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ALoqaily4,5 and Nabil Mlaiki4

1 Department of Mathematics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
2 Department of Applied Mathematics and Informatics, Technical University, Letná 9, Košice,
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Abstract: A (modular) vertex irregular total labeling of a graph G of order n is an assignment of
positive integers from 1 to k to the vertices and edges of G with the property that all vertex weights are
distinct. The vertex weight of a vertex v is defined as the sum of numbers assigned to the vertex v itself
and to the edge’s incident, while the modular vertex weight is defined as the remainder of the division
of the vertex weight by n. The (modular) total vertex irregularity strength of G is the minimum k for
which such labeling exists. In this paper, we obtain estimations on the modular total vertex irregularity
strength, and we evaluate the precise values of this invariant for certain graphs.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. If G is a graph, then V(G) and
E(G) stand for the vertex set and the edge set of G, respectively. Let the order of a graph G be denoted
by n. For numbers a and b, let [a, b] denote the set of all integers c such that a ≤ c ≤ b. Let k ≥ 1 be a
positive integer. For a graph G a mapping ϕ : E(G) → [1, k] induces the weight of a vertex u ∈ V(G)
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defined by
wtϕ(u) =

∑
uv∈E(G)

ϕ(uv).

If all vertices have distinct weights, then we call this mapping an irregular labeling. The irregularity
strength of a graph G, abbreviated as s(G), is defined to be the maximal integer k, minimized over all
irregular labelings. If such k does not exist, then s(G) = ∞. Evidently, the parameter s(G) is finite if
and only if at most one component of G is isomorphic to K1 and no component is isomorphic to K2.

The topic of irregularity strength was first introduced by Chartrand et al. [1]. In the same paper the
following bound of this parameter is proved

s(G) ≥ max
{

ni+i−1
i : i ∈ [1,∆(G)]

}
,

where ni stands for the number of vertices of degree i and ∆(G) for the maximum degree of G.
Faudree and Lehel [2] proved that the irregularity strength of an r-regular graph G, r ≥ 2, is bounded

above s(G) ≤
⌈

n
2

⌉
+9. Moreover, they proposed a conjecture that for each r-regular graph is s(G) ≤ n

r +c,
where c is a constant. This upper bound was sequentially improved by Cuckler and Lazebnik [3] who
exploited probabilistic approach and then by Przybyło [4] and Kalkowski, Karonski and Pfender [5].
Recently Majerski and Przybyło showed in [6] that s(G) ≤ (4+o(1))n

δ(G) + 4 for graphs having the minimum
degree δ(G) ≥

√
n ln n.

The irregularity strength of paths and complete graphs is investigated in [1], of cycles and Turan
graphs in [7]. The generalized Petersen graphs are studied in [8], trees in [9] and circulant graphs
in [10]. Other results on the irregularity strength and its variations can be found in [11–13].

The modular irregular labeling as a variation of the irregular labeling was introduced in [14]. Let
Zn be the group of integers modulo n. For a graph G of order n a mapping ϕ : E(G)→ [1, k] is said to
be a modular irregular k-labeling if the induced vertex mapping λ : V(G)→ Zn defined such that

λ(u) = wtϕ(u) =
∑

uv∈E(G)

ϕ(uv) (mod n)

is a bijection. The label λ(u) is known as the modular weight of the vertex u. The modular irregularity
strength, ms(G), of a graph G is defined as the minimum k for which G has a modular irregular labeling
using labels at most k. If such k does not exist, then ms(G) = ∞.

Obviously, a modular irregular labeling of a given graph is also its irregular labeling. This indicates
a correspondence between the irregularity strength and the modular irregularity strength and gives a
trivial lower bound of the modular irregularity strength of a graph

s(G) ≤ ms(G).

The modular irregularity strength for cycles, paths and stars are investigated in [14], for fan graphs,
wheels and friendship graphs are proved in [15–17], respectively. An edge version of the modular
irregularity strength is studied in [18].

