 . 

This result can be simplified to be 

𝐴0 = 0, 𝑣 = 𝐴1 = 𝐴−1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝜆𝑗 = 1, 𝑘 = −1, 

𝑎0 = 1, 𝑎2 = −1, 𝑤 = −3, 𝜃0 = 0.1, 𝑤 = 18.     (2.25) 

According to the proposed method, the solution is as follows: 

𝜑(𝜂) =
√−𝑎0𝑎2

𝑎2
tanh (√−𝑎0𝑎2𝜂 −

𝜌 ln 𝜂0
2

) , 𝑎0𝑎2 < 0, 𝜂 > 0, 𝜌 = ∓1, 

𝜑(𝜂) = − tanh(𝑥 − 𝑡 + 0.3),        (2.26) 

𝑅𝑗(𝜂) =
𝐴−1
𝜑

+ 𝐴0 + 𝐴1𝜑, 

𝑅𝑗(𝜂) = −(coth[𝑥 − 𝑡 + 0.3] + tanh[𝑥 − 𝑡 + 0.3]).    (2.27) 

The solution of the original equation is as follows: 

𝑣(𝑥, 𝑡) = 𝑅𝑗(𝜂)𝑒
𝑖𝛹(𝑥,𝑡), 𝜂 = 𝑥 − 𝑣𝑡,𝛹 = −𝑘𝑥 + 𝑤𝑡 + 𝜃0, 

𝑣(𝑥, 𝑡) = −(coth[ 𝑥 − 𝑡 + 0.3] + tanh[ 𝑥 − 𝑡 + 0.3])𝑒𝑖(𝑥+18𝑡+0.1),   (2.28) 

𝑅𝑒𝑉(𝑥, 𝑡) = −(coth[ 𝑥 − 𝑡 + 0.3] + tanh[ 𝑥 − 𝑡 + 0.3]) cos( 𝑥 + 18𝑡 + 0.1),   (2.29) 

𝐼𝑚𝑉(𝑥, 𝑡) = −(coth[ 𝑥 − 𝑡 + 0.3] + tanh[ 𝑥 − 𝑡 + 0.3]) sin( 𝑥 + 18𝑡 + 0.1).  (2.30) 
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As a result Figures 1 and 2 show the solitons for the RKLE of Eqs (2.29) and (2.30), respectively, 

in 2D and 3D. 

    

Figure 1. Soliton for the RKLE of Eq (2.29) in 2D and 3D with the following values: 

𝐴0 = 0, 𝜈 = 𝐴1 = 𝐴−1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝜆𝑗 = 1, 𝑘 = −1, 𝑎0 = 1, 𝑎2 = −1,

𝜃0 = 0.1, 𝑤 = 18, 𝜌 = −1, 𝜂0 = 2. 

    

Figure 2. Soliton for the RKLE of Eq (2.30) in 2D and 3D with the following values: 

𝐴0 = 0, 𝜈 = 𝐴1 = 𝐴−1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝜆𝑗 = 1, 𝑘 = −1, 𝑎0 = 1, 𝑎2 = −1,

𝜃0 = 0.1, 𝑤 = 18, 𝜌 = −1, 𝜂0 = 2. 

Consider Eq (2.18) as follows: 

𝐴0 = 0, 𝑎0 = −𝑖𝐴−1√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

2𝑎𝑗 + 6𝑘𝛽𝑗
, 𝑎2 = −𝑖𝐴1√

𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗
2𝑎𝑗 + 6𝑘𝛽𝑗

, 

𝑤 = 𝑎𝑗𝑘
2 + 2𝑏𝑗𝐴−1𝐴1 + 2𝑐𝑗𝐴−1𝐴1 − 𝑘3𝛽𝑗 − 2𝑘𝐴1𝐴−1 − 2𝑘𝐴1𝐴−1𝛾𝑗 .  (2.31) 

This result can be simplified to be 

𝐴0 = 0, 𝜈 = 𝐴1 = 𝐴−1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝜆𝑗 = 1, 

𝑘 = −1, 𝑎0 = 𝑎2 = 1, 𝜃0 = 0.1, 𝑤 = 10.      (2.32) 

The solution in the framework of this result is as follows: 

𝜑(𝜂) =
√𝑎0𝑎2

𝑎2
tan(√𝑎0𝑎2(𝜂 + 𝜂0) , 𝑎0𝑎2 > 0, 

𝜑(𝜂) = tan[𝑥 − 𝑡 + 1],        (2.33) 
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𝑅𝑗(𝜁) = tan[𝑥 − 𝑡 + 1] + cot[𝑥 − 𝑡 + 1],      (2.34) 

𝑉(𝑥, 𝑡) = (tan[𝑥 − 𝑡 + 1] + cot[𝑥 − 𝑡 + 1])𝑒𝑖(𝑥+10𝑡+0.1),    (2.35) 

𝑅𝑒𝑉(𝑥, 𝑡) = (tan[ 𝑥 − 𝑡 + 1] + cot[ 𝑥 − 𝑡 + 1]) cos( 𝑥 + 10𝑡 + 0.1),  (2.36) 

𝐼𝑚𝑉(𝑥, 𝑡) = (tan[ 𝑥 − 𝑡 + 1] + cot[ 𝑥 − 𝑡 + 1]) sin(𝑥 + 10𝑡 + 0.1).   (2.37) 

As a result Figures 3 and 4 show the solitons for the RKLE of Eqs (2.36) and (2.37), respectively, 

in 2D and 3D. 

    

Figure 3. Soliton for the RKLE of Eq (2.36) in 2D and 3D with the following values: 

𝐴0 = 0, 𝜈 = 𝐴1 = 𝐴−1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝜆𝑗 = 1, 𝑘 = −1, 𝑎0 = 𝑎2 = 1, 𝜃0 =

0.1, 𝑤 = 10, 𝜂0 = 1. 

    

Figure 4. Soliton for the RKLE of Eq (2.37) in 2D and 3D with the following values: 

𝐴0 = 0, 𝜈 = 𝐴1 = 𝐴−1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝜆𝑗 = 1, 𝑘 = −1, 𝑎0 = 𝑎2 = 1, 𝜃0 =

0.1, 𝑤 = 10, 𝜂0 = 1. 

In the same manner, we can design and extract the solutions corresponding to the remaining 

results. 

Case 2. Regarding the second family in which 𝑎0 = 𝑎3 = 0 ⇒ 𝜑′ = 𝑎1𝜑 + 𝑎2𝜑
2, we have 

𝑅𝑗
′ = 𝐴1𝑎2𝜑

2 + 𝑎1𝐴1𝜑 −
𝐴−1𝑎1

𝜑
− 𝐴−1𝑎2,       (2.38) 

𝑅𝑗
″ = 2𝐴1𝑎2

2𝜑3 + 3𝐴1𝑎1𝑎2𝜑
2 + 𝐴1𝑎1

2𝜑 + 𝐴−1𝑎1𝑎2 +
𝑎1
2𝐴−1

𝜑
,     (2.39) 

𝑅𝑗
2 = 𝐴1

2𝜑2 + 2𝐴0𝐴1𝜑 + (𝐴0
2 + 2𝐴−1𝐴1) +

𝐴−1
2

𝜑2 +
2𝐴−1𝐴0

𝜑
,     (2.40) 

𝑅𝑗
3 = 𝐴1

3𝜑3 + 3𝐴0𝐴1
2𝜑2 + 3(𝐴1𝐴0

2 + 𝐴−1𝐴1
2)𝜑 + (𝐴0

3 + 6𝐴−1𝐴0𝐴1) +
𝐴−1
3

𝜑3 +
3𝐴0𝐴−1

2

𝜑2 +
3(𝐴−1𝐴0

2+𝐴1𝐴−1
2 )

𝜑
. (2.41) 
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By combining Eqs (2.14) and (2.38)–(2.41) and collecting and equating the coefficients of various 

powers of 𝜑𝑖 to zero, we derive the system of equations and by solving this system we get only two 

acceptable results while the remaining results are refused given either 𝑎1 = 0, 𝐴1 = 𝐴−1 = 0 or both. 

