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1. Introduction

Let E be a real Banach space. Assume thatA : E → E is an operator and B : E → 2E is a set-valued
operator. We study the following zero point problem: find an element u ∈ E such that

0 ∈ Au + Bu. (1.1)

It is well known that this problem includes, as special cases, convex programming, variational
inequalities, split feasibility problems and minimization problems [1–7], which have applications in
machine learning, image processing [4,5], linear inverse problems and signal processing, and it can be
modeled mathematically as the form (1.1).

Many mathematicians have been interested in analyzing fixed points by using some iterative
methods in recent years. With the considerable improvements in fixed-point theory in the last several
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years, iterative concepts have emerged as a topic of increasing interest. Iteration qualities involving
types of sequences and types of operators have not been thoroughly investigated and are currently
being debated. Because of its considerable usefulness in fixed-point theory and its implementations,
the idea of operators has populated a prominent part in present scientific studies employing algorithmic
approaches. A number of studies have observed fixed points by using iterative techniques [8]. It is
worth noting that the type of operators used in fixed point studies becomes important.

Let K be a nonempty closed convex subset of E and S : K → K be an operator with at least
one fixed point. In order to find a fixed point, many researchers have proposed various algorithms
for finding the approximate solution. One of the most popular iterative processes, called the Picard
iteration process [9], was defined by u1 ∈ K :

un+1 = Sun, n ≥ 1.

In addition, other iterative methods for improving the Picard iteration method have been studied
extensively, such as what follows.

The Mann iteration process [10] is defined by u1 ∈ K and

un+1 = (1 − ηn)un + ηnSun, n ≥ 1,

where {ηn} is a sequence in (0, 1).
The Ishikawa iteration process [11] is defined by u1 ∈ K and

un+1 = (1 − ηn)un + ηnS((1 − ϑn)un + ϑnSun), n ≥ 1,

where {ηn} and {ϑn} are sequences in (0, 1). The S-iteration process was introduced by Agarwal et
al. [12] in a Banach space as follows:

un+1 = (1 − ηn)Sun + ηnS((1 − ϑn)un + ϑnSun), n ≥ 1,

where {ηn} and {ϑn} are sequences in (0, 1). They proved that the S-iteration method is independent of
the Mann and Ishikawa iteration methods and converges faster than both of them. In 2012, Chugh et
al. [13] introduced the CR-iteration procedure as follows:

LetK be a nonempty convex subset of a normed linear space E, and let {ηn}, {ϑn}, {ζn} be sequences
in (0, 1). For u1 ∈ K , the sequence un is defined by

wn = (1 − ζn)un + ζnSun,

zn = (1 − ϑn)Sun + ϑnSwn,

un+1 = (1 − ηn)zn + ηnSzn, n ≥ 1.

The authors showed numerically that this scheme is equivalent to and faster than the Picard, Mann,
Ishikawa and Agarwal iterative schemes. Some of the other well-known three-step iteration processes
were developed by Noor [14], Ullah and Arshad [15] (AK-iteration), Sahu et al. [16], Thakur et al. [17]
and Phuengrattana and Suantai [18] (SP-iteration). There are a number of papers that have studied fixed
points by using some iterative schemes (see [8]).

Many real-world problems can be modeled as common problems. Therefore, the study of solving
these problems is important and has received the attention of many mathematicians.
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To date, fixed-point theory has been applied to solve various problems in science, engineering,
economics, physics and data science, with applications such as signal/image processing [19, 20], and
intensity-modulated radiation therapy treatment planning [21, 22].

In the field of image processing, the image restoration problem is an interesting and important topic.
For this problem, there are several optimizations and fixed-point methods; see [23–27] for more detail.

Signal processing and numerical optimization are independent scientific fields that have always been
mutually influencing each other. Perhaps the most convincing example whereby the two fields have
met is compressed sensing [2]. Several surveys dedicated to these algorithms and their applications in
signal processing have appeared [3, 6, 7, 20].

In this work, our contribution is twofold:
1) We develop the CR-iteration process for calculating common solutions of the common fixed-point
problems and apply our results for solving the problem in (1.1).
2) We find common solutions of convexly constrained least square problems and convex minimization
problems and apply them to differential problems, image restoration and signal processing.