For a graph G, in [19], it introduces a total labeling ψ : V(G) ∪ E(G) → [1, k] called a vertex
irregular total k-labeling having the property that distinct vertices have distinct total vertex weights,
where the total vertex weight of a vertex u is defined as wtψ(u) = ψ(u) +

∑
uv∈E(G)

ψ(uv). The minimum

k for which G has a vertex irregular total k-labeling is called the total vertex irregularity strength of
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G, abbreviated as tvs(G). This graph invariant is defined for all graphs. Moreover, if we restricted on
graphs whose every component had at least 3 vertices, then

tvs(G) ≤ s(G). (1.1)

If G has maximum degree ∆(G) and minimum degree δ(G) then⌈
n+δ(G)
∆(G)+1

⌉
≤ tvs(G) ≤ n + ∆(G) − 2δ + 1. (1.2)

This result was proved by Bača et al. in [19]. Moreover, if we restrict on graphs whose every
component has at least 3 vertices they also proved

tvs(G) ≤ n − 1 −
⌊

n−2
∆(G)+1

⌋
.

For general graphs Przybyło [4] obtained bound tvs(G) < 32n
δ(G) +8 and for r-regular graphs he proved

tvs(G) < 8n
r + 3. Anholcer et al. [20] improved this result and proved tvs(G) ≤ 3

⌈
n

δ(G)

⌉
+ 1 ≤ 3n

δ(G) + 4.
Majerski and Przybyło in [21] showed that tvs(G) ≤ (2 + o(1)) n

δ(G) + 4, when δ(G) ≥
√

n ln n. The
results for circulant graphs are obtained in [22] and for unicyclic graphs in [23].

Motivated by the concept of the modular irregular labeling and the concept of the vertex irregular
total labeling, we study modular vertex irregular total labelings in this paper.

For a graph G of order n a total labeling ψ : V(G) ∪ E(G) → [1, k] is called a modular vertex
irregular total k-labeling if the induced vertex mapping λ : V(G)→ Zn defined by

λ(u) = wtψ(u) = ψ(u) +
∑

uv∈E(G)

ψ(uv) (mod n)

is a bijection. The label λ(u) is called as the modular total vertex weight of the vertex u. The modular
total vertex irregularity strength of a graph G, abbreviated as mtvs(G), is defined as the minimum k for
which G has a modular vertex irregular total k-labeling.

The rest of this paper is organized in the following way. In Section 2 we study properties of modular
vertex irregular total k-labelings and we obtain estimations on the modular total vertex irregularity
strength. Section 3 is devoted to the investigation of existence of modular vertex irregular total k-
labelings for certain families of graphs and to determining the precise values of the modular total
vertex irregularity strength that prove the sharpness of the lower bound.

2. Estimations on the modular total vertex irregularity strength

Evidently from the definition it follows that every modular vertex irregular total k-labeling of a
graph is also its vertex irregular total k-labeling. Thus, we have the following lower bound of the
modular total vertex irregularity strength

tvs(G) ≤ mtvs(G). (2.1)

Trivially, the relationship (1.1) is also true for the modular version. This gives an upper bound of
the corresponding graph invariant.
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Theorem 2.1. Let G be a graph with no component of order at most 2. Then

mtvs(G) ≤ ms(G). (2.2)

Proof. Consider that ϕ : E(G) → [1,ms(G)] is a labeling of a graph G of order n whose every
component has at least 3 vertices providing the modular irregularity strength ms(G). If we extend this
edge labeling to the total labeling ψ such that ψ(e) = ϕ(e) for every e ∈ E(G) and ψ(v) = 1 for every
v ∈ V(G), then each vertex weight increases by 1 and new total vertex weights of G taken modulo n
clearly attain values from 0 to n − 1. Thus ψ is a modular vertex irregular total labeling. �

In general, the converse of (2.1) does not hold. However, the following statement applies.

Theorem 2.2. Let G be a graph with tvs(G) = k. If total vertex weights under a corresponding vertex
irregular total k-labeling constitute a set of consecutive integers, then

tvs(G) = mtvs(G) = k.

3. Precise values of mtvs for certain families of graphs

Combining (1.2), (2.1) and (2.2) we get⌈
|V |+δ
∆+1

⌉
≤ tvs(G) ≤ mtvs(G) ≤ ms(G). (3.1)

In this section we deal with the existence of modular vertex irregular total labelings for several
graphs. We evaluate the precise values of the modular total vertex irregularity strength for paths,
cycles, complete graphs and stars. These results prove the sharpness of the lower bound (3.1).

In [14] is determined the precise value of the modular irregularity strength for paths Pn of order
n ≥ 3 as follows

ms(Pn) =


⌈

n
2

⌉
, if n . 2 (mod 4),

∞, if n ≡ 2 (mod 4).

Now we present a result on the modular total vertex irregularity strength for a path which proves
that the lower bound in (3.1) is tight.