𝑎1 = 𝑖√2𝐴0√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

𝑎𝑗 + 3𝑘𝛽𝑗
, 𝑎2 = −

𝐴1(𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗)√𝑎𝑗 + 3𝑘𝛽𝑗

𝑖√𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗(√2𝑎𝑗 + 3√2𝑘𝛽𝑗)
, 

𝐴−1 = 0, 𝑤 = −𝑎𝑗𝑘
2 + 𝑏𝑗𝐴0

2 + 𝑐𝑗𝐴0
2 − 𝑘3𝛽𝑗 − 𝑘𝐴0

2𝛾𝑗 − 𝑘𝐴0
2𝜆𝑗 .    (2.42) 

𝑎1 = −𝑖√2𝐴0√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

𝑎𝑗 + 3𝑘𝛽𝑗
, 𝑎2 =

𝐴1(𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗)√𝑎𝑗 + 3𝑘𝛽𝑗

𝑖√𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗(√2𝑎𝑗 + 3√2𝑘𝛽𝑗)
, 

𝐴−1 = 0,𝑤 = −𝑎𝑗𝑘
2 + 𝑏𝑗𝐴0

2 + 𝑐𝑗𝐴0
2 − 𝑘3𝛽𝑗 − 𝑘𝐴0

2𝛾𝑗 − 𝑘𝐴0
2𝜆𝑗 .    (2.43) 

These two different results will produce two different solutions; for similarity and simplicity, we 

will study only one of them. 

Consider the first result, which is as follows: 

𝑎1 = 𝑖√2𝐴0√
𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗

𝑎𝑗 + 3𝑘𝛽𝑗
, 𝑎2 = −

𝐴1(𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗)√𝑎𝑗 + 3𝑘𝛽𝑗

𝑖√𝑏𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗 − 𝑘𝜆𝑗(√2𝑎𝑗 + 3√2𝑘𝛽𝑗)
, 

𝐴−1 = 0, 𝑤 = −𝑎𝑗𝑘
2 + 𝑏𝑗𝐴0

2 + 𝑐𝑗𝐴0
2 − 𝑘3𝛽𝑗 − 𝑘𝐴0

2𝛾𝑗 − 𝑘𝐴0
2𝜆𝑗 .    (2.44) 

This result can be simplified to be 

𝐴−1 = 0, 𝜈 = 𝐴0 = 𝐴1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 

𝑘 = −1, 𝑎1 = 2, 𝑎2 = 1, 𝜃0 = 0.1, 𝑤 = 4, 𝜂0 = 1.    (2.45) 

The solution in the framework of this result is as follows: 

𝜑(𝜂) =
2Exp[2𝑥−2𝑡+2]

1−Exp[2𝑥−2𝑡+2]
,       (2.46) 

𝑅𝑗(𝜁) = 1 +
2Exp[2𝑥−2𝑡+2]

1−Exp[2𝑥−2𝑡+2]
,       (2.47) 

𝑉(𝑥, 𝑡) = {1 +
2Exp[2𝑥−2𝑡+2]

1−Exp[2𝑥−2𝑡+2]
} 𝑒𝑖(𝑥+4𝑡+0.1),    (2.48) 

𝑅𝑒𝑉(𝑥, 𝑡) = {1 +
2Exp[2𝑥−2𝑡+2]

1−Exp[2𝑥−2𝑡+2]
} cos( 𝑥 + 4𝑡 + 0.1),    (2.49) 

𝐼𝑚𝑉(𝑥, 𝑡) = {1 +
2Exp[2𝑥−2𝑡+2]

1−Exp[2𝑥−2𝑡+2]
} sin( 𝑥 + 4𝑡 + 0.1).    (2.50) 

As a result Figures 5 and 6 show the solitons for the RKLE of Eqs (2.49) and (2.50), respectively, 

in 2D and 3D. 
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Figure 5. Soliton for the RKLE of Eq (2.49) in 2D and 3D with the following values: 

𝐴−1 = 0, 𝜈 = 𝐴0 = 𝐴1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 𝑘 = −1, 𝑎1 = 2, 𝑎2 = 1,

𝜃0 = 0.1, 𝑤 = 4, 𝜂0 = 1. 

    

Figure 6. Soliton for the RKLE of Eq (2.50) in 2D and 3D with the following values: 

𝐴−1 = 0, 𝜈 = 𝐴0 = 𝐴1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 𝑘 = −1, 𝑎1 = 2, 𝑎2 = 1,

𝜃0 = 0.1, 𝑤 = 4, 𝜂0 = 1. 

3. PPAM 

The exact solution for Eq (2.2) in the framework of the PPAM [7–10] can be offered as follows: 

𝑅𝑗(𝜂) = 𝐴0 + 𝐴1𝑆𝑒
−𝑁𝜂 , 𝜒 = 𝜙(𝜂) = 𝐶1 −

𝑒−𝑁𝜂

𝑁
.      (3.1) 

Here, 𝑆(𝜒) in Eq (3.1) realizes the Riccati-equation and takes the form 𝑆𝜒 − 𝐴𝑆2 = 0, which 

has the solution 𝑆(𝜒) =
1

𝐴𝜒+𝜒0
. Anyhow, simple calculations of Eq (3.1) imply the following relations: 

𝑅𝑗
′ = −𝑁𝐴1𝑒

−𝑁𝜂𝑆 − 𝐴𝐴1𝑒
−2𝑁𝜂𝑆2,       (3.2) 

𝑅𝑗
″ = 𝑁2𝐴1𝑒

−𝑁𝜂𝑆 + 3𝑁𝐴𝐴1𝑒
−2𝑁𝜂𝑆2 + 2𝐴2𝐴1𝑒

−3𝑁𝜂𝑆3,     (3.3) 

𝑅𝑗
3 = 𝐴0

3 + 3𝐴0
2𝐴1𝑒

−𝑁𝜂𝑆 + 3𝐴0𝐴1
2𝑒−2𝑁𝜂𝑆2 + 𝐴1

3𝑒−3𝑁𝜂𝑆3.    (3.4) 

Now, we will apply the PPAM to construct the solitons for the RKLE of Eq (1.6) whose balance 

is 𝑀 = 1. Anyhow, by inserting 𝑅𝑗
″, 𝑅𝑗, and 𝑅𝑗

3 into Eq (1.6), we get 

(𝑎𝑗 + 3𝑘𝛽𝑗)(𝑁
2𝐴1𝑒

−𝑁𝜂𝑆 + 3𝑁𝐴𝐴1𝑒
−2𝑁𝜂𝑆2 + 2𝐴2𝐴1𝑒

−3𝑁𝜂𝑆3) 

−(𝑤 + 𝑎𝑗𝑘
2 + 𝛽𝑗𝑘

3](𝐴0 + 𝐴1𝑆𝑒
−𝑁𝜂) + (𝑏𝑗 − 𝑘𝜆𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗)(𝐴0 + 𝐴1𝑆𝑒

−𝑁𝜂)3 = 0. (3.5) 

The equivalence of various powers of 𝑆𝑒−𝑁𝜂 in Eq (3.5) leads to the following results: 



8995 

AIMS Mathematics  Volume 8, Issue 4, 8985–9008. 

𝐴0 = √
−𝑣−𝑘2𝑎𝑗+𝑘

3𝛽𝑗

−𝑏𝑗−𝑐𝑗+𝑘𝛾𝑗+𝑘𝜆𝑗
, 𝐴 = 𝑖𝐴1

√𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

√2𝑎𝑗+6𝑘𝛽𝑗

, 𝑁 =
𝐴0𝐴1(−𝑏𝑗−𝑐𝑗+𝑘𝛾𝑗+𝑘𝜆𝑗)

𝐴(𝑎𝑗+3𝑘𝛽𝑗)
,   (3.6) 

𝐴0 = √
−𝑣−𝑘2𝑎𝑗+𝑘

3𝛽𝑗

−𝑏𝑗−𝑐𝑗+𝑘𝛾𝑗+𝑘𝜆𝑗
, 𝐴 = −𝑖𝐴1

√𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

√2𝑎𝑗+6𝑘𝛽𝑗

, 𝑁 = −
𝐴0𝐴1(−𝑏𝑗−𝑐𝑗+𝑘𝛾𝑗+𝑘𝜆𝑗)

𝐴(𝑎𝑗+3𝑘𝛽𝑗)
,  (3.7) 

𝐴0 = −√
−𝑣−𝑘2𝑎𝑗+𝑘

3𝛽𝑗

−𝑏𝑗−𝑐𝑗+𝑘𝛾𝑗+𝑘𝜆𝑗
, 𝐴 = 𝑖𝐴1

√𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

√2𝑎𝑗+6𝑘𝛽𝑗

, 𝑁 =
𝐴0𝐴1(𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗)

𝐴(𝑎𝑗+3𝑘𝛽𝑗)
,   (3.8) 

