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Abstract: The PID controller is a popular controller that is widely used in various industrial
applications. On the other hand, the control problems in microgrids (MGs) are so challenging, because
of natural disturbances such as wind speed changes, load variation, and changes in other sources. This
paper proposes an input-output scaling factor tuning of interval type-2 fuzzy (IT2F) PID controller
using a multi-objective optimization technique. The suggested controller is applied to an MG frequency
regulation problem. In the introduced controller the effect of variations of renewable energies (REs)
and other disturbances are taken into account, and the robustness is investigated. In the multi-objective
scheme, some factors such as least overshoot, and minimum settling/rising time are considered.
The simulations show that by considering the suitable adjustment the desired regulation accuracy is
achieved, such that the frequency trajectory shows the desired overshoot, and settling/rising time.
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1. Introduction

1.1. General

The increasing use of fossil fuels has caused major problems such as global warming, climate
change, and environmental pollution. Using renewable energy as a viable alternative for reducing
fossil fuel consumption is of particular importance. Nowadays, the integration of renewable energies
has created microgrid (MG) power systems. The existing perturbations due to changes in wind
speed over time and solar radiation as well as load power changes challenge the proper utilization of
renewable energy. Designing a suitable controller that can balance energy generation and consumption
and eliminate frequency fluctuations is of particular importance for the proper use of renewable
energy [6, 12].

PIDs are extensively utilized in the industrial process because of their simplicity and capability [27].
However, uncertainties, nonlinearities, and the control parameters’ variation deteriorate their efficiency
of them. So, fuzzy logic systems (FLSs) and artificial neural networks (ANNs) are developed. To tackle
the problem of the tuning procedures, some evolutionary optimization methods like GA and PSO have
been utilized to design PID [1]. In these optimization algorithms, the overshoot and settling time are
usually defined as the objective function (OB) to obtain suitable values for the PID gains. Although
these tuning methods can improve the efficiency of these linear and fixed structure controllers, they are
susceptible to the uncertainties and nonlinearities existing in the plant. As FLSs provides the ability to
model uncertainty and imprecision which exists in most of the controlled systems, they were exploited
to tune the PID parameters in the online mode and according to the defined rules by the experts [20,32].

1.2. Literature review

In these works, which are famous for fuzzy gain scheduling PID (FGSPID) techniques, the tracking
error and derivative of error are considered as the input variables of FLS, and the PID gains are
extracted from FLSs. In FGSPIDs, the control command is produced by the PID controller in which
its gains change adaptively. Another combination of FLS and PID controller to design a nonlinear
fuzzy PID (FPID) is to use the rules to realize parameters. The scheme of the FPID, a nonlinear PID, is
similar to the structure of the classic PID from the viewpoint of input/output (I/O) dynamics. Unlike the
FGSPID approach, in the FPID controller, the required command to the plant is deduced directly from
the fuzzy inference. The FPID controller can be constructed using different types of FLSs. Among
them, type-1 (T1) FLSs (T1FLSs) are a kind of linguistic variable that only can characterize a specific
degree of imprecision or ambiguity. Interval type-2 (IT2) FLSs (IT2FLSs) are developed from of
T1FLSs that introduce the concepts of uncertainty and imprecision as intervals and more robust to
uncertainties such as measurement noise [8, 30, 31].

