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Abstract: A superposition is an operation of terms by which we substitute each variable within a term
with other forms of terms. With more options of terms to be replaced, an inductive superposition is
apparently more general than the superposition. This comes with a downside that it does not satisfy
the superassociative property on the set of all terms of a given type while the superposition does.
A derived base set of terms on which the inductive superposition is superassociative is given in this
paper. A clone-like algebraic structure involving such base set and superposition is the main topic
of this paper. Generating systems of the clone-like algebra are characterized and it turns out that the
algebra is only free with respect to itself under the certain selections of fixed terms concerning its
inductive superposition or the specific type of its base set.
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1. Introduction

One of the fundamental concepts in universal algebra is the concept of terms. Terms can be
initially constructed from the simplest forms called variables. They are elements from the finite set
Xn = {x1, . . . , xn} or the countably infinite set X = {x1, x2, x3, . . .}. Then variables may be optionally
combined with non-nullary operation symbols from the set { fi | i ∈ I} for a fixed index set I to form new
terms. This approach of operation-symbol combination can literally take on any already constructed
terms, not just variables. The sequence τ = (ni)i∈I of arities of operation symbols is called the type.
The formal definition of the n-ary terms of type τ is as follows:

(i) Every element of Xn = {x1, . . . , xn} is an n-ary term.
(ii) If t1, . . . , tni are n-ary terms and fi is an ni-ary operation symbol, then the composition fi(t1, . . . , tni)

is an n-ary term.
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By Wτ(Xn) and Wτ(X), we denote the set of all n-ary terms of type τ and the set of all terms of type τ,
respectively. Note that Wτ(Xn) ⊆ Wτ(Xm) whenever m ≥ n. The applications of terms can be found in
both algebraic and theoretical ways. Algebraically, terms are formal languages whose pairs stand for
properties of algebras. With the selected properties, one can generate a variety of algebras satisfying
those properties. Theoretically, terms are broadly utilized in linguistics and computer science. For
more details on the applications of terms, we refer to [1, 7, 8, 12] for algebraic aspects and to [1, 8, 9]
for theoretical aspects. Moreover, readers may look into [4, 10, 11, 13, 17, 18] for recent trends of term
studies.

Acting as a base set, the set of terms Wτ(Xn) or Wτ(X) induces algebras of terms with various
forms of fundamental operations on the said set of terms, one of which is a superposition of terms.
A superposition is an operation of terms acting as a variable replacement by other terms. There are
many forms of superpositions of terms, each of which is defined on a different base set of terms. For
terms which are generated from a finite set of variables Xm and Xn, the superposition S n

m : Wτ(Xn) ×
(Wτ(Xm))n → Wτ(Xm) is inductively defined as follows: for each t ∈ Wτ(Xn) and t1, . . . , tn ∈ Wτ(Xm),

(i) S n
m(t, t1, . . . , tn) := ti if t = xi ∈ Xn;

(ii) S n
m(t, t1, . . . , tn) := fi(S n

m(s1, t1, . . . , tn), . . . , S n
m(sni , t1, . . . , tn)) if t = fi(s1, . . . , sni).

There are also other forms of superpositions such as S n
g defined on Wτ(X) (see [6]) and S n, the

particular case of S n
m where n = m, defined on Wτn(Xn) where τn is a sequence of arities containing

only many n (see [12]). Some superpositions are partial operations due to some restrictions of their
corresponding base sets of terms such as those of linear terms, k-terms, fixed-variable, and fixed-length
terms (see [3, 13, 17, 18] for more information). Besides, the superpositions we discussed until now
share one essential property called superassociative law (SASS):

S p
m(z, S n

m(y1, z1, . . . , zn), . . . , S n
m(yp, z1, . . . , zn)) ≈ S n

m(S p
n(z, y1, . . . , yp), z1, . . . , zn)

where m, n, p are positive integers, y1, . . . , yp, z1, . . . , zn and z are terms (of an appropriate arity),
and S p

m, S n
m, and S p

n are superpositions. Note that those partial superpositions only consider the
superassociative law as a weak identity.

At the period of time superpositions of terms have been studied throughout, Shtrakov [16] defined
an inductive composition which is an operation of terms performing similarly to a superposition but
with more choices of subterms which also cover variables to be substituted. The set sub(t) of subterms
of t ∈ Wτ(Xn) is inductively defined as follows:

(i) sub(t) := t if t ∈ Xn;
(ii) sub(t) := {t} ∪ sub(t1) ∪ . . . ∪ sub(tni) if t = fi(t1, . . . , tni).

For each r, s, t ∈ Wτ(Xn), the inductive composition t(r ← s) gives out the term in Wτ(Xn) which is
inductively defined (see e.g., [15, 16]) by

(i) t(r ← s) := t if r < sub(t);
(ii) t(r ← s) := s if t = r;

(iii) t(r ← s) := fi(t1(r ← s), . . . , tni(r ← s)) if t = fi(t1, . . . , tni), r ∈ sub(t), and t , r.

Once superassociative operations are obtained, algebraic structures called clones can then be
constructed. Clones are multi-based algebras which satisfy the superassociative law (SASS) and the
following two identities:
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(C2) S n
m(ei, z1, . . . , zn) ≈ zi;

(C3) S n
n(z, e1, . . . , en) ≈ z.

Here, m, n ∈ N+ := {1, 2, 3, . . .}; i ∈ {1, . . . , n}; z, z1, . . . , zn are terms; e1, . . . , en are nullary operation
symbols; S n

m and S n
n are operation symbols. The term clone of type τ

clone τ := ((Wτ(Xn))n∈N+ , (S n
m)m,n∈N+ , (xi)i∈{1,...n},n∈N+)

is a basic example of clones.
There are other terminologies for single-based clone-like algebras of type (n+1) and (n+1, 0, . . . , 0).

The former type induces an algebra called a Menger algebra of rank n which satisfies (SASS), and the
latter one induces a unary Menger algebra of rank n, an algebra with n nullary operations which satisfies
all of (SASS), (C2), and (C3).

Clones, Menger algebras, and unary Menger algebras of terms have been investigated for a long
time in many kinds of terms and superpositions such as full terms (see [5]), generalized superpositions
(see [2]), linear terms (see [3]), fixed-variable terms (see [17]), k-terms (see [13]), and fixed-length
terms (see [18]). More background on clones and Menger algebras can be found in [7, 12, 14].

One may notice that an inductive composition defined by Shtrakov in [16] provides one subterm
replacement at a time while a superposition replaces many variables in a term at once. This is a
motivation of this paper to define another operation which inherits the good traits from an inductive
composition and a superposition; more precisely, the operation will deal with subterm replacement and
replace many subterms at once. We study its properties as well as clones relating to it. The freeness
property of such clones is examined.

2. Inductive superpositions of terms

In this section, we give the definition of inductive superpositions induced from a fixed sequence
of fixed terms of Wτ(Xn) and provide several properties of such superpositions to obtain clones or
clone-like algebras concerning them.

Definition 2.1. Let m, n ∈ N+ where m ≥ n and r1, . . . rn ∈ Wτ(Xn) be n-ary fixed terms of type τ such
that ri < sub(r j) whenever i , j. A mapping

S n
(m;r1,...,rn) : Wτ(Xn) × (Wτ(Xm))n → Wτ(Xm)

called an (r1, . . . , rn)-inductive superposition is defined for any t ∈ Wτ(Xn) and t1, . . . , tn ∈ Wτ(Xm) by

(i) S n
(m;r1,...,rn)(t, t1, . . . , tn) := t if sub(t) ∩ {r1, . . . , rn} = ∅;

(ii) S n
(m;r1,...,rn)(t, t1, . . . , tn) := ti if t = ri ∈ {r1, . . . , rn};

(iii) S n
(m;r1,...,rn)(t, t1, . . . , tn) := fi(S n

(m;r1,...,rn)(s1, t1, . . . , tn), . . . , S n
(m;r1,...,rn)(sni , t1, . . . , tn))

if t = fi(s1, . . . , sni) < {r1, . . . , rn} and sub(t) ∩ {r1, . . . , rn} , ∅.

Remark 2.1. From the above definition of inductive superpositions, we notice that:

(i) as an initial term, a variable x ∈ Xn is always fallen into either (i) or (ii) since sub(x) = {x};
(ii) the condition ri < sub(r j) whenever i , j implies that all r’s are distinct.
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For convenience, we denote by R the sequence (r1, . . . , rn). So, we may write S n
(m;R) instead of

S n
(m;r1,...,rn). The following example shows a calculation of an inductive superposition.