𝐴0 = −√
−𝑣−𝑘2𝑎𝑗+𝑘

3𝛽𝑗

−𝑏𝑗−𝑐𝑗+𝑘𝛾𝑗+𝑘𝜆𝑗
, 𝐴 = −𝑖𝐴1

√𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗

√2𝑎𝑗+6𝑘𝛽𝑗

, 𝑁 = −
𝐴0𝐴1(𝑏𝑗+𝑐𝑗−𝑘𝛾𝑗−𝑘𝜆𝑗)

𝐴(𝑎𝑗+3𝑘𝛽𝑗)
.  (3.9) 

Anyhow, we will achieve four different solutions; for simplicity, we will study only the first one 

considering the following values: 

𝐴 = 𝑤 = 𝜈 = 𝜒0 = 𝐴1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 

𝐴0 = 0.9, 𝜃0 = 0.1, 𝑘 = −1, 𝑁 = 1.8.           (3.10) 

The solution obtained via the PPAM approach is as follows: 

𝑅𝑗(𝜂) = 𝐴0 +
𝐴1𝑒

−𝑁𝜂

𝐴(1−
𝑒−𝑁𝜂

𝑁
)+𝜒0

,        (3.11) 

𝑅𝑗(𝜂) = 0.9 +
1.8𝑒−1.8(𝑥−𝜈𝑡)

2.8−𝑒−1.8(𝑥−𝜈𝑡)
,        (3.12) 

𝑉(𝑥, 𝑡) = 𝑅(𝜂)𝑒𝑖𝜓(𝑥,𝑡), 

𝑉(𝑥, 𝑡) = (0.9 +
1.8𝑒−1.8(𝑥−𝜈𝑡)

2.8−𝑒−1.8(𝑥−𝜈𝑡)
) 𝑒𝑖(−𝑘𝑥+𝑤𝑡+𝜃0),     (3.13) 

𝑅𝑒𝑉(𝑥, 𝑡) = (0.9 +
1.8𝑒−1.8(𝑥−𝑡)

2.8−𝑒−1.8(𝑥−𝑡)
) cos( 𝑥 + 𝑡 + 0.1),    (3.14) 

𝐼𝑚𝑉(𝑥, 𝑡) = (0.9 +
1.8𝑒−1.8(𝑥−𝑡)

2.8−𝑒−1.8(𝑥−𝑡)
) sin( 𝑥 + 𝑡 + 0.1).    (3.15) 

    

Figure 7. Soliton for the RKLE of Eq (3.14) in 2D and 3D with the following values: 𝐴 =
𝑤 = 𝜈 = 𝜒0 = 𝐴1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 𝐴0 = 0.9, 𝜃0 = 0.1, 𝑘 = −1, 𝑁 = 1.8. 
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Figure 8. Soliton for the RKLE of Eq (3.15) in 2D and 3D with the following values: 𝐴 =
𝑤 = 𝜈 = 𝜒0 = 𝐴1 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 𝐴0 = 0.9, 𝜃0 = 0.1, 𝑘 = −1,

𝑁 = 1.8. 

As a result Figures 7 and 8 show the solitons for the RKLE of Eqs (3.14) and (3.15), respectively, 

in 2D and 3D. 

4. RBSODM 

This method can be summarized in the form of the following steps: 

Step 1. Set 

𝑅𝑗
′ = 𝑎𝑅𝑗

2−𝑠 + 𝑏𝑅𝑗 + 𝑐𝑅𝑗
𝑠,        (4.1) 

in which 𝑎, 𝑏, 𝑐, and 𝑠 are constants to be determined. 

Step 2. From Eq (4.1), we get 

𝑅𝑗
″ = 𝑎𝑏(3 − 𝑠)𝑅𝑗

2−𝑠 + 𝑎2(2 − 𝑠)𝑅𝑗
3−2𝑠 + 𝑠𝑐2𝑅𝑗

2𝑠−1 + 𝑏𝑐(𝑠 + 1)𝑅𝑗
𝑠 + (2𝑎𝑐 + 𝑏2)𝑅𝑗 .  (4.2) 

Remark 4.1. When 𝑎𝑐 ≠ 0 and 𝑠 = 0, Eq (4.1) tends to a Riccati, while if 𝑎 ≠ 0, 𝑐 = 0 and 𝑠 ≠ 1; 

Eq (4.1) becomes a Bernoulli. Clearly, the Riccati and Bernoulli equations are singular cases of Eq 

(4.1). Since Eq (4.1) is initially planned, we call Eq (4.1) the RBSODM to avoid presenting a new 

terminology. Anyhow, Eq (4.1) admits the following forms of solutions (Here, 𝐶1 ∈ ℝ): 

Case 1. When 𝑠 = 1, the solution is 𝑅𝑗(𝜂) = 𝐶1𝑒
(𝑎+𝑏+𝑐)𝜂 . 

Case 2. When 𝑠 ≠ 1, 𝑏 = 0, and 𝑐 = 0 the solution is 𝑅𝑗(𝜂) = (𝑎(𝑠 − 1)(𝜂 + 𝐶1))
1

(1−𝑠). 

Case 3. When 𝑠 ≠ 1, 𝑏 ≠ 0, and 𝑐 = 0 the solution is 𝑅𝑗(𝜂) = (−
𝑎

𝑏
+ 𝐶1𝑒

𝑏(𝑠−1)𝜂)

1

(𝑠−1)
. 

Case 4. When 𝑠 ≠ 1, 𝑎 ≠ 0, and 𝑏2 − 4𝑎𝑐 < 0 the solutions are 

𝑅𝑗(𝜂) = (
−𝑏

2𝑎
+
√4𝑎𝑐 − 𝑏2

2𝑎
tan(

(1 − 𝑠)√4𝑎𝑐 − 𝑏2

2
) (𝜂 + 𝐶1))

1
(1−𝑠)

, 

𝑅𝑗(𝜂) = (
−𝑏

2𝑎
−
√4𝑎𝑐 − 𝑏2

2𝑎
cot (

(1 − 𝑠)√4𝑎𝑐 − 𝑏2

2
) (𝜂 + 𝐶1))

1
(1−𝑠)

. 

Case 5. When 𝑠 ≠ 1, 𝑎 ≠ 0, and 𝑏2 − 4𝑎𝑐 > 0 the solutions are 
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𝑅𝑗(𝜂) = (
−𝑏

2𝑎
−
√𝑏2 − 4𝑎𝑐

2𝑎
coth (

(1 − 𝑠)√𝑏2 − 4𝑎𝑐

2
) (𝜂 + 𝐶1))

1
(1−𝑠)

, 

𝑅𝑗(𝜂) = (
−𝑏

2𝑎
−
√𝑏2 − 4𝑎𝑐

2𝑎
tanh(

(1 − 𝑠)√𝑏2 − 4𝑎𝑐

2
) (𝜂 + 𝐶1))

1
(1−𝑠)

. 

Case 6. When 𝑠 ≠ 1, 𝑎 ≠ 0, and 𝑏2 − 4𝑎𝑐 = 0, the solution is 

𝑅𝑗(𝜂) = (
1

𝐴(𝑠−1)(𝜂+𝐶1)
−

𝐵

2𝐴
)

1

1−𝑠
.       (4.3) 

Step 3. By inserting the derivatives of 𝑅 into Eq (4.1), we get an algebraic equation in P. Using the 

symmetry of the right-hand side of Eq (4.1) and setting the highest power exponents 𝑃, we can 

determine the value(s) of 𝑠. Anyhow, the equivalence of coefficients of 𝑃𝑖 implies a set of algebraic 

equations in 𝑎, 𝑏, 𝑐, and 𝐶1. By solving this system and utilizing 𝜂 = 𝑥 − 𝜈𝑡 and using one of the 

above forms of solutions of Eq. (4.1), the traveling wave solutions of Eq (2.2) will be achieved. 