Theorem 3.1. Let Pn be a path on n ≥ 2 vertices. Then

mtvs(Pn) =

2, if n = 2,⌈
n+1

3

⌉
, otherwise.

Proof. For n ≥ 2, let

V(Pn) = {vi : i ∈ [1, n]} and E(Pn) = {ei = vivi+1 : i ∈ [1, n − 1]}.

The path P2 admits a vertex irregular total 2-labeling with vertex labels 1, 2 and the edge label 1, where
the induced vertex weights are 2 and 3. Thus this labeling is also modular and mtvs(P2) = 2.
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According to (3.1) we have that mtvs(Pn) ≥
⌈

n+1
3

⌉
. To prove the equality we show the existence of

a modular vertex irregular total
⌈

n+1
3

⌉
-labeling.

For n ≥ 3, we define the total labeling ψ in the following way

ψ(vi) =


1, if i = 1,⌈

i−2
3

⌉
+
⌈

i
3

⌉
, if i ∈ [2, n

2 + 1] when n is even and if i ∈ [2, n−1
2 ] when n is odd,

2, if i = n,

ψ(vn−i) =
⌈

i
3

⌉
+
⌈

i+1
3

⌉
, if i ∈ [1, n

2 − 2] when n is even and if i ∈ [1, n−1
2 ] when n is odd,

ψ(ei) =
⌈

i−1
3

⌉
+
⌈

i
3

⌉
, if i ∈ [1,

⌊
n
2

⌋
],

ψ(en−i) =
⌈

i−1
3

⌉
+
⌈

i+1
3

⌉
, if i ∈ [1, n

2 − 1] when n is even and if i ∈ [1, n−1
2 ] when n is odd.

One can check that when n is even the maximal label of the vertex vi, i ∈ [2, n
2 + 1] is

ψ(v n
2 +1) =

⌈
n−2

6

⌉
+
⌈

n+2
6

⌉
,

of the vertex vn−i, i ∈ [1, n
2 − 2] is

ψ(v n
2 +2) =

⌈
n−4

6

⌉
+
⌈

n−2
6

⌉
and the maximal label of the edge ei, i ∈ [1, n

2 ] is

ψ(e n
2
) =
⌈

n−2
6

⌉
+
⌈

n
6

⌉
,

finally for the edge en−i, i ∈ [1, n
2 − 1] we get

ψ(e n
2 +1) =

⌈
n−4

6

⌉
+
⌈

n
6

⌉
.

Analogously, when n is odd then the maximal label of the vertex vi, i ∈ [2, n−1
2 ] is

ψ(v n−1
2

) =
⌈

n−5
6

⌉
+
⌈

n+1
6

⌉
and of the vertex vn−i, i ∈ [1, n−1

2 ] is

ψ(v n+1
2

) =
⌈

n−1
6

⌉
+
⌈

n+1
6

⌉
.

For the edges we get the following. For the edge ei, i ∈ [1, n−1
2 ] the maximal label is

ψ(e n−1
2

) =
⌈

n−3
6

⌉
+
⌈

n−1
6

⌉
and for en−i, i ∈ [1, n−1

2 ] is
ψ(e n+1

2
) =
⌈

n−3
6

⌉
+
⌈

n+1
6

⌉
.

It is routine to check that in both cases all vertex labels and edge labels are at most
⌈

n+1
3

⌉
. Thus ψ is a

total
⌈

n+1
3

⌉
-labeling.
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For the total vertex weights we obtain

wtψ(v1) =ψ(v1) + ψ(e1) = 2,

wtψ(vi) =ψ(ei−1) + ψ(vi) + ψ(ei) =
⌈

i−2
3

⌉
+
⌈

i−1
3

⌉
+
⌈

i−2
3

⌉
+
⌈

i
3

⌉
+
⌈

i−1
3

⌉
+
⌈

i
3

⌉
= 2i, if i ∈ [2,

⌊
n
2

⌋
],

wtψ(v n+1
2

) =ψ(en−1
2

) + ψ(v n+1
2

) + ψ(en+1
2

) =
⌈

n−3
6

⌉
+
⌈

n−1
6

⌉
+
⌈

n−1
6

⌉
+
⌈

n+1
6

⌉
+
⌈

n−3
6

⌉
+
⌈

n+1
6

⌉
= n + 1,

wtψ(v n
2 +1) =ψ(en

2
) + ψ(v n

2 +1) + ψ(en
2 +1) =

⌈
n−2

6

⌉
+
⌈

n
6

⌉
+
⌈

n−2
6

⌉
+
⌈

n+2
6

⌉
+
⌈

n−4
6

⌉
+
⌈

n
6

⌉
= n + 1,

wtψ(vn−i) =ψ(en−i−1) + ψ(vn−i) + ψ(en−i) =
⌈

i
3

⌉
+
⌈

i+2
3

⌉
+
⌈

i
3

⌉
+
⌈

i+1
3

⌉
+
⌈

i−1
3

⌉
+
⌈

i+1
3

⌉
= 2i + 3,

if i ∈ [1,
⌈

n−1
2

⌉
− 1],

wtψ(vn) =ψ(en−1) + ψ(vn) = 3.