Example 2.1. Let t = f ( f (x1, f (x2, x3)), x1), r1 = f (x1, f (x2, x3)), r2 = f (x3, x1), and r3 = f (x1, x1),
each of which is in W(2)(X3) where f is a binary operation symbol and let R = (r1, r2, r3). Then we have

S 3
(3;R)(t, x3, x2, x1) = S 3

(3;R)( f ( f (x1, f (x2, x3)), x1), x3, x2, x1)

= f (S 3
(3;R)( f (x1, f (x2, x3)), x3, x2, x1), S 3

(3;R)(x1, x3, x2, x1))

= f (S 3
(3;R)(r1, x3, x2, x1), x1)

= f (x3, x1).

The relation m ≥ n in the previous definition is crucial. Lack of such condition can lead to the
following invalidation.

Example 2.2. Let t = x4 ∈ W(2)(X4) while r1 = f (x1, x1), r2 = f (x2, x2), r3 = f (x2, x1), and r4 =

f (x1, x2) belong to W(2)(X2) with a binary operation symbol f . Setting R = (r1, r2, r3, r4), we see
that n = 4 and m = 2 which implies m � n. Then S n

(m;R)(t, r1, r2, r3, r4) = x4 < W(2)(Xm) since
sub(t) ∩ {r1, r2, r3, r4} = ∅.

From this point on, we set R to be a sequence of fixed terms, each of which is not a subterm of the
others unless state otherwise. In this paper, we sometimes treat the sequence R of fixed terms as if it
is a set of terms so that we can apply set operations such as an intersection and a subtraction to R. For
example, a sequence R = (r1, r2, r3) may be treated as the set {r1, r2, r3}.

Moving to the special case of S n
(m;R) where n = m, we denote such superposition by S n

R. Once we
have a superposition, it is natural to ask for a corresponding clone. The superposition S n

R as well as
the sequence of terms R can be used to form an algebra (Wτ(Xn), S n

R,R) on Wτ(Xn). Unfortunately, this
algebra does not satisfy the superassociativity (SASS) in general. The following example illustrates
this matter.

Example 2.3. Let τ = (2, 1) with a binary operation symbol f and g a unary one, and R = (r1, r2, r3)
where r1 = g(x1), r2 = f (g(x2), x3), r3 = f (x2, x3). Consider Wτ(X3). We have

S 3
R(S 3

R( f (g(x1), f (g(x2), x3)), x2, x3, x1), g(x1), g(x2), g(x3))
= S 3

R( f (x2, x3), g(x1), g(x2), g(x3))
= g(x3)

while

S 3
R( f (g(x1), f (g(x2), x3)), S 3

R(x2, g(x1), g(x2), g(x3)), S 3
R(x3, g(x1), g(x2), g(x3)), S 3

R(x1, g(x1), g(x2), g(x3)))
= S 3

R( f (g(x1), f (g(x2), x3)), x2, x3, x1)
= f (x2, x3).

These show that S 3
R does not satisfy the clone axiom (SASS) on Wτ(X3).

As (Wτ(Xn), S n
R,R) is not clone-like, our hope may bend to a base set restriction so that S n

R is
superassociative on that restricted base set. For a sequence R of fixed terms of Wτ(Xn), we denote
WR

τ (Xn) := Wτ(Xn) \
⋃
r∈R

(sub(r) \ {r}). This set seems to have our desired property. To prove the

property, we need the following lemma.
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Lemma 2.1. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn) and t, s1, . . . , sn ∈ Wτ(Xn).
If sub(t) ∩ R = {rn1 , . . . , rnk} for some subsequence (n1, . . . , nk) of (1, . . . , n), then sub(s j) ⊆
sub(S n

R(t, s1, . . . , sn)) for all j ∈ {n1, . . . , nk}. The inclusion is proper if and only if t < R.

Proof. Assume that sub(t) ∩ R = {rn1 , . . . , rnk}. We prove by induction on the structure of t.
If t = rl ∈ R for some l ∈ {1, . . . , n}, then sub(t) ∩ R = {rl} and S n

R(t, s1, . . . , sn) =

sl. Hence, sub(sl) ⊆ sub(S n
R(t, s1, . . . , sn)). For t = fi(t1, . . . , tni) < R, we have that

for each j ∈ {n1, . . . , nk}, there is t′j ∈ {t1, . . . , tni} such that r j ∈ sub(t′j). Assume
inductively that sub(s j) ⊆ sub(S n

R(t′j, s1, . . . , sn)) for each j ∈ {n1, . . . , nk}. As S n
R(t, s1, . . . , sn) =

fi(S n
R(t1, s1, . . . , sn), . . . , S n

R(tni , s1, . . . , sn)), we see that sub(S n
R(t, s1, . . . , sn)) = {S n

R(t, s1, . . . , sn)} ∪
ni⋃

m=1

sub(S n
R(tm, s1, . . . , sn)). It follows that

sub(s j) ⊆ sub(S n
R(t′j, s1, . . . , sn)) ( sub(S n

R(t, s1, . . . , sn)).

The proof is then complete. �

The essential properties of WR
τ (Xn) are described in the next lemma.

Lemma 2.2. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn) and t, s1, . . . , sn ∈ WR
τ (Xn).

Then

(i) S n
R(t, s1, . . . , sn) ∈ WR

τ (Xn);
(ii) S n

R(t, s1, . . . , sn) < R whenever t < R;
(iii) S n

R(t, s1, . . . , sn) = r j if and only if t = rk and sk = r j for some j, k ∈ {1, . . . n}.

Proof. (i) If sub(t) ∩ R = ∅, then S n
R(t, s1, . . . , sn) = t ∈ WR

τ (Xn). If t = ri ∈ R for some i ∈ {1, . . . , n},
then S n

R(t, s1, . . . , sn) = si ∈ WR
τ (Xn). For t = fi(t1, . . . , tni) < R, sub(t) ∩ R , ∅, suppose that

S n
R(t, s1, . . . , sn) < WR

τ (Xn). Let rk ∈ sub(t) for some rk ∈ R. Since S n
R(t, s1, . . . , sn) < WR

τ (Xn), we
have that S n

R(t, s1, . . . , sn) ∈
⋃
r∈R

(sub(r) \ {r}), i.e., S n
R(t, s1, . . . , sn) ∈ sub(r) \ {r} for some r ∈ R. By

Lemma 2.1, there follows sk ∈ sub(sk) ( sub(S n
R(t, s1, . . . , sn)) ⊆ sub(r) \ {r} which is a contradiction

to sk ∈ WR
τ (Xn). Therefore, S n

R(t, s1, . . . , sn) ∈ WR
τ (Xn).

(ii) Assume that t < R. If sub(t)∩R = ∅, then S n
R(t, s1, . . . , sn) = t < R. For t = fi(t1, . . . , tni) < R, and

sub(t) ∩ R , ∅, we suppose that S n
R(t, s1, . . . , sn) ∈ R. Let sub(t) ∩ R = {rn1 , . . . , rnk}. By Lemma 2.1,

we have that sub(s j) ( sub(S n
R(t, s1, . . . , sn)) for each j ∈ {n1, . . . , nk}. This means that s j is a proper

subterm of a term in R which contradicts s j ∈ WR
τ (Xn). Therefore, S n

R(t, s1, . . . , sn) < R.
(iii) Assume that S n

R(t, s1, . . . , sn) = r j for some j ∈ {1, . . . n}. By (ii), t ∈ R. Then t = rk for some
k ∈ {1, . . . n}. Hence, r j = S n

R(t, s1, . . . , sn) = S n
R(rk, s1, . . . , sn) = sk. The converse is obvious. �

Apparently, the converse of Lemma 2.2(ii) does not hold. Moreover, the base set WR
τ (Xn) has the

following property.

Lemma 2.3. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn) and t, s1, . . . , sn ∈ Wr
τ(Xn) such

that sub(t) ∩ R = {rn1 , . . . , rnk}. The following two conditions are equivalent:

(i) sub(S n
R(t, s1, . . . , sn)) ∩ R = ∅;

(ii) sub(s j) ∩ R = ∅ for all j ∈ {n1, . . . , nk}.
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Proof. If t = r j for some j ∈ {1, . . . , n}, then sub(t) ∩ R = {r j} and S n
R(t, s1, . . . , sn) = s j. It follows

that sub(S n
R(t, s1, . . . , sn)) ∩ R = ∅ if and only if sub(s j) ∩ R = ∅. Next, we consider the case t =

fi(t1, . . . , tni) < R and sub(t) ∩ R , ∅. By Lemma 2.2 (ii), we have that S n
R(t, s1, . . . , sn) < R. To prove

one direction, we assume that sub(S n
R(t, s1, . . . , sn)) ∩ R = ∅. By Lemma 2.1, we have that sub(s j) ⊆

sub(S n
R(t, s1, . . . , sn)) for each j ∈ {n1, . . . , nk}, and hence for each j ∈ {n1, . . . , nk}, sub(s j) ∩ R ⊆

sub(S n
R(t, s1, . . . , sn))∩R = ∅. Therefore, sub(s j)∩R = ∅. On the other hand, assume that sub(s j)∩R = ∅

for all j ∈ {n1, . . . , nk}. Since S n
R(t, s1, . . . , sn) = fi(S n

R(t1, s1, . . . , sn), . . . , S n
R(tni , s1, . . . , sn)), it follows

that sub(S n
R(t, s1, . . . , sn)) = {S n

R(t, s1, . . . , sn)} ∪
ni⋃

l=1

sub(S n
R(tl, s1, . . . , sn)). Let l ∈ {1, . . . , ni}. If tl ∈

⋃
r∈R

(sub(r) \ {r}), then S n
R(tl, s1, . . . , sn) = tl. Thus, sub(S n

R(tl, s1, . . . , sn)) ∩ R = sub(tl) ∩ R = ∅. If
tl = rl′ ∈ R, then S n

R(tl, s1, . . . , sn) = sl′ . Since rl′ = tl ∈ sub(t), we get rl′ ∈ sub(t) ∩ R. The assumption
then gives sub(S n