Remark 4.2. The Bäcklund transformation concerning the RBSODM will generate an infinite 

sequence of solutions as follows [2]: 

𝑅𝑠(𝜂) = (
−𝑐𝐷1+𝑎𝐷2(𝑅𝑠−1(𝜂))

1−𝜀

𝑏𝐷1+𝑎𝐷2+𝑎𝐷1(𝑅𝑠−1(𝜂))
1−𝜀)

1

1−𝜀
.       (4.4) 

Here, we will apply the RBSODM to extract the solitons of the RKLE by inserting Eq (4.2) into 

Eq (1.6). Anyhow, we get 

(𝑎𝑗 + 3𝑘𝛽𝑗)(𝑎𝑏(3 − 𝑠)𝑅𝑗
2−𝑠 + 𝑎2(2 − 𝑠)𝑅𝑗

3−2𝑠 + 𝑠𝑐2𝑅𝑗
2𝑠−1 + 𝑏𝑐(𝑠 + 1)𝑅𝑗

𝑠 + (2𝑎𝑐 + 𝑏2)𝑅𝑗) 

−(𝑤 + 𝑎𝑗𝑘
2 + 𝛽𝑗𝑘

3]𝑅𝑗 + (𝑏𝑗 − 𝑘𝜆𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗)𝑅𝑗
3 = 0.    (4.5) 

Substituting 𝑠 = 0, we obtain 

(𝑎𝑗 + 3𝑘𝛽𝑗)(3𝑎𝑏𝑅𝑗
2 + 2𝑎2𝑅𝑗

3 + 𝑏𝑐 + (2𝑎𝑐 + 𝑏2)𝑅𝑗) 

−(𝑤 + 𝑎𝑗𝑘
2 + 𝛽𝑗𝑘

3)𝑅𝑗 + (𝑏𝑗 − 𝑘𝜆𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗)𝑅𝑗
3 = 0.     (4.6) 

By achieving the equivalence process between the various powers of 𝑅𝑗
𝑖, we get the following 

system: 

2𝑎2(𝑎𝑗 + 3𝑘𝛽𝑗) + (𝑏𝑗 − 𝑘𝜆𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗) = 0, 

3𝑎𝑏(𝑎𝑗 + 3𝑘𝛽𝑗) = 0, 

(𝑎𝑗 + 3𝑘𝛽𝑗)(2𝑎𝑐 + 𝑏2) − (𝑤 + 𝑎𝑗𝑘
2 + 𝛽𝑗𝑘

3) = 0, 

3𝑏𝑐(𝑎𝑗 + 3𝑘𝛽𝑗) = 0.        (4.7) 

The second and the fourth parts of Eq (4.7) imply that 𝑏 = 0, while the first and the third parts 

lead to the following results: 

2𝑎2(𝑎𝑗 + 3𝑘𝛽𝑗) + (𝑏𝑗 − 𝑘𝜆𝑗 + 𝑐𝑗 − 𝑘𝛾𝑗) = 0 
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(𝑎𝑗 + 3𝑘𝛽𝑗)(2𝑎𝑐 + 𝑏2) − (𝑤 + 𝑎𝑗𝑘
2 + 𝛽𝑗𝑘

3) = 0.     (4.8) 

In another formation, one can write 

𝑎 = ±√
𝑘𝜆𝑗+𝑘𝛾𝑗−𝑏𝑗−𝑐𝑗

2(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑐 =

𝑤+𝑎𝑗𝑘
2+𝛽𝑗𝑘

3

2𝑎(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑏 = 0.     (4.9) 

This generates the following different solutions:

 𝑎 = √
𝑘𝜆𝑗+𝑘𝛾𝑗−𝑏𝑗−𝑐𝑗

2(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑐 =

𝑤+𝑎𝑗𝑘
2+𝛽𝑗𝑘

3

2𝑎(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑏 = 0.      (4.10) 

𝑎 = √
𝑘𝜆𝑗+𝑘𝛾𝑗−𝑏𝑗−𝑐𝑗

2(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑐 = −

𝑤+𝑎𝑗𝑘
2+𝛽𝑗𝑘

3

2𝑎(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑏 = 0.     (4.11) 

𝑎 = −√
𝑘𝜆𝑗+𝑘𝛾𝑗−𝑏𝑗−𝑐𝑗

2(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑐 =

𝑤+𝑎𝑗𝑘
2+𝛽𝑗𝑘

3

2𝑎(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑏 = 0.     (4.12) 

𝑎 = −√
𝑘𝜆𝑗+𝑘𝛾𝑗−𝑏𝑗−𝑐𝑗

2(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑐−=

𝑤+𝑎𝑗𝑘
2+𝛽𝑗𝑘

3

2𝑎(𝑎𝑗+3𝑘𝛽𝑗)
, 𝑏 = 0.     (4.13) 

For simplicity, we choose only the first result and derive the following corresponding solution: 

𝑎 = √
𝑘𝜆𝑗 + 𝑘𝛾𝑗 − 𝑏𝑗 − 𝑐𝑗

2(𝑎𝑗 + 3𝑘𝛽𝑗)
, 𝑐 =

𝑤 + 𝑎𝑗𝑘
2 + 𝛽𝑗𝑘

3

2𝑎(𝑎𝑗 + 3𝑘𝛽𝑗)
, 𝑏 = 0.

 

Anyhow, one can find the following results: 

𝑎 = ±1, 𝑐 = ±
1

4
, 𝑏 = 0,𝑤 = 𝜈 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 

𝜃0 = 0.1, 𝑘 = −1.        (4.14) 

From Eq (4.14), we have four sub-results and among them, we will study the following case: 

𝑎 = 1, 𝑐 = 0.25, 𝑏 = 0, 𝑤 = 𝜈 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 

𝜃0 = 0.1, 𝑘 = −1.        (4.15) 

This result will achieve two forms of solutions of Eq (1.4) as follows: 

𝑅𝑗(𝜂) =
−𝑏

2𝑎
+
√4𝑎𝑐 − 𝑏2

2𝑎
tan(

√4𝑎𝑐 − 𝑏2

2
) (𝜂 + 𝐶1), 

𝑅𝑗(𝜂) =
−𝑏

2𝑎
−
√4𝑎𝑐 − 𝑏2

2𝑎
cot (

√4𝑎𝑐 − 𝑏2

2
) (𝜂 + 𝐶1). 

The first part can be written as follows: 

𝑅𝑗(𝜂) = 0.5 tan 0 . 5(𝜂 + 𝐶1),        (4.16)
 

𝑉(𝑥, 𝑡) = (0.5 tan 0 . 5(𝑥 − 𝑡 + 1))𝑒𝑖(𝑥+𝑡+0.1),      (4.17) 

𝑅𝑒𝑉(𝑥, 𝑡) = (0.5 tan 0 . 5(𝑥 − 𝑡 + 1)) cos( 𝑥 + 𝑡 + 0.1),    (4.18) 



8999 

AIMS Mathematics  Volume 8, Issue 4, 8985–9008. 

𝐼𝑚𝑉(𝑥, 𝑡) = (0.5 tan 0 . 5(𝑥 − 𝑡 + 1)) sin( 𝑥 + 𝑡 + 0.1).    (4.19) 

As a result Figures 9 and 10 show the solitons for the RKLE of Eqs (4.17) and (4.18), respectively, 

in 2D and 3D. 

    

Figure 9. Soliton for the RKLE of Eq (4.17) in 2D and 3D with the following values: 𝑎 =
1, 𝑐 = 0.25, 𝑏 = 0, 𝐶1 = 𝑤 = 𝜈 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 𝜃0 = 0.1, 𝑘 = −1. 

    

Figure 10. Soliton for the RKLE of Eq (4.18) in 2D and 3D with the following values: 

𝑎 = 1, 𝑐 = 0.25, 𝑏 = 0, 𝐶1 = 𝑤 = 𝜈 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 𝜃0 = 0.1, 𝑘 =

−1. 

Similarly, the second part can be written as follows: 

𝑅𝑗(𝜂) = −0.5 cot[ 0.5(𝜂 + 𝐶1)],      (4.20) 

𝑉(𝑥, 𝑡) = (−0.5 cot 0 . 5(𝑥 − 𝑡 + 1))𝑒𝑖(𝑥+𝑡+0.1),    (4.21) 

𝑅𝑒𝑉(𝑥, 𝑡) = (−0.5 𝑐𝑜𝑡 0 . 5(𝑥 − 𝑡 + 1)) cos( 𝑥 + 𝑡 + 0.1),   (4.22) 

𝐼𝑚𝑉(𝑥, 𝑡) = (−0.5 cot 0 . 5(𝑥 − 𝑡 + 1)) sin( 𝑥 + 𝑡 + 0.1).   (4.23) 

As a result Figures 11 and 12 show the solitons for the RKLE of Eqs (4.22) and (4.23), 

respectively, in 2D and 3D. 
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Figure 11. Soliton for the RKLE of Eq (4.22) in 2D and 3D with the following values: 
𝑎 = 1, 𝑐 = 0.25, 𝑏 = 0, 𝐶1 = 𝑤 = 𝜈 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 𝜃0 = 0.1, 𝑘 = −1. 

    

Figure 12. Soliton for the RKLE of Eq (4.23) in 2D and 3D with the following values: 
𝑎 = 1, 𝑐 = 0.25, 𝑏 = 0, 𝐶1 = 𝑤 = 𝜈 = 𝑎𝑗 = 𝑏𝑗 = 𝑐𝑗 = 𝛾𝑗 = 𝛽𝑗 = 𝜆𝑗 = 1, 𝜃0 = 0.1, 𝑘 =

−1. 