The total vertex weights under the total labeling ψ successively attain values from the set [2, n + 1].
Thus according to Theorem 2.2 we have that tvs(Pn) = mtvs(Pn) =

⌈
n+1

3

⌉
. This completes the proof. �

In [19] is proved that tvs(Cn) =
⌈

n+2
3

⌉
and total vertex weights under the corresponding vertex

irregular total
⌈

n+2
3

⌉
-labeling constitute the set of consecutive integers [3, n + 2]. According to

Theorem 2.2 we have the following result:

Theorem 3.2. Let Cn be a cycle with n ≥ 3 vertices. Then

mtvs(Cn) =
⌈

n+2
3

⌉
.

Chartrand et al. [1] showed that for the complete graph Kn, n ≥ 3, s(Kn) = 3. In [19] is described a
suitable vertex irregular total 2-labeling of Kn with vertices v1, v2, . . . , vn, n ≥ 2, which for the vertex vt

induces the total weight wt(vt) = n + t − 1 for any t ∈ [1, n]. Hence according to Theorem 2.2 we get
the next theorem.

Theorem 3.3. Let Kn be a complete graph of order n ≥ 2. Then

mtvs(Kn) = 2.

Let K1,n be a star with n pendant vertices, say v1, v2, . . . , vn, and the center vertex, say u. In [19] is
proved that

tvs(K1,n) =
⌈

n+1
2

⌉
, (3.2)

but described vertex irregular total
⌈

n+1
2

⌉
-labeling is not modular. In the next theorem we provide

a suitable modular vertex irregular total
⌈

n+1
2

⌉
-labeling.

Theorem 3.4. Let K1,n be a star of order n + 1, n ≥ 1. Then

mtvs(K1,n) =

2, if n = 1,⌈
n+1

2

⌉
, otherwise.

(3.3)
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Proof. Since K1,1 is the path on two vertices then mtvs(K1,1) follows from Theorem 3.1. From (3.2)
for n ≥ 2 we obtain that mtvs(K1,n) ≥

⌈
n+1

2

⌉
. Let k =

⌈
n+1

2

⌉
. To prove that k ≥ mtvs(K1,n) we define a

modular vertex irregular total k-labelings ψ j, j ∈ [1, 4], where the total weights of vertices vi, i ∈ [1, n],
are the numbers 2, 3, . . . , n + 1, i.e., the corresponding modular total vertex weights are 2, 3, 4, . . . , n, 0
(mod n + 1) and the center vertex u will have the modular total weight congruent 1 (mod n + 1).

We consider two cases.
Case 1. For n is even, we define total labelings ψ1 and ψ2 in the following way.

ψ1(vi) =

i, if i ∈ [1, n
2 ],

n
2 + 1, if i ∈ [ n

2 + 1, n],

ψ1(viu) =

1, if i ∈ [1, n
2 ],

i − n
2 , if i ∈ [ n

2 + 1, n],

ψ2(vi) =

1, if i ∈ [1, n
2 ],

i − n
2 , if i ∈ [ n

2 + 1, n],

ψ2(viu) =

i, if i ∈ [1, n
2 ],

n
2 + 1, if i ∈ [ n

2 + 1, n],

ψ1(u) = 1,
ψ2(u) = n

2 + 1.

It is not difficult to see that

wtψ1(vi) = wtψ2(vi) =

i + 1, if i ∈ [1, n
2 ],

i + 1, if i ∈ [ n
2 + 1, n].

The values ψ1(viu) together with ψ1(u) = 1 give the smallest total weight of the center vertex u. On the
other side the values ψ2(viu) together with ψ2(u) = n

2 + 1 give the greatest total weight of u. Thus

n∑
i=1

ψ1(viu) + ψ1(u) = n2+6n
8 + 1 ≤ wt(u) ≤

n∑
i=1

ψ2(viu) + ψ2(u) = 3n2+10n
8 + 1.