The other important forms of representing FLSs, generalized type-2 (GT2) FLS (GT2FLSs),
which are similar to IT2FLSs, also inherently deal with uncertainty. In a situation where instead of
representing uncertainty through an area, it is represented by a volume. Compared to the IT2FLSs, this
form of uncertainty representation, fundamentally, is much more resilient to noise. In the FPID control
design approaches, the important matter is how to set the input scaling coefficients (ISC)s and output-
scaling factor (OSF), and parameters of the fuzzy controller (FC). In [10], PSO scheme was used to
optimize the T1FPID controller for frequency in a power plant and it was shown that the controller
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provided more desirable dynamic responses with regard to settling time and undershoots/overshoots.
To better handle the nonlinearities, the big bang-big crunc and GA optimization approaches have
been applied to adjust the interval T2FPID controllers’ parametres in [16, 25], respectively. Using the
combination of gradient-descent algorithm and Lyapunov theory, the OSFs and consequent parameters
of an interval T2FPID controller were tuned for frequency control of micro-grid system [21]. The
interval T2FPID controller in [21] was extended to regulate the frequency deviation of a time-delayed
power system using a Lyapunov-Krasovskii functional. A fractional order GT2FPID controller was
proposed in [23] in which its parameters were tuned based on the trial-and-error method. In many
control problems, the control designing is a multi-objective (MO) problem in which several objectives,
including its overshoot-undershoot and rising-settling time, must be optimized simultaneously. In
this design method, the OBs are defined separately but optimized simultaneously, and the obtained
results can be discussed based on the values of these OBs. It is worth pointing out that in the above
methods, weighted values of different OBs were aggregated that resulting in a single OB which should
be optimized by achieving optimal parameters for the FPID controller [33].

FPIDs are widely used for frequency control problems [15, 34]. For example, a hybrid version of
bat and fuzzy algorithms is employed in [15] to tune the PI for the load control (LFC) application.
The controller is employed in the four-area power plant. It is shown that the presented controller is
robust enough in case of facing uncertainties related to external disturbances. An optimal interval T2F-
PID is employed by Yesil [25] for an LFC problem. Big Bang Big Crunch optimization algorithm is
used to adjust the scaling factors of the designed control. The efficiency of the designed algorithm is
represented by comparing its performance with that of FPID. An FPID is proposed by Sahu et al., for
automatic control. A teaching-learning approach is suggested in order to optimize the FPID in [22].
A hybrid scheme of harmony and cuckoo search methods is suggested in [9] for balancing the FPID
parameters for an LFC problem. A hybrid model of PID-fuzzy-PID is designed by Debnath et al. [4]
for the LFC problem. The parameters of the presented model are optimized using a modified grey wolf
optimization algorithm. The sensitivity is analyzed to study the robustness of the presented controller.
A novel hybrid fuzzy PD-PI controller based on an improved version of the moth swarm algorithm is
suggested in [14].

1.3. Contribution

• Unlike the other LFC systems, the suggested controller does not depend on the MG models.
• The suggested approach considers both transient and steady-state response.
• The multi-optimization scheme is faster, and it results in better LFC accuracy.
• The suggested type-2 fuzzy-based approach has better robustness against uncertainties.

1.4. Paper organization

The remainder of this study is as follows: In Section 2, MG is explained. The FPID and associated
tuning approach is illustrated in Sections 3–5. Simulations are given in Section 6. Finally, the
conclusion is given in Section 7.
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2. System description

MG systems consist of locally distributed loads connected to the distributed energy source. As
can be seen in Figure 1, the studied MG included a PV system (with Ppv output), photocell (with Ppc
output), WT generator (with Pwtg output), battery, flywheel energy storage system (ESS) and loads.
The power changes of the studied system in the jth area are described as follows [13]:

∆P j,tie =

N∑
i=1,i, j

∆Pi,tie =
2π
s

 N∑
i=1,i, j

T ji∆ω j −

N∑
i=1,i, j

T ji∆ωi

 . (2.1)

In (2.1), ∆P j,tie denotes power changes. ∆ω and T ji are frequency deviation and torque coefficient
respectively. First assume that we have just 2 areas. So, by applying disturbance to the first area, and
considering N = 2, the power changes between the tie line and first area are calculated as follows:

∆P1,tie =
2π
s

[T12∆ω1 − T12∆ω2] . (2.2)

Considering a first-order model, ∆ω2 is obtained as follows:

∆ω2 =

(∑n
j=1 ∆Pm2i − ∆P2,tie − ∆P2L

)
D2 + 2H2s

. (2.3)

From the fact that∆Pm = 0 under no speed governing, and ∆P2L = 0, we have:

∆ω2 =
−∆P2,tie

D2 + 2H2s
. (2.4)

Also, by ignoring ∆ω1, we can rewrite (2.2) as:

∆P1,tie =
2π
s

T12∆ω1. (2.5)