5. Quickly overview of SWAM 

To investigate the SWAM, let us first consider the following general form of a nonlinear partial 

differential equation: 

𝐺(𝑈, 𝑈𝑥, 𝑈𝑡, 𝑈𝑥𝑥, 𝑈𝑡𝑡 , . . . ) = 0.        (5.1)
 

Here, the substituting 𝑈(𝑥, 𝑡) = 𝑈(𝜂) with 𝜂 = 𝑥 − 𝜈𝑡 in Eq (5.1) will lead to the following 

ODE: 

H(U, U', U'', U‴, . . . ) = 0.        (5.2) 

Here, H is a function of U(ζ) and its total derivatives. 

The form of the solution utilizing the SWAM [1,3,4–6] can be written as follows: 

𝑈(𝑥, 𝑡) = 𝜓(𝑥, 𝑡)𝑒𝑖𝑅(𝑥,𝑡), 𝑅(𝑥, 𝑡) = 𝑘𝑥 − 𝛺𝑡.     (5.3) 

Here, 𝜓(𝑥, 𝑡) and 𝑅(𝑥, 𝑡) respectively denote the portion largeness and phase slice of the soliton. 

The following relations can be easily derived from Eq (5.3): 

𝑈𝑡 = (𝜓𝑡 + 𝑖𝜓𝑅𝑡)𝑒
𝑖𝑅 ,        (5.4) 

𝑈𝑥 = (𝜓𝑥 + 𝑖𝜓𝑅𝑥)𝑒
𝑖𝑅 ,        (5.5) 
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𝑈𝑥𝑥 = (𝜓𝑥𝑥 + 2𝑖𝜓𝑥𝑅𝑥 + 𝑖𝜓𝑅𝑥𝑥 − 𝜓𝑅𝑥
2)𝑒𝑖𝑅 ,     (5.6) 

𝑈𝑥𝑥𝑥 = (𝜓𝑥𝑥𝑥 + 3𝑖𝑅𝑥𝜓𝑥𝑥 + 3𝑖𝑅𝑥𝑥𝜓𝑥 + 𝑖𝑅𝑥𝑥𝑥𝜓 − 𝑖𝑅𝑥
3𝜓 − 3𝑅𝑥𝑅𝑥𝑥𝜓)𝑒

𝑖𝑅 . (5.7) 

In the framework of [14,16], the KRLE for birefringent fiber with the Kerr-Law of nonlinearity 

can be written in the following form: 

𝑖𝑄𝑡 + 𝛼𝑄𝑥𝑥 + 𝛽|𝑄2|𝑄 = 𝑖𝜆(|𝑄|2𝑄)𝑥 − 𝑖𝛿𝑄𝑥𝑥𝑥 .     (5.8) 

Thus, considering the 4WM, Eq (5.8) can be written as follows: 

𝑖𝑈𝑡 + 𝛼1𝑈𝑥𝑥 + [𝛽1|𝑈|
2 + 𝛾1|𝑉|

2]𝑈 = 𝑖[𝜆1(|𝑈|
2𝑈)𝑥 + 𝜃1(|𝑉|

2𝑈)𝑥] − 𝑖𝛿1𝑈𝑥𝑥𝑥,  (5.9) 

𝑖𝑉𝑡 + 𝛼2𝑉𝑥𝑥 + [𝛽2|𝑉|
2 + 𝛾2|𝑈|

2]𝑉 = 𝑖[𝜆2(|𝑉|
2𝑉)𝑥 + 𝜃2(|𝑈|

2𝑉)𝑥] − 𝑖𝛿2𝑉𝑥𝑥𝑥.   (5.10) 

These two equations are the same when 𝑈 = 𝑉; hence, we will implement the suggested method 

for only one of them. By combining Eqs (5.3)–(5.7) with Eq (5.9), we get 

𝑖(𝜓𝑡 + 𝑖𝜓𝑅𝑡)𝑒
𝑖𝑅 + 𝛼1(𝜓𝑥𝑥 + 2𝑖𝜓𝑥𝑅𝑥 + 𝑖𝜓𝑅𝑥𝑥 − 𝜓𝑅𝑥

2)𝑒𝑖𝑅 + (𝛽1 + 𝛾1)𝜓
3𝑒𝑖𝑅 = 𝑖(𝜆1 + 𝜃1) 

(3𝜓2𝜓𝑥𝑒
𝑖𝑅 + 𝑖𝑘𝜓3𝑒𝑖𝑅) − 𝑖𝛿1(𝜓𝑥𝑥𝑥 + 3𝑖𝑅𝑥𝜓𝑥𝑥 + 3𝑖𝑅𝑥𝑥𝜓𝑥 + 𝑖𝑅𝑥𝑥𝑥𝜓 − 𝑖𝑅𝑥

3𝜓 − 3𝑅𝑥𝑅𝑥𝑥𝜓)𝑒
𝑖𝑅 . (5.11) 

So, the real and imaginary parts can be simplified as follows: 

𝑅𝑒: (𝑎1 − 3𝛿1𝑘)𝜓𝑥𝑥 + [𝛽1 + 𝛾1 + 𝑘(𝜆1 + 𝜃1)]𝜓
3 − (𝛺 + 𝛼1𝑘

2 − 𝛿1𝑘
3)𝜓 = 0.  (5.12) 

𝐼𝑚:𝜓𝑡 + 𝛿1𝜓𝑥𝑥𝑥 − 3(𝜆1 + 𝜃1)𝜓
2𝜓𝑥 + 2𝛼1𝑘𝜓𝑥 = 0.     (5.13) 

Next, we will investigate the bright and dark soliton solutions individually. 

5.1 Bright solitons 

Put 𝑡1 = 𝑥 − 𝑣1𝑡 and consider the following: 

𝜓(𝑥, 𝑡) = 𝐴1 sech
𝑃 𝑡1,        (5.14) 

𝜓𝑡 = −𝐴1𝑣1𝑃 sech
𝑃 𝑡1 tanh 𝑡1,       (5.15) 

𝜓𝑥 = 𝐴1𝑃 sech
𝑃 𝑡1 tanh 𝑡1,        (5.16) 

𝜓𝑥𝑥 = 𝐴1𝑃(1 + 𝑃) sech𝑃+2 𝑡1 − 𝐴1𝑃
2 sech𝑃 𝑡1,     (5.17) 

𝜓𝑥𝑥𝑥 = 𝐴1𝑃(𝑃 + 1)(𝑃 + 2) sech𝑃+2 𝑡1 tanh 𝑡1 − 𝐴1𝑃
3 sech𝑃 𝑡1 tanh 𝑡1.  (5.18) 

By inserting Eqs (5.15)–(5.19) into Eqs (5.12) and (5.13), we get 

(𝛼1 − 3𝛿1𝑘)𝐴1𝑃(1 + 𝑃) sech𝑃+2 𝑡1 − 𝐴1𝑃
2 sech𝑃 𝑡1 

+[𝛽1 + 𝛾1 + 𝑘(𝜆1 + 𝜃1)]𝐴1
3 sech3𝑃 𝑡1 − (𝛺 + 𝛼1𝑘

2 − 𝛿1𝑘
3)𝐴1 sech

𝑃 𝑡1 = 0.  (5.19) 

−𝐴1𝑣1𝑃 sech
𝑃 𝑡1 tanh 𝑡1 + 𝛿1[𝐴1𝑃(𝑃 + 1)(𝑃 + 2) sech𝑃+2 𝑡1 tanh 𝑡1 − 𝐴1𝑃

3 sech𝑃 𝑡1 tanh 𝑡1] 

−3(𝜆1 + 𝜃1)𝐴1
3𝑃 sech3𝑃 𝑡1 tanh 𝑡1 + 2𝛼1𝑘𝐴1𝑃 sech

𝑃 𝑡1 tanh 𝑡1 = 0.   (5.20) 

When the equivalence is implemented between the higher orders of sech𝑖 𝑡1 in Eq (5.19), we get 

𝑃 = 1. Substituting 𝑃 = 1 into Eqs (5.19) and (5.20), we get the following results: 
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𝛺 = 𝛿1𝑘
3 − 𝛼1𝑘

2 − 1, 𝐴1
2 =

2𝛼1

2𝑘(𝜆1+𝜃1)−𝛽1−𝛾1
, 𝑣1 = 2𝛼1𝑘 − 𝛿1.    (5.21) 

From Eq (5.21), we obtian 𝑃 = 1, 𝑘 = 𝛼1 = 𝛽1 = 𝛾1 = 𝜆1 = 𝜃1 = 𝛿1 = 𝑣1 = 1, 𝐴1 = ±1, and 

𝛺 = −1. Thus, the suggested solution is as follows: 

𝑈 = ±sech( 𝑥 − 𝑡)𝑒𝑖(𝑥+𝑡),       (5.22) 

Re𝑈 = ±sech( 𝑥 − 𝑡) cos( 𝑥 + 𝑡),      (5.23) 

Im𝑈 = ±sech( 𝑥 − 𝑡) sin( 𝑥 + 𝑡).      (5.24) 

As a result Figures 13 and 14 show the bright solitons for the RKLE of Eqs (5.23) and (5.24), 

respectively, in 2D and 3D. 