R(tl, s1, . . . , sn)) ∩ R = sub(sl′) ∩ R = ∅. If tl ∈ WR
τ (Xn) \ R, then Lemma 2.2(ii) yields

S n
R(tl, s1, . . . , sn) < R. Then we consider in two cases. The first one is sub(tl) ∩ R = ∅. This implies

that sub(S n
R(tl, s1, . . . , sn)) ∩ R = sub(tl) ∩ R = ∅. Another one goes to sub(tl) ∩ R , ∅. It follows

that ∅ , sub(tl) ∩ R ⊆ sub(t) ∩ R = {rn1 , . . . , rnk}. For a term u ∈ WR
τ (Xn), let Iu = {m ∈ {1, . . . , n} | rm ∈

sub(u)∩R}. Then Itl ⊆ It. The assumption sub(s j)∩R = ∅ for all j ∈ {n1, . . . , nk} = It also provides that
sub(s j) ∩ R = ∅ for all j ∈ Itl . Using induction hypothesis, we obtain sub(S n

R(tl, s1, . . . , sn)) ∩ R = ∅.
Altogether, we finally obtain

sub(S n
R(t, s1, . . . , sn)) ∩ R = sub( fi(S n

R(t1, s1, . . . , sn), . . . , S n
R(tni , s1, . . . , sn))) ∩ R

= ({S n
R(t, s1, . . . , sn)} ∪

ni⋃
l=1

sub(S n
R(tl, s1, . . . , sn))) ∩ R

= ({S n
R(t, s1, . . . , sn)} ∩ R) ∪

ni⋃
l=1

(sub(S n
R(tl, s1, . . . , sn)) ∩ R)

= ∅.

The proof is eventually finished. �

The next lemma emphasizes that an initial term t ∈ WR
τ (Xn) will only be dominated by some certain

terms of an inductive superposition.

Lemma 2.4. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn), t, s1, . . . , sn ∈ WR
τ (Xn)

and sub(t) ∩ R = {rn1 , . . . , rnk}. Then

S n
R(t, s1, . . . , sn) = S n

R(t, u1, . . . , un1−1, sn1 , un1+1, . . . , unk−1, snk , unk+1, . . . , un)

for any u1, . . . , un1−1, un1+1, . . . , unk−1, unk+1, . . . , un ∈ WR
τ (Xn).

Proof. We prove by induction on the structure of t. If t = r j ∈ R, then sub(t) ∩ R = {r j} and
S n

R(t, s1, . . . , sn) = s j = S n
R(t, u1, . . . , u j−1, s j, u j+1, . . . , un) for any u1, . . . , u j−1, u j+1, . . . , un ∈ WR

τ (Xn).
For t = fi(t1, . . . , tni) < R, we have that sub(t j) ∩ R ⊆ sub(t) ∩ R = {rn1 , . . . , rnk} for each j ∈ {1, . . . , ni}.
Let L be the largest subset of {t1, . . . , tni} such that sub(tl) ∩ R , ∅ for all tl ∈ L. Since t < R
and sub(t) ∩ R , ∅, L , ∅. For each tl ∈ L, suppose that sub(tl) ∩ R = {rl1 , . . . , rlkl

} ⊆

{rn1 , . . . , rnk}. Inductively, we assume that for each tl ∈ L, S n
R(tl, s1, . . . , sn) = S n

R(tl, u1, . . . , ul1−1, sl1 ,
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ul1+1, . . . , ulkl−1, slkl
, ulkl +1, . . . , un) for any u1, . . . , ul1−1, ul1+1, . . . , ulkl−1, ulkl +1, . . . , un ∈ WR

τ (Xn). We can
set each ua where a ∈ {n1, . . . , nk} \ {l1, . . . , lkl} to be sa. In other words, for each tl ∈ L, we have

S n
R(tl, s1, . . . , sn) = S n

R(tl, u1, . . . , un1−1, sn1 , un1+1, . . . , unk−1, snk , unk+1, . . . , un).

Moreover, for each v ∈ {t1, . . . , tni} \ L, sub(v) ∩ R = ∅ and thus

S n
R(v, s1, . . . , sn) = v = S n

R(v, u1, . . . , un1−1, sn1 , un1+1, . . . , unk−1, snk , unk+1, . . . , un).

Therefore,

S n
R(t, s1, . . . , sn) = fi(S n

R(t1, s1, . . . , sn), . . . , S n
R(tni , s1, . . . , sn))

= fi(S n
R(t1, u1, . . . , un1−1, sn1 , un1+1, . . . , unk−1, snk , unk+1, . . . , un), . . . ,

S n
R(tni , u1, . . . , un1−1, sn1 , un1+1, . . . , unk−1, snk , unk+1, . . . , un))

= S n
R(t, u1, . . . , un1−1, sn1 , un1+1, . . . , unk−1, snk , unk+1, . . . , un).

The proof is then complete. �

The superposition S n
R as well as the sequence R of fixed terms in Wτ(Xn) can be used to form an

algebra on WR
τ (Xn), namely, n-ary R-inductive clone of type τ denoted by n-cloneRτ. This algebra is

defined by
n-cloneRτ := (WR

τ (Xn), S n
R,R).

This algebra turns out to be a unitary Menger algebra of rank n, an algebra of type (n + 1, 0, . . . , 0) with
n nullary operations which satisfies the three clone axioms: (SASS), (C2) and (C3).

Theorem 2.1. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn). The n-cloneRτ satisfies the
three clone axioms: (S AS S ), (C2) and (C3).

Proof. First, we prove (SASS) by induction on the structure of the initial term. Let t, s1, . . . ,

sn, u1, . . . , un ∈ WR
τ (Xn). If sub(t) ∩ R = ∅, then

S n
R(t, S n

R(s1, u1, . . . , un), . . . , S n
R(sn, u1, . . . , un))

= t

= S n
R(t, u1, . . . , un)

= S n
R(S n

R(t, s1, . . . , sn), u1, . . . , un).

If t = r j for some j ∈ {1, . . . , n}, then

S n
R(t, S n

R(s1, u1, . . . , un), . . . , S n
R(sn, u1, . . . , un))

= S n
R(s j, u1, . . . , un)

= S n
R(S n

R(t, s1, . . . , sn), u1, . . . , un).

For t = fi(t1, . . . , tni) < R and sub(t) ∩ R , ∅, we inductively assume that

S n
R(tk, S n

R(s1, u1, . . . , un), . . . , S n
R(sn, u1, . . . , un)) = S n

R(S n
R(tk, s1, . . . , sn), u1, . . . , un)
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for each k ∈ {1, . . . , ni}. Let sub(t) ∩ R = {rn1 , . . . , rnk}. The term S n
R(S n

R(t, s1, . . . , sn), u1, . . . , un) must
be considered in 2 cases:
Case 1. sub(S n

R(t, s1, . . . , sn)) ∩ R = ∅.
By Lemma 2.3, we have that sub(s j) ∩ R = ∅ for each j ∈ {n1, . . . , nk}. There follows

S n
R(s j, u1, . . . , un) = s j for each j ∈ {n1, . . . , nk}. Therefore,

S n
R(S n

R(t, s1, . . . , sn), u1, . . . , un)
= S n

R(t, s1, . . . , sn)
= S n

R(t, S n
R(s1, u1, . . . , un), . . . , S n

R(sn, u1, . . . , un)).