Now consider the general scheme, and apply disturbance to the ith area, then ∆P j,tie is obtained,
similarly, as follows:

∆P j,tie =
2π
s

N∑
i=1,i, j

T ji∆ω j, (2.6)

∆ω j =

(
−∆P j,tie − ∆P jL

)
D j + 2H js

. (2.7)

By substituting (2.7) into (2.6) and considering step perturbation in load as ∆P jL(s) =
∆P jL

s , ∆P j,tie is
expressed as follows:

∆P j,tie =
−2π∆P jL

∑N
i=1,i, j

T ji

2H j

s
(
s2 + D j/2H j + 2π

∑N
i=1,i, j

T ji

2H j

) . (2.8)

Moreover, RDR is defined as follows:

RDP j = δ
−

d2∆P j,tie

dt2 H j

π
∑N

i=1,i, j T ji
, (2.9)
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where d is between 0 and 1. Figure 2 indicates diagram of the studied system and dynamics of
various units.

Figure 1. Control block diagram of system.

Figure 2. The general diagram of case-study MG for each area.
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3. Fuzzy PID controller

PID controllers are used in a wide range of industrial plants regarding the good capability.
Nevertheless, the performance of these linear controllers is worsened due to nonlinearities,
uncertainties, and parameter variation in the plant. To obtain a better system efficiency over the
conventional PID controller, FLSs have been attempted to combine with PID controllers in two ways:
(i) FLS has been employed to adjust the PID coefficients in an online way. In this approach which is
known as gain adjusting PID by the use of fuzz logic (FGSPID), the inputs for FLS are considered
to be the closed-loop error and its derivative, and according to the defined rules, the FLS determines
the PID gains instantaneously. In this approach, the linear PID produces the control command to the
controlled system (ii) in the second approach, the fuzzy rules are used for establishing a nonlinear PID.
This approach is known as the FPID controller. Considering I/O relations, an FPID is analogous to
linear PID, except that the FPID is an appropriate method for nonlinear systems. The common block
of the FPID is provided in Figure 3 [26]. The membership functions (MFs) for inputs are depicted in
Figure 4. For each input, 3 MFs are considered. To design the MFs just the upper and lower bounds of
signals are taken into account. The parameters of MFs can also be optimized [35].

In the diagram, u represents the controller applied to the controlled system, e is the
regulation/tracking error, u f is the output signal of FC, α/β are the OSFs, and K1 and K2 are the ISCs.
The FPID output can be regarded as follows:

u(t) = αu f (t) + β

∫ t

0
u f (t)dt. (3.1)

In [26] it is shown that the I/O relation of the FPID controller, like the classical PID controller,
has the integral, derivative and proportional terms considering that this controller has a nonlinear
characteristic and, therefore, it has been successfully utilized in controlling nonlinear and uncertain
systems [5]. As mentioned earlier, the FPID controller can be realized using T1FLSs, IT2FLSs, and
GT2FLSs. Since GT2FLSs are much more resilient dealing with noise and uncertainties, in this study,
the designed FPID controller has been realized using this type FC.

Since in this problem, we have a high level of uncertainties the T2FLSs are used. The T2FLSs can
handle more levels of uncertainty. In this paper, a T2FLS determines the parameters of a PI as shown
in Figure 3.

Figure 3. Block diagram of the FPID controller.
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Figure 4. Membership functions.

4. Formulation of the FPID controller design as a MO problem

As mentioned earlier, the proper adjustment of the FPID controller i.e., α, β, K1, and K2, can
enhance the efficiency [36]. Evolutionary optimization methods such as PSO and GA are one of
the common offline methods in adjusting these parameters. In these scenarios, the FPID parameters
are evaluated in a feasible area of response until the defined lost function is reduced. For a step
reference input, the value of peak overshoot/undershoot, rise time, and settling-time are some important
specifications to describe the transient performance. Disturbance rejection can be identified by
presenting the peak overshoot/undershoot and settling-time. In order to establish the mentioned steady-
state and transient performances using the evolutionary optimization methods, the performance indices
based on various functions of the error are desired. Common performance indices including an error
function in [0,∞) have been presented as the integral