    

Figure 13. Bright soliton for the RKLE of Eq (5.23) in 2D and 3D with the following 

values: 𝑃 = 1, 𝑘 = 𝛼1 = 𝛽1 = 𝛾1 = 𝜆1 = 𝜃1 = 𝛿1 = 𝑣1 = 1, 𝐴1 = 1,𝛺 = −1. 

    

Figure 14. Bright soliton for the RKLE of Eq (5.24) in 2D and 3D with the following 

values: 𝑃 = 1, 𝑘 = 𝛼1 = 𝛽1 = 𝛾1 = 𝜆1 = 𝜃1 = 𝛿1 = 𝑣1 = 1, 𝐴1 = 1,𝛺 = −1. 

5.2 Dark solitons 

Put 𝑡2 = 𝑥 − 𝑣2𝑡 and consider the following: 

𝜓(𝑥, 𝑡) = 𝐴2 tanh
𝑃 𝑡2,        (5.25) 

𝜓𝑡 = −𝐴2𝑃𝑣2[tanh
𝑃−1 𝑡2 − tanh𝑃+1 𝑡2],      (5.26) 

𝜓𝑥 = 𝐴2𝑃[tanh
𝑃−1 𝑡2 − tanh𝑃+1 𝑡2],       (5.27) 

𝜓𝑥𝑥 = 𝐴2𝑃(𝑃 − 1) tanh𝑃−2 𝑡2 − 2𝐴2𝑃
2 tanh𝑃 𝑡2 + 𝐴2𝑃(𝑃 + 1) tanh𝑃+2 𝑡2,  (5.28) 
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𝜓𝑥𝑥𝑥 = 𝐴2𝑃(𝑃 − 1)(𝑃 − 2) tanh𝑃−3 𝑡2 − [𝐴2𝑃(𝑃 − 1)(𝑃 − 2) + 2𝐴2𝑃
3] tanh𝑃−1 𝑡2 

+[𝐴2𝑃(𝑃 + 1)(𝑃 + 2) + 2𝐴2𝑃
3] tanh𝑃+1 𝑡2 − 𝐴2𝑃(𝑃 + 1)(𝑃 + 2) tanh𝑃+3 𝑡2.  (5.29) 

By inserting Eqs (5.25)–(5.29) into Eqs (5.12) and (5.13), we get 

(𝛼1 − 3𝛿1𝑘)[𝐴2𝑃(𝑃 − 1) tanh𝑃−2 𝑡2 − 2𝐴2𝑃
2 tanh𝑃 𝑡2 + 𝐴2𝑃(𝑃 + 1) tanh𝑃+2 𝑡2] 

+[𝛽1 + 𝛾1 + 𝑘(𝜆1 + 𝜃1)]𝐴2
3 tanh3𝑃 𝑡2 − (𝛺 + 𝛼1𝑘

2 − 𝛿1𝑘
3)𝐴2 tanh

𝑃 𝑡2 = 0.  (5.30) 

−𝐴2𝑃𝑣2[tanh
𝑃−1 𝑡2 − tanh𝑃+1 𝑡2] 

+𝛿1 {
𝐴2𝑃(𝑃 − 1)(𝑃 − 2) tanh𝑃−3 𝑡2 − [𝐴2𝑃(𝑃 − 1)(𝑃 − 2) + 2𝐴2𝑃

3] tanh𝑃−1 𝑡2
+[𝐴2𝑃(𝑃 + 1)(𝑃 + 2) + 2𝐴2𝑃

3] tanh𝑃+1 𝑡2 − 𝐴2𝑃(𝑃 + 1)(𝑃 + 2) tanh𝑃+3 𝑡2
} 

−3(𝜆1 + 𝜃1)𝐴2
3𝑃[tanh𝑃+1 𝑡2 − tanh𝑃+3 𝑡2] + 2𝛼1𝑘𝐴2𝑃[tanh

𝑃−1 𝑡2 − tanh𝑃+1 𝑡2] = 0. (5.31) 

By equating the higher orders of tanh𝑖 𝑡2 in Eq (5.30) and substituting 𝑃 = 1, the following 

relations will be obtained: 

𝛺 = 𝛿1𝑘
3 + 6𝛿1𝑘 − 2𝛼1 − 𝛼1𝑘

2, 2(𝛼1 − 3𝛿1𝑘) + [𝛽1 + 𝛾1 + 𝑘(𝜆1 + 𝜃1)]𝐴2
2 = 0.  (5.32) 

Substituting 𝑃 = 1 into the imaginary part of Eq (5.31), we get 

𝐴2
2 =

2𝛿1

(𝜆1+𝜃1)
, 𝑣2 = 2𝛼1𝑘 − 2𝛿1.       (5.33) 

Now, Eqs (5.32) and (5.33) lead to 

𝑣2 = 2𝛼1𝑘 − 2𝛿1, 𝛺 = 𝛿1𝑘
3 + 6𝛿1𝑘 − 2𝛼1 − 𝛼1𝑘

2, 𝐴2
2 =

2𝛼1−4𝛿1𝑘

𝛽1+𝛾1
.   (5.34) 

After simplification, we get 

𝑃 = 𝛼1 = 𝛽1 = 𝛾1 = 𝜆1 = 𝜃1 = 𝛿1 = 1, 𝐴2 = ±1.7, 

𝑘 = −1, 𝛺 = −10, 𝑣2 = −4.        (5.35) 

This result will generate two solutions according to the value of 𝐴2. Anyhow, these two solutions 

in the framework of the suggested method are as follows: 

𝑈(𝑥, 𝑡) = 𝐴2𝑒
𝑖𝑅(𝑥,𝑡) tanh𝑃 𝑡2, 

𝑈(𝑥, 𝑡) = ±1.7 tanh( 𝑥 + 4𝑡)𝑒𝑖(−𝑥+10𝑡),     (5.36) 

Re𝑈(𝑥, 𝑡) = ±1.7 tanh( 𝑥 + 4𝑡) cos(−𝑥 + 10𝑡),     (5.37) 

Im𝑈(𝑥, 𝑡) = ±1.7 tanh( 𝑥 + 4𝑡) sin( − 𝑥 + 10𝑡).     (5.38) 

As a result Figures 15 and 16 show the dark solitons for the RKLE of Eqs (5.37) and (5.38), 

respectively, in 2D and 3D. 
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Figure 15. Dark soliton for the RKLE of Eq (5.37) in 2D and 3D with the following values:
 𝑃 = 𝛼1 = 𝛽1 = 𝛾1 = 𝜆1 = 𝜃1 = 𝛿1 = 1, 𝐴2 = 1.7, 𝑘 = −1, 𝛺 = −10, 𝑣2 = −4. 

    

Figure 16. Dark soliton for the RKLE of Eq (5.38) in 2D and 3D with the following values: 

𝑃 = 𝛼1 = 𝛽1 = 𝛾1 = 𝜆1 = 𝜃1 = 𝛿1 = 1, 𝐴2 = 1.7, 𝑘 = −1, 𝛺 = −10, 𝑣2 = −4. 

6. Conclusions 

In this paper, various multiple types of soliton solutions of the RKLE have been constructed 

perfectly. The obtained solutions have single-velocity traveling wave solutions. Many types of 

solutions have been established as W-shaped, M-shaped, periodic trigonometric, hyperbolic, bright, 

and dark soliton solutions; other rational forms of solutions have been obtained by using the utlized 

methods. Our new impressive multiple soliton solutions that give a good description of the arising 

solitons for the PKLE will encourage modern studies of this model. These achieved new soliton 

solutions can be arranged to create something that we will name a catalog. The interesting aspect of 

our work is the fact that these are periodic solutions in which single solitons propagate in parallel as 

realized by Whitham [47] who is one of the scientists that had a serious paper dealing with the idea of 

parallel identical single solitons and gave the elementary arguments for various results in wave 

propagation from the perspective of the representation of periodic waves as sums of solitons for the 

Korteweg-de Vries, various modified Korteweg-de Vries, and Boussinesq equations. The novelty of 

our achieved soliton solutions appears when comparing the documented solitons in this catalog with 

those previously achieved before. Consequently, new important and impressive visions of the solitons 

of this model which were not constructed before have been demonstrated and will encourage extended 

future studies not only for this model but also for all related phenomena. 