2. Preliminaries and lemmas

Let E be a real Banach space with a norm ‖·‖ and E∗ be its dual. The value of f ∈ E∗ at u ∈ E
is denoted by 〈u, f 〉. Throughout the paper, we denote by Bλ[v] a closed ball with the center at v and
radius λ:

Bλ[v] = {u ∈ E : ‖v − u‖ ≤ λ}.

A Banach space E is said to be uniformly convex if for any x, 0 < x ≤ 2, the inequalities ‖u‖ ≤ 1,
‖v‖ ≤ 1 and ‖u − v‖ ≥ x imply that there exists δ = δ(x) > 0 such that 1

2 ‖u + v‖ ≤ 1− δ. Note that every
Hilbert space is a uniformly convex Banach space. The (normalized) duality mapping J from E into
the family of nonempty (by Hahn-Banach theroem) weak-star compact subsets of its dual E is defined
by

J(u) = { f ∈ E∗ : 〈u, f 〉 = ‖u‖2 = ‖ f ‖2}

for each u ∈ E, where 〈·, ·〉 denotes the generalized duality pairing.
For a set-valued operatorA : E → 2E, we denote its domain, range and graph as follows:

D(A) = {u ∈ E : Au , ∅},R(A) = ∪{Ap : p ∈ D(A)}

and
G(A) = {(u, v) ∈ E × E : u ∈ D(A), v ∈ Au},

respectively. The inverseA−1 ofA is defined by u ∈ A−1v if and only if v ∈ Au. A is called accretive
if ∀ui ∈ D(A) and vi ∈ Aui (i = 1, 2); there exists j = J(u1 − u2) such that 〈v1 − v2, j〉 ≥ 0.

An accretive operator A in a Banach space E is said to satisfy the range condition if D(A) ⊂
R(I + µA) for all µ > 0, whereD(A) denotes the closure of the domain ofA.

It is well known that for an accretive operator A which satisfies the range condition, A−10 =

Fix(JAµ ) for all µ > 0.
Let H be a real Hilbert space. If A : E → 2E is an m-accretive operator (see [28–30]), then A is

called a maximal accretive operator [31], and, for all µ > 0, R(I + µA) = H if and only ifA is called
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maximal monotone [32]. Denote by dom(h) the domain of a function h : H → (−∞,∞], i.e.,

dom(h) = {u ∈ H : h(u) < ∞}.

The subdifferential of h ∈ T0(H) is the set

∂h(u) = {u ∈ H : h(u) ≤ h(v) + 〈z, u − v〉, ∀v ∈ H},

where T0(H) denotes the class of all lower semicontinuous convex functions fromH to (−∞,∞] with
nonempty domains.

A point u ∈ K is called a fixed point of S if Su = u. We shall denote with Fix(S) the set of fixed
points of S, i.e., Fix(S) = {u ∈ K : Su = u}. The mapping S is called L-Lipschitz if there exists a
constant L > 0 such that

‖Su − Sv‖ ≤ L‖u − v‖

for all u, v ∈ K . The mapping S is called nonexpansive if S is 1-Lipschitz. The mapping S is called
quasi-nonexpansive if Fix(S) , ∅ and

‖Su − v‖ ≤ ‖u − v‖

for all u ∈ K and v ∈ Fix(S).
A subset K of Banach space E is said to be a retract of E if there is a continuous mapping Q from

E onto K such that Qu = u for all u ∈ K . We call such a Q a retraction of E onto K . It follows that, if
a mapping Q is a retraction, then Qv = v for all v in the range of Q. A retraction Q is called sunny if
Q(Qu + λ(u − Qu)) = Qu for all u ∈ E and λ ≥ 0. If a sunny retraction Q is also nonexpansive, then K
is called a sunny nonexpansive retract of E [33].

Let E be a strictly convex reflexive Banach space and K be a nonempty closed convex subset of E.
Denote by PK the (metric) projection from E onto K , namely, for u ∈ E, PK (u) is the unique point in
K with the property

in f {‖u − v‖ : v ∈ K} = ‖u − PK (u)‖.