The last equation concerning sl for each l ∈ {1, . . . , ni} \ {n1, . . . , nk} is valid due to Lemma 2.4.
Case 2. sub(S n

R(t, s1, . . . , sn)) ∩ R , ∅.
By Lemma 2.2(ii), S n

R(t, s1, . . . , sn) < R. As a consequence, we obtain

S n
R(S n

R(t, s1, . . . , sn), u1, . . . , un)
= S n

R( fi(S n
R(t1, s1, . . . , sn), . . . , S n

R(tni , s1, . . . , sn)), u1, . . . , un)
= fi(S n

R(S n
R(t1, s1, . . . , sn), u1, . . . , un), . . . , S n

R(S n
R(tni , s1, . . . , sn), u1, . . . , un))

= fi(S n
R(t1, S n

R(s1, u1, . . . , un), . . . , S n
R(sn, u1, . . . , un)), . . . ,

S n
R(tni , S

n
R(s1, u1, . . . , un), . . . , S n

R(sn, u1, . . . , un)))
= S n

R( fi(t1, . . . , tni), S
n
R(s1, u1, . . . , un), . . . , S n

R(sn, u1, . . . , un))
= S n

R(t, S n
R(s1, u1, . . . , un), . . . , S n

R(sn, u1, . . . , un)).

These ensure the (SASS) satisfaction of n-cloneRτ. For (C2), it is directly obtained from the definition
of S n

R. To prove (C3), we can simply do so by induction on the structure of the initial term. �

3. Properties of the clone n-cloneRτn

From the previous section, we have shown that n-cloneRτ is a clone (in fact, a unitary Menger
algebra of rank n). It’s natural to ask for a generating set of a clone which is very essential in studying
the freeness property of that clone. In this section, we consider a clone n-cloneRτn = (WR

τn
(Xn), S n

R,R)
of a specific type τn := (ni)i∈I where ni = n for all i ∈ I. We define sub(R) :=

⋃
r∈R

sub(r) and

FR
τn

:= { fi(u1, . . . , un) | i ∈ I and u j ∈ {r j} ∪ (sub(R) \ R) for each 1 ≤ j ≤ n}.

Lemma 3.1. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτn(Xn). Then GR
τn

:= (FR
τn
∪ Xn) ∩

(WR
τn

(Xn) \ R) is a generating system of n-cloneRτn.

Proof. We show by induction on the complexity of a term t ∈ WR
τn

(Xn) that t can be generated from
GR
τn

. All elements in R belong to the type of n-cloneRτn so they are generated. Next, consider t < R. If
t ∈ Xn, then t ∈ GR

τn
and so it is generated. For t = fi(t1, . . . , tn), it is obviously generated if it belongs

to GR
τn

, so we assume that t < GR
τn

. Then there is k ∈ {1, . . . , n} such that tk < {rk} ∪ (sub(R) \ R).
Let K = {k1, . . . , km} ⊆ {1, . . . , n} be the set of all indices such that tk′ < {rk′} ∪ (sub(R) \ R) for
any k′ ∈ K. This means that tk1 , . . . , tkm ∈ WR

τn
(Xn). Inductively assume that tk1 , . . . , tkm are all

generated. Note that for each l ∈ {1, . . . , n} \ K, tl ∈ {rl} ∪ (sub(R) \ R), i.e., tl = rl or tl ∈ sub(R) \ R.
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The latter provides S n
R(tl, s1, . . . , sn) = tl for any s1, . . . , sn ∈ WR

τn
(Xn) while the former gives

S n
R(tl, s1, . . . , sl−1, rl, sl+1, sn) = S n

R(tl, r1, . . . , rn) = tl for any s1, . . . , sl−1, sl+1, . . . , sn ∈ WR
τn

(Xn) due
to Lemma 2.4 and (C3) satisfaction. Let T = (r1, . . . , rk1−1, tk1 , rk1+1, . . . , rkm−1, tkm , rkm+1, . . . , rn)
be a sequence. For a shorter expression, we denote S n

R(u, r1, . . . , rk1−1, tk1 , rk1+1, . . . ,

rkm−1, tkm , rkm+1, . . . , rn) by simply S n
R(u,T ) for any u ∈ Wτn(Xn). Consequently,

S n
R( fi(t1, . . . , tk1−1, rk1 , tk1+1, . . . , tkm−1, rkm , tkm+1, . . . , tn), r1, . . . , rk1−1, tk1 , rk1+1, . . . , rkm−1, tkm , rkm+1, . . . , rn)

= S n
R( fi(t1, . . . , tk1−1, rk1 , tk1+1, . . . , tkm−1, rkm , tkm+1, . . . , tn),T )

= fi(S n
R(t1,T ), . . . , S n

R(tk1−1,T ), S n
R(rk1 ,T ), S n

R(tk1+1,T ), . . . , S n
R(tkm−1,T ), S n

R(rkm ,T ), S n
R(tkm+1,T ),

. . . , S n
R(tn,T ))

= fi(t1, . . . , tk1−1, tk1 , tk1+1, . . . , tkm−1, tkm , tkm+1, . . . , tn)
= t.

Hence, t is generated. �

We remark from the previous lemma that when we consider R = Xn, the generating system GR
τn

of
n-cloneRτn becomes { fi(x1, . . . , xn) | i ∈ I} which coincides with the result discovered in [12].

Once we obtain a generator of a clone, the freeness property of that clone can then be examined.
A clone is free with respect to itself if there is a generating system such that each mapping from
this generating system to the corresponding clone can be extended to an endomorphism of that clone.
Undoubtedly, if R = Xn, then the clone n-cloneRτn is actually (Wτn(Xn), S n, x1, . . . , xn) and from the
results mentioned in [12], it is free with respect to itself. Unfortunately, not every setting of R makes
n-cloneRτn satisfy such freeness as shown in the following example.

Example 3.1. Let n = 3, τ3 = (3, 3) with ternary operation symbols f and g, R =

( f (x1, x1, x1), f (x2, x2, x2), f (x1, x2, x1)). Consider x3 ∈ WR
τ3

(X3). It is not difficult to see that x3 cannot
be generated unless it is in a generating system. Let G be a generating system of this 3 − cloneRτ3

and ϕ : G → WR
τ3

(X3) be a mapping with ϕ as its extension on WR
τ3

(X3) and ϕ(x3) = ϕ(x3) = f (x1, x1, x1).
If G is a singleton set of x3, then 〈G〉3−cloneRτ3 = {x3, r1, r2, r3} , WR

τ3
(X3), a contradiction. So, the

cardinality of G must be greater than 1. We also have that for s1, s2, s3 ∈ WR
τ3

(X3),

ϕ(S n
R(x3, s1, s2, s3)) = ϕ(x3) = f (x1, x1, x1)

while

S n
R(ϕ(x3), ϕ(s1), ϕ(s2), ϕ(s3)) = S n

R( f (x1, x1, x1), ϕ(s1), ϕ(s2), ϕ(s3)) = ϕ(s1).

This implies that ϕ(S n
R(x3, s1, s2, s3)) = S n

R(ϕ(x3), ϕ(s1), ϕ(s2), ϕ(s3)) if and only if ϕ designates each
term of WR

τ3
(X3) the term f (x1, x1, x1) in which case the mapping ϕ is not independent due to the

cardinality of G being greater than 1. Therefore, this 3 − cloneRτ3 is not free with respect to itself.

Our hope is bended to finding the condition of R which makes n-cloneRτn satisfy freeness property.
Referring to the above example, we see that if there is a variable in a generating system, a mapping
from the generating system to WR

τn
(Xn) cannot be selected freely or else its extension will not satisfy

homomorphism. This leads to the following lemma whose proof is similar to the reasoning from
Example 3.1.
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Lemma 3.2. If the clone n-cloneRτn is free with respect to itself, then Xn ⊆ sub(R).

We have to find all possible minimal generators of the clone in order to investigate the incident
where the clone is free with respect to itself. To do so, we first define the R-equivalence of terms: let
s, t ∈ Wτ(Xn) be n-ary terms of type τ and R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn). A
term t is said to be R-equivalent to s, in which case we denote by t ∼R s, if s can be obtained from t by
interchanging each r ∈ sub(t)∩R via a bijection α : sub(t)∩R→ sub(s)∩R whenever sub(t)∩R , ∅,
and s = t otherwise.

Example 3.2. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn) and g(x1) < R. Consider
terms from W(2,1,3)(X5) where f , g, and h are binary, unary, and ternary operation symbols, respectively.

(1) r1 ∼R r2 with a bijection α : {r1} → {r2} defined by α(r1) = r2;
(2) f (r1, r2) ∼R f (r2, r1) via a bijection α : {r1, r2} → {r2, r1} defined by α(r1) = r2 and α(r2) = r1;
(3) h(r1, g(x1), r3) ∼R h(r3, g(x1), r2) via a bijection α : {r1, r3} → {r3, r2} defined by α(r1) = r3 and

α(r3) = r2.

The following lemma characterizes R-equivalent terms in which at least one r ∈ R is included.

Lemma 3.3. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn) and s, t ∈ Wτ(Xn) such that
sub(t) ∩ R , ∅ and t ∼R s which relates to a bijection α : sub(t) ∩ R→ sub(s) ∩ R.