Acknowledgments 

The work in this study was supported, in part, by the Open Access Program from the American 



9005 

AIMS Mathematics  Volume 8, Issue 4, 8985–9008. 

University of Sharjah. This study represents the opinions of the author(s) and does not mean to 

represent the position or opinions of the American University of Sharjah. 

Conflict of interest 

The authors declare that they have no competing interest. 

References 

1. A. Bekir, E. H. M. Zahran, Bright and dark soliton solutions for the complex Kundu-Eckhaus 

equation, Optik, 223 (2020), 165233. https://doi.org/10.1016/j.ijleo.2020.165233 

2. A. Bekir, E. H. M. Zahran, Three distinct and impressive visions for the soliton solutions to the 

higher-order nonlinear Schrödinger equation, Optik, 228 (2021), 166157. 

https://doi.org/10.1016/j.ijleo.2020.166157 

3. A. Bekir, E. H. M. Zahran, New vision for the soliton solutions to the complex Hirota-dynamical 

model, Phys. Scripta, 96 (2021), 055212. https://doi.org/10.1088/1402-4896/abe889 

4. A. Biswas, 1-soliton solution of the K (m, n) equation with generalized evolution, Phys. Lett. A, 

372 (2008), 4601–4602. https://doi.org/10.1016/j.physleta.2008.05.002 

5. H. Triki, A. M. Wazwaz, Bright and dark soliton solutions for a K (m,n) equation with t-dependent 

coefficients, Phys. Lett. A, 373 (2009), 2162–2165. 

https://doi.org/10.1016/j.physleta.2009.04.029 

6. H. Triki, A. M. Wazwaz, Bright and dark solitons for a generalized Korteweg-de Vries-modified 

Korteweg-de Vries equation with high-order nonlinear terms and time-dependent coefficients, 

Can. J. Phys., 89 (2011), 253–259. https://doi.org/10.1139/P11-015 

7. N. A. Kudryashov, The Painlevé approach for finding solitary wave solutions of nonlinear non-

integrable differential equations, Optik, 183 (2019), 642–649. 

https://doi.org/10.1016/j.ijleo.2019.02.087 

8. A. Bekir, E. H. M. Zahran, Optical soliton solutions of the thin-film ferro-electric materials 

equation according to the Painlevé approach, Opt. Quantum Electron., 53 (2021), 118. 

https://doi.org/10.1007/s11082-021-02754-w 

9. A. Bekir, E. H. M. Zahran, Painlevé approach and its applications to get new exact solutions of 

three biological models instead of its numerical solutions, Int. J. Mod. Phys. B, 34 (2020), 

2050270. https://doi.org/10.1142/S0217979220502707 

10. A. Bekir, E. H. M. Zahran, New visions of the soliton solutions to the modified nonlinear 

Schrodinger equation, Optik, 232 (2021), 166539. https://doi.org/10.1016/j.ijleo.2021.166539 

11. M. S. M. Shehata, H. Rezazadeh, E. H. M. Zahran, E. Tala-Tebue, A. Bekir, New optical soliton 

solutions of the perturbed Fokas-Lenells equation, Commun. Theor. Phys., 71 (2019), 1275c1280. 

https://doi.org/10.1088/0253-6102/71/11/1275 

12. A. Bekir, E. H. M. Zahran, New multiple-different impressive perceptions for the solitary solution 

to the magneto-optic waveguides with anti-cubic nonlinearity, Optik, 240 (2021), 166939. 

https://doi.org/10.1016/j.ijleo.2021.166939 

13. A. Biswas, Y. Yildirim, E. Yasar, M. F. Mahmood, A. S. Alshomrani, Q. Zhou, et al., Optical 

soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration 

schemes, Optik, 163 (2018), 126–136. https://doi.org/10.1016/j.ijleo.2018.02.109 

https://doi.org/10.1016/j.ijleo.2020.165233
https://doi.org/10.1016/j.ijleo.2020.166157
https://doi.org/10.1088/1402-4896/abe889
https://doi.org/10.1016/j.physleta.2008.05.002
https://doi.org/10.1016/j.physleta.2009.04.029
https://doi.org/10.1139/P11-015
https://doi.org/10.1016/j.ijleo.2019.02.087
https://doi.org/10.1007/s11082-021-02754-w
https://doi.org/10.1142/S0217979220502707
https://www.sciencedirect.com/science/journal/00304026
https://www.sciencedirect.com/science/journal/00304026/232/supp/C
https://doi.org/10.1016/j.ijleo.2021.166539
https://doi.org/10.1088/0253-6102/71/11/1275
https://doi.org/10.1016/j.ijleo.2021.166939
https://doi.org/10.1016/j.ijleo.2018.02.109


9006 

AIMS Mathematics  Volume 8, Issue 4, 8985–9008. 

14. N. A. Kudryashov, D. V. Safonova, A. Biswas, Painleve analysis and a solution to the traveling 

wave reduction of the Radhakrishnan-Kundu-Lakshmanan equation, Regul. Chaotic Dyn., 24 

(2019), 607–614. https://doi.org/10.1134/S1560354719060029 

15. H. U. Rehman, M. S. Saleem, A. M. Sultan, M. Iftikhar, Comments on dynamics of optical 

solitons with Radhakrishnan-Kundu-Lakshmanan model via two reliable integration schemes, 

Optik, 178 (2019), 557–566. https://doi.org/10.1016/j.ijleo.2018.12.010 

16. T. A. Sulaiman, H. Bulut, G. Yel, S. S. Atas, Optical solitons to the fractional perturbed 

Radhakrishnan-Kundu-Lakshmanan model, Opt. Quant. Electron., 50 (2018), 372. 

https://doi.org/10.1007/s11082-018-1641-7 

17. B. Sturdevant, D. A. Lott, A. Biswas, Topological 1-soliton solution of the generalized 

Radhakrishnan, Kundu, Lakshmanan equation with nonlinear dispersion, Mod. Phys. Lett. B, 24 

(2010), 1825–1831. https://doi.org/10.1142/S0217984910024109 

18. S. Arshed, A. Biswas, P. Guggilla, A. S. Alshomrani, Optical solitons for Radhakrishnan-Kundu-

Lakshmanan equation with full nonlinearity, Phys. Lett. A, 384 (2020), 126191. 

https://doi.org/10.1016/j.physleta.2019.126191 

19. A. Bansal, A. Biswas, M. F. Mahmood, Q. Zhou, M. Mirzazadeh, A. S. Alshomrani, et al., Optical 

soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by Lie group analysis, 

Optik, 163 (2018), 137–141. https://doi.org/10.1016/j.ijleo.2018.02.104 

20. A. Biswas, 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation, 

Phys. Lett. A, 373 (2009), 2546–2548. https://doi.org/10.1016/j.physleta.2009.05.010 

21. A. Biswas, Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by 

traveling wave hypothesis, Optik, 171 (2018), 217–220. 

https://doi.org/10.1016/j.ijleo.2018.06.043 

22. A. Biswas, M. Ekici, A. Sonmezoglu, A. S. Alshomrani, Optical solitons with Radhakrishnan, 

Kundu, Lakshmanan equation by extended trial function scheme, Optik, 160 (2018), 415–427. 

https://doi.org/10.1016/j.ijleo.2018.02.017 

23. N. A. Kudryashov, The Radhakrishnan-Kundu-Lakshmanan equation with arbitrary refractive 

index and its exact solutions, Optik, 238 (2021), 166738. https://doi.org/ 

10.1016/j.ijleo.2021.166738 

24. D. D. Ganji, A. Asgari, Z. Z. Ganji, Exp-function based solution of nonlinear Radhakrishnan, 

Kundu and Laskshmanan (RKL) equation, Acta Appl. Math., 104 (2008), 201–209. 

https://doi.org/ 10.1007/s10440-008-9252-0 

25. O. Gonzalez-Gaxiola, A. Biswas, Optical solitons with Radhakrishnan-Kundu-Lakshmanan 

equation by Laplace-Adomian decomposition method, Optik, 179 (2019), 434–442. 