Let an inner product 〈·, ·〉 and the induced norm ‖ · ‖ be specified with a real Hilbert spaceH . LetK
be a nonempty subset ofH ; we have that the nearest point projection PK fromH ontoK is the unique
sunny nonexpansive retraction ofH onto K . It is also known that PK (u) ∈ K and

〈u − PK (u),PK (u) − v〉 ≥ 0, ∀u ∈ H , v ∈ K .

Sunny nonexpansive retractions play a similar role in Banach spaces as do projections in Hilbert
spaces. We emphasize that, if K is a closed and convex subset of a uniformly smooth Banach space
E (that is the norm of E is Gateaux differentiable), then there exists a sunny nonexpansive retraction
from E to K and it is unique.

Recall that a vector spaceH is said to satisfy Opial’s condition [34] if for each sequence {un} inH
which converges weakly to a point u ∈ H ,

lim
n→∞

in f ‖un − u‖ < lim
n→∞

in f ‖un − v‖ , v ∈ H , v , u.

In the sequel, the following lemmas are needed to prove our main results.
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Lemma 1. ( [35]) Let h ∈ T0(H). Then, ∂h is maximal monotone.

Lemma 2. ( [36]) Let E be a Banach space and p > 1 and R > 0 be two fixed numbers. Then, E
is uniformly convex if and only if there exists a continuous, strictly increasing and convex function
ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that

‖αu + (1 − α)v‖p ≤ ‖u‖p + (1 − α)‖v‖p − α(1 − α)ϕ(‖u − v‖)

for all u, v ∈ Bλ[0] and α ∈ [0, 1].

Lemma 3. ( [37]) Let K be a nonempty subset of a Banach space E and S : K → E be a uniformly
continuous mapping. Let {un} ⊂ K be an approximating fixed point sequence of S, i.e., limn→∞ ‖un −

Sun‖ = 0. Then, {vn} is an approximating fixed-point sequence of S whenever {vn} is in K such that
limn→∞ ‖un − vn‖ = 0.

Lemma 4. ( [30]) Let K be a nonempty closed convex subset of a uniformly convex Banach space E.
If S : K → E is a nonexpansive mapping, then I-S has the demiclosed property with respect to 0.

3. Main results

Let K be a nonempty closed convex subset of a Banach space E with QK as a sunny nonexpansive
retraction. We will denote the set of common fixed points of S and T by Ψ, that is, Ψ := Fix(S) ∩
Fix(T ). The following lemma is needed.

Lemma 5. Let K be a nonempty closed convex subset of a Banach space E with QK as the sunny
nonexpansive retraction. Let S,T : K → E be quasi-nonexpansive mappings with Ψ , ∅ and let
{ηn}, {ϑn} and {ζn} be sequences in (0, 1) for all n ∈ N. Define the sequence {un} by using Algorithm 1.
Then, for each ū ∈ Ψ, limn→∞ ‖un − ū‖ exists and

‖wn − ū‖ ≤ ‖un − ū‖ and ‖zn − ū‖ ≤ ‖un − ū‖, ∀n ∈ N. (3.1)

Algorithm 1: CR-Iteration Algorithm with Sunny Nonexpansive Retraction

initialization: ηn, ϑn, ζn ∈ (0, 1), u1 ∈ K and n = 1.
while stopping criterion not met do

wn = QK ((1 − ζn)un + ζnSun) ,
zn = QK ((1 − ϑn)T un + ϑnSwn) ,

un+1 = QK ((1 − ηn)zn + ηnT zn) .

end

Proof. Let ū ∈ Ψ. Then, for each n ≥ 1, we have

‖wn − ū‖ = ‖QK ((1 − ζn)un + ζnSun) − ū‖
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≤ ‖(1 − ζn)(un − ū) + ζn(Sun − ū)‖
≤ (1 − ζn)‖un − ū‖ + ζn‖Sun − ū‖

≤ (1 − ζn)‖un − ū‖ + ζn‖un − ū‖

= ‖un − ū‖, (3.2)