If for the vertex u we take a value from the interval
[
1, n

2 + 1
]

and we swap the vertex label ψ(vi) with
the edge label ψ(viu) for certain values of i, i ∈ [1, n], then for total weight of the center vertex u we
are able to get all the values from the interval

[
n2+6n

8 + 1, 3n2+10n
8 + 1

]
. The process of swapping does

not have any effect on the total vertex weights of vi, i ∈ [1, n].
In the interval

[
n2+6n

8 + 1, 3n2+10n
8 + 1

]
we need to find at least one value which is congruent 1

(mod n + 1). It is easy to prove that the interval
[

n2+6n
8(n+1) ,

3n2+10n
8(n+1)

]
contains at least one integer. For

example, if n = 2 then the interval
[

16
24 ,

32
24

]
contains the integer t = 1 and wt(u) = t(n + 1) + 1 = 4 ≡ 1

(mod 3). If n = 4 then the interval
[
1, 88

40

]
contains two integers t = 1 and t = 2. If t = 1 then

wt(u) = t(n + 1) + 1 = 6 ≡ 1 (mod 5) and if t = 2 then wt(u) = t(n + 1) + 1 = 11 ≡ 1 (mod 5).
Figure 1 illustrates the corresponding modular vertex irregular total labelings of K1,2 and K1,4.
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1 2

2

1 1

1 2 3 3

1

1 1 1 2

1 1 1 3

3

1 2 3 2

Figure 1. Modular vertex irregular total labelings of K1,2 and K1,4.

Case 2. For n is odd, we define total labelings ψ3 and ψ4 as follows.

ψ3(vi) =

i, if i ∈ [1, n+1
2 ],

n+1
2 , if i ∈ [ n+3

2 , n],

ψ3(viu) =

1, if i ∈ [1, n+1
2 ],

i − n−1
2 , if i ∈ [ n+3

2 , n],

ψ4(vi) =

1, if i ∈ [1, n+1
2 ],

i − n−1
2 , if i ∈ [ n+3

2 , n],

ψ4(viu) =

i, if i ∈ [1, n+1
2 ],

n+1
2 , if i ∈ [ n+3

2 , n],

ψ3(u) = 1,
ψ4(u) = n+1

2 .

We can see that vertices vi, i ∈ [1, n], attain the total weights

wtψ3(vi) = wtψ4(vi) =

i + 1, if i ∈ [1, n+1
2 ],

i + 1, if i ∈ [ n+3
2 , n].

Moreover,

n∑
i=1

ψ3(viu) + ψ3(u) = n2+8n−1
8 + 1 ≤ wt(u) ≤

n∑
i=1

ψ4(viu) + ψ4(u) = 3n2+8n−3
8 + 1.

If we swap the vertex label ψ(vi) with the edge label ψ(viu) for certain values of i, i ∈ [1, n] and for the
vertex u we take a value from the interval

[
1, n+1

2

]
then for total weight of the center vertex u we can

get all the values from the interval
[

n2+8n−1
8 + 1, 3n2+8n−3

8 + 1
]
. Note that swapping of vertex and edge

labels will not have any impact on the total weights of vertices vi, 1 ≤ i ≤ n.
Similarly to the previous case one can see that the interval

[
n2+8n−1
8(n+1) ,

3n2+8n−3
8(n+1)

]
contains at least one

integer. For example, if n = 3 then the interval
[
1, 48

32

]
contains one integer t = 1 and if n = 5 then the

interval
[

64
48 ,

112
48

]
contains one integer t = 2. If t = 1 then wt(u) = t(n + 1) + 1 = 5 ≡ 1 (mod 4) and if

t = 2 then wt(u) = t(n + 1) + 1 = 13 ≡ 1 (mod 6). Figure 2 depicts a corresponding modular vertex
irregular total 2-labeling of K1,3 respective a total 3-labeling of K1,5. Thus, we arrive at the desired
result. �
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1 2 2

1

1 1 2

1 1 2 2 3

2

1 2 2 3 3

Figure 2. Modular vertex irregular total labelings of K1,3 and K1,5.

4. Conclusions

In this paper, we define a concept of the modular total vertex irregularity strength, as a variation of
the modular irregularity strength and total vertex irregularity strength. We determine a lower bound
and an upper bound of this graph characteristic and obtain the precise values for some graphs. The
obtained results for cycles, paths, complete graphs and stars prove the sharpness of the presented lower
bound.
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