(i) If t ∈ R, then s ∈ R. More precisely, s = α(t) ∈ R.
(ii) If t = fi(t1, . . . , tni) < R and sub(t)∩R , ∅, then s = fi(s1, . . . , sni) and t j ∼R s j for all j ∈ {1, . . . , ni}

with the additional condition of the case sub(t j) ∩ R , ∅ that the bijection α j : sub(t j) ∩ R →
sub(s j) ∩ R relating to the equivalence must be a restriction of α.

Proof. (i) This is directly obtained from the definition of ∼R.
(ii) Assume that t = fi(t1, . . . , tni) < R and sub(t)∩R , ∅. Let A = {a ∈ {1, . . . , ni} | sub(ta)∩R , ∅}.

Then sub(ta′) ∩ R = ∅ for all a′ ∈ {1, . . . , ni} \ A. Since s can be obtained from t by interchanging
each r ∈ sub(t) ∩ R, any operation symbol of t which is not a subterm of any r ∈ sub(t) ∩ R stays
unchanged and thus s = fi(s1, . . . , sni) for some s1, . . . , sni ∈ Wτ(Xn). Again, by the definition of ∼R,
we obtain ta′ = sa′ for all a′ ∈ {1, . . . , ni} \ A which also means that ta′ ∼R sa′ . Consider each ta where
a ∈ A. If there is j ∈ A such that t j /R s j, then s j cannot be obtained from t j by simply swapping each
r ∈ sub(t j) ∩ R through any bijection α j : sub(t j) ∩ R → sub(s j) ∩ R. Acting as a subterm of t and
s, respectively, this unpleasant behavior of t j and s j leads to the same behavior for t and s, contrary to
t ∼R s. Thus, t j ∼R s j for all j ∈ A. Altogether, we obtain t j ∼R s j for all j ∈ {1, . . . , ni}. Additionally,
for each ta where a ∈ A, the index of satisfying sub(ta) ∩ R , ∅, we let αa : sub(ta) ∩ R→ sub(sa) ∩ R
be a bijection corresponding to ta ∼R sa. It is crucial to note that |sub(ta)∩R| = |sub(sa)∩R|. Therefore,
α|sub(ta)∩R : sub(ta) ∩ R→ sub(sa) ∩ R is also a bijection. A simple calculation provides αa = α|sub(ta)∩R

because otherwise we would get different s. The proof is then complete. �

A common question for any relation is to classify whether it is an equivalent relation or not. The
R-equivalence, ∼R, appears to be an equivalent one.

Lemma 3.4. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn). Then ∼R is an equivalent
relation on Wτ(Xn).
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Proof. Let s, t, u ∈ Wτ(Xn). Reflexivity is obvious. To show symmetry, we assume that t ∼R s. It
is easy to see that s ∼R t when sub(t) ∩ R = ∅. Additionally assume that sub(t) ∩ R , ∅. Let
α : sub(t) ∩ R → sub(s) ∩ R be a bijection correponding to t ∼R s. Note that α−1 : sub(s) ∩ R →
sub(t) ∩ R is also a bijection and hence s ∼R t. To prove transitivity, we assume that t ∼R s and
s ∼R u. Then t ∼R u is directly obtained if one of s, t, or u does not have any r ∈ R as its subterms.
Suppose more that sub(t) ∩ R and sub(s) ∩ R are nonempty. Let α : sub(t) ∩ R → sub(s) ∩ R and
β : sub(s) ∩ R → sub(u) ∩ R be bijections correponding to t ∼R s and s ∼R u, respectively. Thus,
the mapping β ◦ α : sub(t) ∩ R → sub(u) ∩ R is bijective. Therefore, t ∼R u. Consequently, ∼R is an
equivalent relation on Wτ(Xn). �

For a sequence of fixed terms R = (r1, . . . , rn) in Wτ(Xn), we denote by [t]∼R an equivalent class of
t ∈ Wτ(Xn) relating to ∼R. The next lemma describes a behaviour of terms within the same equivalent
class based on ∼R.

Lemma 3.5. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτ(Xn), s, t ∈ Wτ(Xn) with sub(t)∩R =

{rn1 , . . . , rnk}, and t ∼R s (i.e., t and s are in the same equivalent class of ∼R) corresponding to a
bijection α : sub(t) ∩ R → sub(s) ∩ R. Then S n

R(t, r1, . . . , rn1−1, α(rn1), rn1+1, . . . , rnk−1, α(rnk), rnk+1,

. . . , rn) = s.

Proof. We prove by induction on the structure of t. If t = r j ∈ R, then Lemma 3.3(i) yields s =

α(r j) = rk ∈ R. So, S n
R(t, r1, . . . , r j−1, α(r j), r j+1, . . . , rn) = S n

R(r j, r1, . . . , r j−1, rk, r j+1, . . . , rn) = rk = s.
For t = fi(t1, . . . , tni) < R and sub(t) ∩ R , ∅, we have by Lemma 3.3(ii) that s = fi(s1, . . . , sni) and
t j ∼R s j for all j ∈ {1, . . . , ni} and if sub(t j) ∩ R , ∅, then the equivalence relates to α j := α |sub(t j)∩R:
sub(t j)∩R→ sub(s j)∩R. Inductively assume that for each m ∈ {1, . . . , ni}, if sub(tm)∩R = {rm1 , . . . , rma}

and tm ∼R sm, then S n
R(tm, r1, . . . , rm1−1, α(rm1), rm1+1, . . . , rma−1, α(rma), rma+1, . . . , rm) = sm. Let J =

{ j ∈ {1, . . . , ni} | sub(t j) ∩ R , ∅}. By induction hypothesis and Lemma 2.4, we obtain
s j = S n

R(t j, r1, . . . , rn1−1, α(rn1), rn1+1, . . . , rnk−1, α(rnk), rnk+1, . . . , rn) for all j ∈ J. For each
l ∈ {1, . . . , ni} \ J, we see that sub(tl) ∩ R = ∅ and by the definition of ∼R, we get
tl = sl. Hence, S n

R(tl, r1, . . . , rn1−1, α(rn1), rn1+1, . . . , rnk−1, α(rnk), rnk+1, . . . , rn) = tl = sl. These imply
that S n

R(tk, r1, . . . , rn1−1, α(rn1), rn1+1, . . . , rnk−1, α(rnk), rnk+1, . . . , rn) = sk for all k ∈ {1, . . . , ni}. Therefore,

S n
R(t, r1, . . . , rn1−1, α(rn1), rn1+1, . . . , rnk−1, α(rnk), rnk+1, . . . , rn)

= fi(S n
R(t1, r1, . . . , rn1−1, α(rn1), rn1+1, . . . , rnk−1, α(rnk), rnk+1, . . . , rn),

. . . , S n
R(tni , r1, . . . , rn1−1, α(rn1), rn1+1, . . . , rnk−1, α(rnk), rnk+1, . . . , rn))

= fi(s1, . . . , sni)
= s.

�

Note that the superposition of the form in the previous lemma is also valid for a term t with sub(t)∩
R = ∅. Such form of a superposition in the above lemma leads to an essential result.

Corollary 3.1. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτn(Xn) and s, t ∈ WR
τn

(Xn) such that
t ∼R s. Then 〈t〉n−cloneRτn = 〈s〉n−cloneRτn .

Scoping out the generating system GR
τn

of n-cloneRτn, we have a characterization of terms in the
same ∼R-equivalent class.
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Lemma 3.6. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτn(Xn), u ∈ WR
τn

(Xn), and t ∈ GR
τn

.
Then t ∼R u if and only if t = S n

R(u, u1, . . . , un) for some u1, . . . , un ∈ WR
τn

(Xn) \ {t}.

Proof. One direction is immediately obtained from Lemma 3.5. On the other hand, assume that t =

S n
R(u, u1, . . . , un) for some u1, . . . , un ∈ WR

τn
(Xn) \ {t}. We consider 3 cases.

Case 1. t ∈ Xn ∩ (WR
τn

(Xn) \ R).

If sub(u) ∩ R , ∅, then Lemma 2.1 provides

sub(ul) ⊆ sub(S n
R(u, u1, . . . , un)) = sub(t) = {t}

for some l ∈ {1, . . . , n}. This implies that ul = t, a contradiction. Therefore, sub(u) ∩ R = ∅ and hence
t = S n

R(u, u1, . . . , un) = u. This means that t ∼R u.

Case 2. t = fi(t1, . . . , tn) and t j ∈ sub(R) \ R for all j ∈ {1, . . . , n}.