https://doi.org/10.1016/j.ijleo.2018.10.173 

26. A. Neirameh, Soliton solutions modeling of generalized Radhakrishnan-Kundu-Lakshmanan 

equation, J. Appl. Phys., 8 (2018), 71–80. https://doi.org/10.22051/JAP.2019.21375.1099 

27. S. S. Singh, Solutions of Kudryashov-Sinelshchikov equation and generalized Radhakrishnan-

Kundu-Lakshmanan equation by the first integral method, Int. J. Phys. Res., 4 (2016), 37–42. 

https://doi.org/10.14419/ijpr.v4i2.6202 

28. B. Ghanbari, J. F. Gómez-Aguilar, Optical soliton solutions for the nonlinear Radhakrishnan-

Kundu-Lakshmanan equation, Mod. Phys. Lett. B, 33 (2019), 1950402. 

https://doi.org/10.1142/S0217984919504025 

https://doi.org/10.1134/S1560354719060029
https://doi.org/10.1016/j.ijleo.2018.12.010
https://doi.org/10.1007/s11082-018-1641-7
https://doi.org/10.1142/S0217984910024109
https://doi.org/10.1016/j.physleta.2019.126191
https://doi.org/10.1016/j.ijleo.2018.02.104
https://doi.org/10.1016/j.physleta.2009.05.010
https://doi.org/10.1016/j.ijleo.2018.06.043
https://doi.org/10.1016/j.ijleo.2018.02.017
https://doi.org/%2010.1016/j.ijleo.2021.166738
https://doi.org/%2010.1016/j.ijleo.2021.166738
https://doi.org/%2010.1007/s10440-008-9252-0
https://doi.org/10.1016/j.ijleo.2018.10.173
https://doi.org/10.22051/jap.2019.21375.1099
https://doi.org/10.14419/ijpr.v4i2.6202
https://www.worldscientific.com/doi/abs/10.1142/S0217984919504025
https://www.worldscientific.com/doi/abs/10.1142/S0217984919504025
Mod.%20Phys.%20Lett.%20B
,%2033%20(2019),%201950402
https://doi.org/10.1142/S0217984919504025


9007 

AIMS Mathematics  Volume 8, Issue 4, 8985–9008. 

29. S. Rehman, J. Ahmad, Modulation instability analysis and optical solitons in birefringent fibers 

to RKL equation without four wave mixing, Alex. Eng. J., 60 (2021), 1339–1354. 

https://doi.org/10.1016/j.aej.2020.10.055 

30. Y. Yıldırım, A. Biswas, M. Ekici, H. Triki, O. Gonzalez-Gaxiol, A. K. Alzahrani, et al., Optical 

solitons in birefringent fibers for Radhakrishnan-Kundu-Lakshmanan equation with five prolific 

integration norms, Optik, 208 (2020), 164550. https://doi.org/10.1016/j.ijleo.2020.164550 

31. Y. Yıldırım, A. Biswas, Q. Zhou, A. S. Alshomrani, M. R. Belic, Optical solitons in 

birefringentfibers for Radhakrishnan-Kundu-Lakshmanan equation with acouple of strategic 

integration architectures, Chin. J. Phys., 65 (2020), 341–354. 

https://doi.org/10.1016/j.cjph.2020.02.029 

32. J. H. He, Exp-function method for fractional differential equations, Int. J. Nonlinear Sci. Numer. 

Simul., 14 (2013), 363–366. https://doi.org/10.1515/ijnsns-2011-0132 

33. Y. Tian, J. Liu, A modified exp-function method for fractional partial differential equations, Therm. 

Sci., 25 (2021), 1237–1241. https://doi.org/10.2298/TSCI200428017T 

34. F. Y. Ji, C. H. He, J. J. Zhang, A fractal Boussinesq equation for nonlinear transverse vibration of 

a nanofiber-reinforced concrete pillar, Appl. Math. Modell. , 82 (2020) 437–448. 

https://doi.org/10.1016/j.apm.2020.01.027 

35. J. H. He, N. Qie, C. H. He, Solitary waves travelling along an unsmooth boundary, Results Phys., 

24 (2021), 104104. https://doi.org/10.1016/j.rinp.2021.104104 

36. J. H. He, W. F. Hou, C. H. He, T. Saeed, T. Hayat, Variational approach to fractal solitary waves, 

Fractals, 29 (2021), 2150199. https://doi.org/10.1142/S0218348X21501991 

37. C. X. Liu, Periodic solution of fractal Phi-4 equation, Therm. Sci., 25  (2021), 1345–1350 

https://doi.org/10.2298/TSCI200502032L 

38. J. H. He, E. D. Yusry, Periodic property of the time-fractional Kundu-Mukherjee-Naskar equation, 

Results Phys., 19 (2020), 103345. https://doi.org/10.1016/j.rinp.2020.103345 

39. J. H. He, Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation, 

Results Phys., 17 (2020), 103031. https://doi.org/10.1016/j.rinp.2020.103031 

40. J. H. He, W. F. Hou, N. Qie, K. A. Gepreel, A. H. Shirazi, H. M. Sedighi, Hamiltonian-based 

frequency-amplitude formulation for nonlinear oscillators, Facta Univ. Ser. Mech. Eng., 19 (2021), 

199–208. https://doi.org/10.22190/FUME201205002H 

41. Y. Zhao, Y. B. Lei, Y. X. Xu, S. L. Xu, H. Triki, A. Biswas, et al., Vector spatiotemporal solitons 

and their memory features in cold rydberg gases, Chin. Phys. Lett., 39 (2022), 034202. 

https://doi.org/10.1088/0256-307X/39/3/034202 

42. S. L. Xu, Y. B. Lei, J. T. Du, Y. Zhao, R. Hua, J. H. Zeng, Three-dimensional quantum droplets in 

spin-orbit-coupled Bose-Einstein condensates, Chaos Solitons Fract., 164 (2022), 112665. 

https://doi.org/10.1016/j.chaos.2022.112665 

43. K. Y. Huang, Y. Zhao, S. Q. Wu, S. L. Xu, M. R. Belic, B. A. Malomed, Quantum squeezing of 

vector slow-light solitons in a coherent atomic system, Chaos Solitons Fract., 163 (2022), 112557. 

https://doi.org/10.1016/j.chaos.2022.112557 

44. T. A. Nofal, Simple equation method for nonlinear partial differential equations and its 

applications, J. Egypt. Math. Soc., 24 (2016), 204–209. 

https://doi.org/10.1016/j.joems.2015.05.006 

https://doi.org/10.1016/j.aej.2020.10.055
https://www.sciencedirect.com/science/journal/00304026
https://www.sciencedirect.com/science/journal/00304026/208/supp/C
https://doi.org/10.1016/j.ijleo.2020.164550
Chin.%20J.%20Phys.
https://www.sciencedirect.com/science/journal/05779073/65/supp/C
https://doi.org/10.1016/j.cjph.2020.02.029
https://doi.org/10.1515/ijnsns-2011-0132
https://doi.org/10.2298/TSCI200428017T
https://doi.org/10.1016/j.apm.2020.01.027
https://doi.org/10.1016/j.rinp.2021.104104
https://doi.org/10.1142/S0218348X21501991
https://doi.org/10.2298/TSCI200502032L
https://doi.org/10.1016/j.rinp.2020.103345
https://doi.org/10.1016/j.rinp.2020.103031
https://doi.org/10.22190/FUME201205002H
https://doi.org/10.1088/0256-307X/39/3/034202
https://doi.org/10.1016/j.chaos.2022.112665
https://doi.org/10.1016/j.chaos.2022.112557
https://doi.org/10.1016/j.joems.2015.05.006


9008 

AIMS Mathematics  Volume 8, Issue 4, 8985–9008. 

45. N. A. Kudryashov, V. B. Loguinova, Extended simplest equation method for nonlinear differential 

equations, Appl. Math. Comput., 205 (2008), 396–402. https://doi.org/10.1016/j.amc.2008.08.019 

46. Y. L. Ma, C. B. Li, Q. Wang, A series of abundant exact travelling wave solutions for a modified 

generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 

(2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 

47. G. B. Whitham, Comments on periodic waves and solitons, IMA J. Appl. Math., 32 (1984), 353–

366. https://doi.org/10.1093/imamat/32.1-3.353 

© 2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1016/j.amc.2008.08.019
https://doi.org/10.1016/j.amc.2009.01.036
https://doi.org/10.1093/imamat/32.1-3.353