I =

∫ ∞

0
fk(e(t))dt (4.1)

where fk(.) can takes various forms of error such as error. For example, using absolute error and
square error as performance index penalize large errors more heavily than small ones which provide
a longer settling time. By considering (2) as an OB, it is not possible to optimize the closed-loop
performance characteristics i.e., the value of maximum overshoot/undershoot, rising-time, and settling
time, at the same time. The reason for this is that some of these objectives are in conflict with each
other and improving one of them leads to making the other worthwhile. Therefore, considering the
objectives to be optimized, the tuning procedure of the FPID controller parameters can be regarded as
a MO optimization problem. In this optimization method, several conflicting goals must be optimized
simultaneously. Reducing the amount of the rise time (or settling time) will certainly raise the value
of the peak overshoot of an optimized design. So, for MO problems, there is not a single solution, but
with one run, we achieve a group of solutions, which is a kind of trade-off between the goals that must
be optimized. It should be noted that in this paper α, β, K1 and K2 are the decision variables (it can be
represented by vector x) and the settling time f1(x) and the value of peak overshoot/undershoot ( f2(x))
are the two conflicting objectives (see Figure 5).

Based on the relative importance of each objective ( f1 and f2), each point of this curve is a solution
for the decision variables, i.e., α, β, K1 and K2. For example, if point A with the decision variables
(solution) xA is chosen, it means that, from the solutions obtained in the Pareto front, the closed-loop

AIMS Mathematics Volume 8, Issue 4, 7917–7932.



7924

system with the lowest amount of overshoot/undershoot and the maximum amount of settling time has
been preferred. If point B with the decision variables xB is chosen for the controller parameters, an
output system with the lowest values for both objectives can be achieved. According to the Pareto
front and unlike the single objective optimization methods, it is clear that in the MO methods a set
of responses (located in the Pareto front) is obtained in which the controller designer can select the
appropriate parameters on the basis of the relative importance of the objectives.

To solve the MO problem, some approaches that essentially depend on PSO and GA techniques
were introduced [17, 19]. For example, Non-dominated sorting GA (NSGA-II) [3] and Niched Pareto
GA (NPGA) [24] algorithms are based on GA technique. Also, strength Pareto evolutionary algorithm
(SPEA) [11], adaptive weighted PSO (AWPSO) [18] algorithms are based on the PSO technique.

Figure 5. Concept of Pareto front.

5. AWPSO algorithm for MO problem

The PSO is based on population search and it depends on the simulation of bird behavior. Some
methods have been suggested to increase the accuracy of the basic PSO. One of these methods is the
adaptive weighted PSO (AWPSO) algorithm; the velocity equation of the basic PSO algorithm in it is
changed as follows (see the main general flowchart in Figure 6):

~vi(t) = w~vi(t − 1) + ρ
[
c1r1

(
~Pbi − ~xi(t − 1)

)
+ c2r2

(
~Pg − ~xi(t − 1)

)]
(5.1)

where, ~xi shows the position of Pi at t. In this algorithm, ρ is the acceleration variable as:

ρ = ρ0 +
t
T
. (5.2)

Defining an aggregate OB is examined as one of the straightforward methods to tackle the MO
problems. To get optimum solutions, single objective optimization algorithms, without any revision
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to these algorithms, can then be utilized. An aggregation method is used to introduce the evaluation
function, Eval, for MO problem as follows [7]:

Eval(k) =

n∑
i=1

θi fi(k),
n∑

i=1

θi = 1 (5.3)

for k-th particle, n denotes number of OBs and θi denotes the related parameters for each OB. This
Eval function can be normalized as follows:

θi =
µi∑n

i=1 µ j
(5.4)

where µi and µ j are uniform random numbers in the interval [0, 1].

Remark 1. To apply the AWPSO algorithm to our control problem, the various values for the
parameters of suggested FPID are considered as the possible solution (population) of the AWPSO
algorithm. Then, at each sample time, the best solution of AWPSO is considered as the coefficient of
our controller.

Figure 6. The general flowchart.