If u = rk ∈ R, then t = S n
R(u, u1, . . . , un) = uk, a contradiction. For u = fi(s1, . . . , sn) < R and

sub(u) ∩ R , ∅, we let K = {k ∈ {1, . . . , n} | sub(sk) ∩ R , ∅}. Then K , ∅ and fi(t1, . . . , tn) = t =

S n
R(u, u1, . . . , un) = fi(S n

R(s1, u1, . . . , un), . . . , S n
R(sn, u1, . . . , un)). So, S n

R(s j, u1, . . . , un) = t j for all j ∈
{1, . . . , n}. Now for each k ∈ K, S n

R(sk, u1, . . . , un) = tk and sub(sk) ∩ R , ∅. By Lemma 2.1, we obtain
ul ∈ sub(ul) ⊆ sub(S n

R(sk, u1, . . . , un)) = sub(tk) for some l ∈ {1, . . . , n}which means that ul ∈ sub(R)\R,
a contradiction to ul ∈ WR

τn
(Xn). Consequently, sub(u) ∩ R = ∅ and thus t = S n

R(u, u1, . . . , un) = u, i.e.,
t ∼R u.

Case 3. t = fi(t1, . . . , tn) and t j < sub(R) \ R for some j ∈ {1, . . . , n}.

Let M = {m ∈ {1, . . . , n} | tm < sub(R) \ R} = {m ∈ {1, . . . , n} | tm = rm}. Then M , ∅ which implies
that sub(t) ∩ R , ∅. We consider the possibility of u. If u = rk ∈ R, then t = S n

R(u, u1, . . . , un) = uk,
a contradiction. If sub(u) ∩ R = ∅, then t = S n

R(u, u1, . . . , un) = u which contradicts to sub(t) ∩
R , ∅. Therefore, u = fi(s1, . . . , sn) < R and sub(u) ∩ R , ∅. This implies that fi(t1, . . . , tn) =

t = S n
R(u, u1, . . . , un) = fi(S n

R(s1, u1, . . . , un), . . . , S n
R(sn, u1, . . . , un)). For each m′ ∈ {1, . . . , n} \ M,

S n
R(sm′ , u1, . . . , un) = tm′ ∈ sub(R)\R. If sub(sm′)∩R , ∅, then by Lemma 2.1, there is l ∈ {1, . . . , n} such

that sub(ul) ⊆ sub(tm′) which means that ul ∈ sub(R) \R, contradicting ul ∈ WR
τn

(Xn). Hence, sub(sm′)∩
R = ∅ and thus sm′ = S n

R(sm′ , u1, . . . , un) = tm′ . For each m ∈ M, we have that S n
R(sm, u1, . . . , un) = tm =

rm. By Lemma 2.2(iii), sm = rpm and upm = rm for some pm ∈ {1, . . . , n}. Let P = {p ∈ {1, . . . , n} |
rp = sm for some m ∈ M}. We show that |P| = |M|, suppose not. Then |P| < |M| or |M| < |P|. The
latter is impossible since otherwise there will be m ∈ M such that rp = sm = rp′ for some distinct
p, p′ ∈ P by pigeonhole principle. The former implies, by pigeonhole principle, that there are distinct
m, m̃ ∈ M and p ∈ P such that sm = rp and sm̃ = rp. Then Lemma 2.2(iii) yields rm = up = rm̃ which is
impossible. Therefore, |P| = |M|. This means that there is a bijection β : M → P or more accurately, a
bijection α : sub(t) ∩ R → sub(u) ∩ R. So far we have the term u = fi(s1, . . . , sn) where sm′ = tm′ and
sm = rpm for each m′ ∈ {1, . . . , n} \ M and m ∈ M and for some pm ∈ P. It follows that the term u can
be obtained by swapping each r ∈ sub(t) ∩ R via a bijection α : sub(t) ∩ R→ sub(u) ∩ R. So, t ∼R u.

The proof is finally complete. �
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Lemma 3.6 provides a robust method how each term in the generating system GR
τn

of n-cloneRτn is
generated. Such term can only be formed by using a term within the same ∼R-class. Again, that term
can only be generated by some term from the same ∼R-class. This will be an endless process unless
we include terms from that ∼R-class in a generating set. Ideally, only one term from each ∼R-class is
needed if we want a minimal one. This discussion leads to the following corollary.

Corollary 3.2. The generating system GR
τn

of n-cloneRτn is minimal and the other minimal generating
systems of the clone are collections of terms selecting from ∼R-classs of terms in GR

τn
, one from each

class.

Extending the finding from Lemma 3.2, we now identify conditions which are equivalent to the
self-freeness of n-cloneRτn.

Theorem 3.1. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτn(Xn) and G be the collection of
all minimal generating systems of n-cloneRτn. Then the following statements are equivalent.

(i) The clone n-cloneRτn is free with respect to itself.
(ii) R = (xα(1), . . . , xα(n)) for some permutation α on {1, . . . , n} or τn = (1).

(iii) There exists G ∈ G such that Xn ∩G = ∅ and fi(t1, . . . , tn) < G in which t j ∈ sub(R) \ R for some
j ∈ {1, . . . , n}.

Proof. (i) ⇒ (iii): Let A be a generator of n-cloneRτn and G ∈ G such that G ⊆ A. Assume that
Xn ∩ G , ∅. By Lemma 3.1 and Corollary 3.2, |G| ≥ 1. Let t ∈ Xn ∩ G, s1, . . . , sn ∈ WR

τn
(Xn), and

ϕ : G → WR
τn

(Xn) be a mapping. It follows by Lemma 3.1 and Corollary 3.2 that t ∈ Xn ∩ (WR
τn

(Xn) \R).
In order for an extension ϕ of ϕ to be an endomorphism of n-cloneRτn, the following expression must
be satisfied:

ϕ(t) = ϕ(t) = ϕ(S n
R(t, s1, . . . , sn)) = S n

R(ϕ(t), ϕ(s1), . . . , ϕ(sn)) = S n
R(ϕ(t), ϕ(s1), . . . , ϕ(sn)).

Note that ϕ(t) can be any element from WR
τn

(Xn). For ϕ(t) = r1 ∈ R, we have

r1 = ϕ(t) = S n
R(ϕ(t), ϕ(s1), . . . , ϕ(sn)) = ϕ(s1).

Since s1 is arbitrary and |G| ≥ 1, ϕ must be an identity mapping of G and it cannot be defined freely.
Thus, any extension ψ : A→ WR

τn
(Xn) of ϕ cannot be defined freely either. Therefore, n-cloneRτn is not

free with respect to itself. Next, assume that s = fi(t1, . . . , tn) ∈ G in which t j ∈ sub(R) \ R for some
j ∈ {1, . . . , n}. This implies that |G| ≥ 1 by Lemma 3.1 and Corollary 3.2. Let J = { j ∈ {1, . . . , n} | t j ∈

sub(R) \ R} = { j1, . . . , jm}. If J = {1, . . . , n}, then sub(s) ∩ R = ∅. To be a homomorphism, ϕ needs to
satisfy

ϕ(s) = ϕ(s) = ϕ(S n
R(s, s1, . . . , sn)) = S n

R(ϕ(s), ϕ(s1), . . . , ϕ(sn)).

Consider ϕ(s) = r1 ∈ R and we can imply that n-cloneRτn is not free with respect to itself by similar
reasoning of the previous case. In the case of J , {1, . . . , n}, we have by Lemma 3.1 and Corollary 3.2
that t j′ = rα( j′) for some injective mapping α : {1, . . . , n} \ J → {1, . . . , n} for all j′ ∈ {1, . . . , n} \ J. The
homomorphism requires

ϕ( fi(sα(1), . . . , sα( j1−1), t j1 , sα( j1+1), . . . , sα( jm−1), t jm , sα( jm+1), . . . , sα(n)))
= ϕ( fi(S n

R(t1, s1, . . . , sn), . . . , S n
R(tn, s1, . . . , sn)))

= ϕ(S n
R(s, s1, . . . , sn))

= S n
R(ϕ(s), ϕ(s1), . . . , ϕ(sn)).
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For ϕ(s) = rk for some k ∈ {1, . . . , n} \ α({1, . . . , n} \ J), we see that

ϕ( fi(sα(1), . . . , sα( j1−1), t j1 , sα( j1+1), . . . , sα( jm−1), t jm , sα( jm+1), . . . , sα(n)))
= S n

R(ϕ(s), ϕ(s1), . . . , ϕ(sn))
= ϕ(sk).

Since the leftmost term is not dominated by the term sk, ϕ(sk) gets mapped to a fixed element for any
sk ∈ WR

τn
(Xn). With similar reasoning from the first case, we conclude that n-cloneRτn is not free with

respect to itself.
(iii) ⇒ (ii): Suppose that R , (xα(1), . . . , xα(n)) for any permutation α on {1, . . . , n} and τn , (1).

Let G ∈ G. To show that there exists fi(t1, . . . , tn) ∈ G in which t j ∈ sub(R) \ R for some j ∈ {1, . . . , n}.
By assumption, there is r ∈ R such that r = fi(u1, . . . , un) for some u1, . . . , un ∈ Wτn(Xn). It follows that
u1, . . . , un ∈ sub(R) \ R. If n ≥ 2, then for a fixed operation symbol f ,

|{ f (v1, . . . , vn) | v j ∈ sub(R) \ R for some j ∈ {1, . . . , n}}| > n = |R|.