6. Simulation results

The IEEE 39-bus test system (see Figure 7 [28]) is used to evaluate the efficiency of the presented
controller for the fuzzy logic controller(FLC) under three different scenarios. The parameters are given
in Table 1. The first column of Table 1 indicates the restrictions on the performance of output signals.
For example, to have a minimum overshoot and maximum settling time, the values of parameters are
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α = 1.63, β = 0.186, K1 = 2.98, and K2 = 3.4. The demand response (DR) was obtained as 98.77,
22.21, and 54.6 MW in the first, second and third areas, respectively. Two main scenarios have been
discussed in this paper. In the first scenario, the effect of load changes is investigated, and in the second
one, the effect of wind speed is examined.

Figure 7. IEEE 39-bus test system.

Table 1. Simulation parameters.

α β K1 K2

Maximum
settling time,

Minimum
overshoot

1.63 0.186 2.98 3.4

Mediocre 2.9 0.12 1.186 3.86
Minimum settling
time, Maximum

overshoot

2.66 0.109 0.86 4.28

The load changes are investigated as a disturbance. Figure 8 shows the load change considered
in the study. We see that load is changed the time t=30 s, from 0 to 8 MV. It can be considered as
a high disturbance. Figure 9 compares frequency regulation in the first, second and third areas with
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other methods. Figure 9 shows that frequency changes tended to 0 in all three areas using the proposed
method. The comparison condition for the suggested method, PI controller based on type-1 FLC (T1-
FLC), and PI controller based on type-2 FLC (T2-FLC) [29] are the same. It means that the rules are
the same for all three controllers.
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Time (sec)
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W
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Figure 8. Changes of load.

0 10 20 30 40 50 60 70 80 90 100

  Time [sec]

-0.2

-0.1

0

  
w

1
(p

u
)

  Proposed Method   PI T1-FLC   PI T2-FLC

0 10 20 30 40 50 60 70 80 90 100

  Time [sec]

-5

0

  
w

2
(p

u
)

10-3

0 10 20 30 40 50 60 70 80 90 100

  Time [sec]

-0.01

-0.005

0

  
w

3
(p

u
)

Figure 9. Comparison of frequency changes for various controllers.

The results revealed performance of the suggested method was superior to other approaches.
Furthermore, the effect of wind speed, which varies over time, on the performance of the controller in
frequency regulation was investigated in this scenario. Figure 10 indicates the speed change diagram.
We see that the wind speed is randomly changed, and it can be considered as a high perturbation.
Figure 11 examines the proposed controller performance in frequency regulation. The proposed
controller had good performance in resisting wind speed changes over time and was superior to other
methods.

The results show that the suggested LFC adequately resists the uncertainties, such as wind speed
changes, DR changes, and uncertain dynamics. The main reason is that the parameters of the PI are not
fixed, but they are adaptively changed. Also, the suggested optimization scheme finds suitable rules
for T2FLS.
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Figure 10. Speed change diagram
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Figure 11. Comparison of frequency changes for various controllers in presence of wind
speed.

Remark 2. The primary focus of this study is on the LFC problem. But, the designed controller does
not use dynamics and can be easily extended for other problems in MGs. Also, the suggested controller
can be improved using new PIDs and fuzzy controllers [37–42].

7. Conclusions

The PIDs are widely used for load frequency control problems. But the main problem is their
accuracy in the verses of high uncertainties. Also, in most of the existing studies, just the tracking
error is considered, and the transient response is neglected. In this study, a novel technique to
frequency control in MGs is proposed. A multi-objective optimization approach is proposed, as well
as a novel PID controller. The developed controller is implemented in a case-study multi-area MG,
and its performance is assessed under perturbations. In the first case, a rapid change in output load
is examined, in addition to unknown dynamics. It is demonstrated that the proposed PID controller
effectively manages perturbations and stabilizes the plant. The wind turbines are also supposed time-
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varying in the second assessment, in addition to dynamic uncertainty and load fluctuations. The results,
as well as comparisons with other FPID approachers, reveal that the introduced PID has satisfactory
regulatory results. The main disadvantage of the suggested approach is the computation process of the
optimization, which can be simplified for future studies.
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