So, { f (v1, . . . , vn) | v j ∈ sub(R) \ R for some j ∈ {1, . . . , n}} ∩ G , ∅. For the case n = 1 with two
or more operation symbols, let g be a unary operation symbol besides f . As n = 1, we have that
R = ( f (u1)) or R = (g(u1)) for some u1 ∈ Wτ1(X1). This implies that u1 ∈ sub(R) \ R. By Lemma 3.1
and Corollary 3.2, we get g(u1) ∈ G if R = ( f (u1)) and f (u1) ∈ G if R = (g(u1)).

(ii) ⇒ (i): Assume that R = (xα(1), . . . , xα(n)) for some permutation α on {1, . . . , n}. Lemma 3.1
provides GR

τn
= FR

τn
= { fi(r1, . . . , rn) | i ∈ I}. We extend ϕ : GR

τn
→ WR

τn
(Xn) to ϕ : n-cloneRτn →

n-cloneRτn by defining

(1) ϕ(t) = t if t ∈ R;
(2) ϕ(t) = S n

R(ϕ( fi(r1, . . . , rn)), ϕ(t1), . . . , ϕ(tn)) if t = fi(t1, . . . , tn).

Note that the condition for the second case is actually t = fi(t1, . . . , tn) < R and sub(t) ∩ R , ∅. Let
t, s1, . . . , sn ∈ WR

τn
(Xn). We prove by induction on the structure of t that ϕ is an endomorphism of

n-cloneRτn. If t = rk ∈ R, then

ϕ(S n
R(t, s1, . . . , sn))

= ϕ(sk)
= S n

R(t, ϕ(s1), . . . , ϕ(sn))
= S n

R(ϕ(t), ϕ(s1), . . . , ϕ(sn)).

For t = fi(t1, . . . , tn) < R and sub(t) ∩ R , ∅, we inductively assume that ϕ(S n
R(t j, s1, . . . , sn)) =

S n
R(ϕ(t j), ϕ(s1), . . . , ϕ(sn)) for all j ∈ {1, . . . , n}. Since R is a sequence of all variables,

sub(S n
R(t j, s1, . . . , sn)) ∩ R , ∅ for any j ∈ {1, . . . , n}. It follows that

ϕ(S n
R(t, s1, . . . , sn))
= ϕ( fi(S n

R(t1, s1, . . . , sn), . . . , S n
R(tn, s1, . . . , sn)))

= S n
R(ϕ( fi(r1, . . . , rn)), ϕ(S n

R(t1, s1, . . . , sn)), . . . , ϕ(S n
R(tn, s1, . . . , sn)))

= S n
R(ϕ( fi(r1, . . . , rn)), S n

R(ϕ(t1), ϕ(s1), . . . , ϕ(sn)), . . . , S n
R(ϕ(tn), ϕ(s1), . . . , ϕ(sn)))

= S n
R(S n

R(ϕ( fi(r1, . . . , rn)), ϕ(t1), . . . , ϕ(tn)), ϕ(s1), . . . , ϕ(sn))
= S n

R(ϕ(t), ϕ(s1), . . . , ϕ(sn)).
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These depict the homomorphism of ϕ. Next, assume that τn = (1) with f as the unary operation symbol.
It is easy to identify that GR

τn
= { f (r1)} and WR

τn
(Xn) = {r1, f (r1), f ( f (r1)), f ( f ( f (r1))), . . .}. Note that

sub(u) ∩ R , ∅ for all u ∈ WR
τn

(Xn). We extend ϕ : GR
τn
→ WR

τn
(Xn) to ϕ : n-cloneRτn → n-cloneRτn

by defining ϕ(r1) = r1 and ϕ(t) = S n
R(ϕ( f (r1)), ϕ(t1)) if t = f (t1). Let t, s1 ∈ WR

τn
(Xn). We show that

ϕ(S n
R(t, s1)) = S n

R(ϕ(t), ϕ(s1)). This is immediate when t = r1, so only the case t = f (t1) < R remains.
Inductively assume that ϕ(S n

R(t1, s1)) = S n
R(ϕ(t1), ϕ(s1)). We then obtain

ϕ(S n
R(t, s1)) = ϕ( f (S n

R(t1, s1)))
= S n

R(ϕ( f (r1)), ϕ(S n
R(t1, s1)))

= S n
R(ϕ( f (r1)), S n

R(ϕ(t1), ϕ(s1)))
= S n

R(S n
R(ϕ( f (r1)), ϕ(t1)), ϕ(s1))

= S n
R(ϕ(t), ϕ(s1)).

Consequently, n-cloneRτn is free with respect to itself. �

The condition for the clone n-cloneRτn to be free with respect to itself is eventually obtained. It
provides that not every form of mapping ϕ from a minimal generator M to WR

τn
(Xn) can be extended to

an endomorphism of the clone. The final theorem here gives a sufficient condition for such mapping to
be extendable as an endomorphism of the clone.

Theorem 3.2. Let R = (r1, . . . , rn) be a sequence of fixed terms in Wτn(Xn). Then a mapping ϕ :
GR
τn
→ WR

τn
(Xn) can be extended to an endomorphism on n-cloneRτn if for each t ∈ GR

τn
, sub(ϕ(t))∩R ⊆

sub(t) ∩ R.

Proof. Assume that sub(ϕ(t)) ∩ R ⊆ sub(t) ∩ R for each t ∈ GR
τn

. Define ϕ : WR
τn

(Xn) → WR
τn

(Xn) in the
following way: for each t ∈ WR

τn
(Xn),

(i) ϕ(t) = t if t ∈ R.
(ii) ϕ(t) = ϕ(t) if t ∈ Xn \ R.

(iii) ϕ( fi(t1, . . . , tn)) = S n
R(ϕ( fi(r1, . . . , rn)), ϕ(t1), . . . , ϕ(tn)) if t j ∈ WR

τn
(Xn) for all j ∈ {1, . . . , n}.

(iv) ϕ( fi(t1, . . . , tn)) = S n
R(ϕ( fi(r1, . . . , rk1−1, tk1 , rk1+1, . . . , rkm−1, tkm , rkm+1, . . . , rn)), ϕ(t1), . . . , ϕ(tk1−1), uk1 ,

ϕ(tk1+1), . . . , ϕ(tkm−1), ukm , ϕ(tkm+1), . . . , ϕ(tn)) for some uk1 , . . . , ukm ∈ WR
τn

(Xn) such that
sub(ul) ∩ R = ∅ for all l ∈ {k1, . . . , km} if tk1 , . . . , tkm ∈ sub(R) \ R.

We first show that ϕ is an extension of ϕ to WR
τn

(Xn). This is clear for t ∈ Xn \ R.
Let t = fi(t1, . . . , tn) ∈ GR

τn
. If t j = r j for all j ∈ {1, . . . , n}, then by (iii) and (C3), we see that

ϕ(t) = ϕ( fi(r1, . . . , rn)) = S n
R(ϕ( fi(r1, . . . , rn)), ϕ(r1), . . . , ϕ(rn)) = S n

R(ϕ( fi(r1, . . . , rn)), r1, . . . , rn) =

ϕ( fi(r1, . . . , rn)) = ϕ(t). Next, for the case of t j , r j for some j ∈ {1, . . . , n}, we set K = {k1, . . . , km}

⊆ {1, . . . , n} to be the set of all indices such that tk ∈ sub(R) \ R for all k ∈ K. So, tp = rp for all
p ∈ {1, . . . , n} \ K and sub(t) ∩ R = {rp | p ∈ {1, . . . , n} \ K}. It follows from the assumption that
sub(ϕ(t)) ∩ R ⊆ {rp | p ∈ {1, . . . , n} \ K}. Then (iv), (C3), and Lemma 2.4 give out

ϕ(t) = ϕ( fi(r1, . . . , rk1−1, tk1 , rk1+1, . . . , rkm−1, tkm , rkm+1, . . . , rn))
= S n

R(ϕ( fi(r1, . . . , rk1−1, tk1 , rk1+1, . . . , rkm−1, tkm , rkm+1, . . . , rn)), ϕ(r1),
. . . , ϕ(rk1−1), uk1 , ϕ(rk1+1), . . . , ϕ(rkm−1), ukm , ϕ(rkm+1), . . . , ϕ(rn))
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= S n
R(ϕ(t), r1, . . . , rn)

= ϕ(t)

where uk1 , . . . , ukm ∈ WR
τn

(Xn) such that sub(ul) ∩ R = ∅ for all l ∈ {k1, . . . , km}. These
represent the required extension. Only an endomorphism of ϕ is left to be proved. Let t, s1, . . . , sn ∈

WR
τn

(Xn). We show that ϕ(S n
R(t, s1, . . . , sn)) = S n

R(ϕ(t), ϕ(s1), . . . , ϕ(sn)). If t = r j ∈ R for some
j ∈ {1, . . . , n}, then

ϕ(S n
R(t, s1, . . . , sn)) = ϕ(s j) = S n

R(r j, ϕ(s1), . . . , ϕ(sn)) = S n
R(ϕ(t), ϕ(s1), . . . , ϕ(sn)).

If t ∈ Xn \ R, then t ∈ GR
τn

and by assumption, we get sub(ϕ(t)) ∩ R ⊆ sub(t) ∩ R = {t} ∩ R = ∅, and
thus sub(ϕ(t)) ∩ R = ∅. Therefore,

S n
R(ϕ(t), ϕ(s1), . . . , ϕ(sn)) = S n

R(ϕ(t), ϕ(s1), . . . , ϕ(sn)) = ϕ(t) = ϕ(t) = ϕ(S n
R(t, s1, . . . , sn)).

Next, we consider the case t = fi(t1, . . . , tn) < R and sub(t) ∩ R = ∅. Hence, sub(t j) ∩ R = ∅

for all j ∈ {1, . . . , n}. We first show that sub(ϕ(t)) ∩ R = ∅. If t j ∈ Xn for each j ∈ {1, . . . , n}, then
t j ∈ GR

τn
or t j ∈ sub(R) \ R. The former implies that sub(ϕ(t j)) ∩ R = ∅ due to the assumption at the

beginning. Furthermore, there are two possible forms of ϕ(t), each of which corresponds to (iii) or (iv).
Thanks to Lemma 2.3, we obtain, regardless of the form of ϕ(t), that sub(ϕ(t))∩R = ∅. For the case of
t j = fi j(t1 j , . . . , tn j) for some j ∈ {1, . . . , n}, let T be the set of all terms among t1, . . . , tn which are not a
variable. It follows that T , ∅. Since t < R and sub(t) ∩ R = ∅, we have that u < R and sub(u) ∩ R = ∅

for any u ∈ T . Assume inductively that sub(ϕ(u)) ∩ R = ∅. Using similar reasoning from the previous
case, we eventually obtain sub(ϕ(t)) ∩ R = ∅. Now, we have shown that sub(ϕ(t)) ∩ R = ∅. Thus, we
have that S n

R(ϕ(t), ϕ(s1), . . . , ϕ(sn)) = ϕ(t) = ϕ(S n
R(t, s1, . . . , sn)).

Only the case t = fi(t1, . . . , tn) < R and sub(t) ∩ R , ∅ remains. Inductively assume that
ϕ(S n

R(t j, s1, . . . , sn)) = S n
R(ϕ(t j), ϕ(s1), . . . , ϕ(sn)) for each j ∈ {1, . . . , n} with t j ∈ WR

τn
(Xn). If

t j ∈ WR
τn

(Xn) for all j ∈ {1, . . . , n}, we then have

ϕ(S n
R(t, s1, . . . , sn))
= ϕ(S n

R( fi(t1, . . . , tn), s1, . . . , sn))
= ϕ( fi(S n

R(t1, s1, . . . , sn), . . . , S n
R(tn, s1, . . . , sn)))

= S n
R(ϕ( fi(r1, . . . , rn)), ϕ(S n

R(t1, s1, . . . , sn)), . . . , ϕ(S n
R(tn, s1, . . . , sn)))

= S n
R(ϕ( fi(r1, . . . , rn)), S n

R(ϕ(t1), ϕ(s1), . . . , ϕ(sn)), . . . , S n
R(ϕ(tn), ϕ(s1), . . . , ϕ(sn)))

= S n
R(S n

R(ϕ( fi(r1, . . . , rn)), ϕ(t1), . . . , ϕ(tn)), ϕ(s1), . . . , ϕ(sn))
= S n

R(ϕ( fi(t1, . . . , tn)), ϕ(s1), . . . , ϕ(sn))
= S n

R(ϕ(t), ϕ(s1), . . . ϕ(sn)).

If some of t1, . . . , tn belong to sub(R) \ R, let K = {k1, . . . , km} ⊆ {1, . . . , n} be the set of all indices such
that tk ∈ sub(R) \ R for all k ∈ K. Hence, S n

R(tk, s1, . . . , sn) = tk for each k ∈ K; moreover, tp ∈ WR
τn

(Xn)
for each p ∈ {1, . . . , n} \ K, and hence S n

R(tp, s1, . . . , sn) ∈ WR
τn

(Xn). Note that for each term u ∈ Wτn(Xn)
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with sub(u) ∩ R = ∅, u = S n
R(u, ϕ(s1), . . . , ϕ(sn)). Then

ϕ(S n
R(t, s1, . . . , sn))
= ϕ(S n

R( fi(t1, . . . , tn), s1, . . . , sn))
= ϕ( fi(S n

R(t1, s1, . . . , sn), . . . , S n
R(tn, s1, . . . , sn)))

= ϕ( fi(S n
R(t1, s1, . . . , sn), . . . , S n

R(tk1−1, s1, . . . , sn), tk1 , S
n
R(tk1+1, s1, . . . , sn), . . . ,

S n
R(tkm−1, s1, . . . , sn), tkm , S

n
R(tkm+1, s1, . . . , sn), . . . , S n

R(tn, s1, . . . , sn)))
= S n

R(ϕ( fi(r1, . . . , rk1−1, tk1 , rk1+1, . . . , rkm−1, tkm , rkm+1, . . . , rn)), ϕ(S n
R(t1, s1, . . . , sn)),

. . . , ϕ(S n
R(tk1−1, s1, . . . , sn)), uk1 , ϕ(S n

R(tk1+1, s1, . . . , sn)), . . . ,
ϕ(S n

R(tkm−1, s1, . . . , sn)), ukm , ϕ(S n
R(tkm+1, s1, . . . , sn)), . . . , ϕ(S n

R(tn, s1, . . . , sn)))
= S n

R(ϕ( fi(r1, . . . , rk1−1, tk1 , rk1+1, . . . , rkm−1, tkm , rkm+1, . . . , rn)),
S n

R(ϕ(t1), ϕ(s1), . . . , ϕ(sn)), . . . , S n
R(ϕ(tk1−1), ϕ(s1), . . . , ϕ(sn)), uk1 ,

S n
R(ϕ(tk1+1), ϕ(s1), . . . , ϕ(sn)), . . . , S n

R(ϕ(tkm−1), ϕ(s1), . . . , ϕ(sn)), ukm ,

S n
R(ϕ(tkm+1), ϕ(s1), . . . , ϕ(sn)), . . . , (ϕ(tn), ϕ(s1), . . . , ϕ(sn)))

= S n
R(S n

R(ϕ( fi(r1, . . . , rk1−1, tk1 , rk1+1, . . . , rkm−1, tkm , rkm+1, . . . , rn)),
ϕ(t1), . . . , ϕ(tk1−1), uk1 , ϕ(tk1+1), . . . , ϕ(tkm−1), ukm , ϕ(tkm+1), . . . , ϕ(tn)), ϕ(s1), . . . , ϕ(sn))

= S n
R(ϕ(t), ϕ(s1), . . . , ϕ(sn)).

where uk1 , . . . , ukm ∈ WR
τn

(Xn) such that sub(ul) ∩ R = ∅ for all l ∈ {k1, . . . , km}. Consequently, ϕ is an
endomorphism. �

Although this final theorem only considers the minimal generating system GR
τn

, other minimal ones
can be substituted for GR

τn
since each term of any minimal generating system is R-equivalent to the

corresponding term from GR
τn

due to Corollary 3.2. However, the way we define an extension ϕ will be
slightly different from that of GR

τn
.

It is crucial to remark that the converse of the previous theorem does not hold. A simple incident
occurs where sub(R) \ R , ∅, ensuring the existence of t ∈ GR

τn
such that sub(t) ∩ R = ∅, and ϕ :

GR
τn
→ WR

τn
(Xn) maps each element in the generating set GR

τn
to a fixed term r ∈ R. Then we can simply

extend the mapping to a constant mapping of WR
τn

(Xn) which makes it an endomorphism; however,
sub(ϕ(t)) ∩ R = {r} * ∅ = sub(t) ∩ R.

4. Conclusions

The main discoveries from this paper regard the properties of an inductive superposition, a
superposition performing the subterm replacement instead of the usual variable replacement. Acting as
an (n + 1)-ary operation, an inductive superposition induces a unitary Menger algebra of rank n whose
form generalizes that of [12]. By using the concept of R-equivalent class, we managed to classify
all possible minimal generating systems of the clone n-cloneRτn and found out that the clone is not
free with respect to itself for some sequences of fixed terms. Fortunately, we were able to seek out
all possible conditions for the clone to be self-free. Lastly, a sufficient condition for a mapping to be
extendable to an endomorphism of the clone was given. The future research may possibly be conducted
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toward the use of an inductive superposition in place of a usual variable-replacing superposition such
as in the context of a hypersubstitution and of a superposition of tree languages.
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