‖zn − ū‖ = ‖QK ((1 − ϑn)T un + ϑnSwn) − ū‖

≤ ‖(1 − ϑn)(T un − ū) + ϑn(Swn − ū)‖
≤ (1 − ϑn)‖T un − ū‖ + ϑn‖Swn − ū‖

≤ (1 − ϑn)‖un − ū‖ + ϑn‖wn − ū‖

≤ (1 − ϑn)‖un − ū‖ + ϑn‖un − ū‖

= ‖un − ū‖ (3.3)

and

‖un+1 − ū‖ = ‖QK ((1 − ηn)zn + ηnT zn) − ū‖

≤ ‖(1 − ηn)(zn − ū) + ηn(T zn − ū)‖
≤ (1 − ηn)‖zn − ū‖ + ηn‖T zn − ū‖

≤ (1 − ηn)‖zn − ū‖ + ηn‖zn − ū‖

= ‖zn − ū‖

≤ ‖un − ū‖. (3.4)

Therefore,

‖un+1 − ū‖ ≤ ‖un − ū‖ ≤ ... ≤ ‖u1 − ū‖, ∀n ∈ N. (3.5)

Since {‖un − ū‖} is monotonically decreasing, we have that the sequence {‖un − ū‖} is convergent. �

Theorem 1. Let K be a nonempty closed convex subset of a uniformly convex Banach space E with
QK as the sunny nonexpansive retraction. Let S,T : K → E be quasi-nonexpansive mappings with
Ψ , ∅. Let {ηn},{ϑn} and {ζn} be sequences of real numbers such that 0 < c1 ≤ ηn ≤ ĉ1 < 1,
0 < c2 ≤ ϑn ≤ ĉ2 < 1 and 0 < c3 ≤ ζn ≤ ĉ3 < 1 for all n ∈ N. From an arbitrary u1 ∈ K , PΨ(u1) = u∗,
define the sequence {un} by Algorithm 1. Then, we have the following:
(i) {un} is in a closed convex bounded set Bλ[u∗] ∩ K , where λ is a constant

in (0,∞) such that ‖u1 − u∗‖ ≤ λ.
(ii) If S is uniformly continuous, then limn→∞ ‖un − Sun‖ = 0 and

limn→∞ ‖un − T un‖ = 0.
(iii) If E fulfills Opial’s condition and I − S and I − T are demiclosed

at 0, then {un} converges weakly to an element of Ψ ∩ Bλ[u∗].

Proof. (i) Since u∗ ∈ Ψ, from (3.5), we obtain

‖un+1 − u∗‖ ≤ ‖un − u∗‖ ≤ ... ≤ ‖u1 − u∗‖ ≤ λ, ∀n ∈ N. (3.6)
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Therefore, {un} is in the closed convex bounded set Bλ[u∗] ∩ K .
(ii) Suppose that S is uniformly continuous. Using Lemma 5, we get that {un},{zn} and {wn} are in

Bλ[u∗] ∩ K , and, hence, from (3.1), we obtain

‖T un − u∗‖ ≤ λ, ‖T zn − u∗‖ ≤ λ, ‖Swn − u∗‖ ≤ λ and ‖Sun − u∗‖ ≤ λ

for all n ∈ N. Using Lemma 2 for p = 2 and R = λ, from the relations in Algorithm 1, we obtain

‖wn − u∗‖2 ≤ (1 − ζn)‖un − u∗‖2 + ζn‖Sun − u∗‖2

− ζn(1 − ζn)ϕ(‖un − Sun‖)
≤ (1 − ζn)‖un − u∗‖2 + ζn‖un − u∗‖2

− ζn(1 − ζn)ϕ(‖un − Sun‖)
= ‖un − u∗‖2 − ζn(1 − ζn)ϕ(‖un − Sun‖). (3.7)

It follows from (3.7) that

‖zn − u∗‖2 ≤ (1 − ϑn)‖un − u∗‖2 + ϑn‖wn − u∗‖2

− ϑn(1 − ϑn)ϕ(‖T un − Swn‖)
≤ (1 − ϑn)‖un − u∗‖2 + ϑn(‖un − u∗‖2

− ζn(1 − ζn)ϕ(‖un − Sun‖))
− ϑn(1 − ϑn)ϕ(‖T un − Swn‖)

= ‖un − u∗‖2 − ϑnζn(1 − ζn)ϕ(‖un − Sun‖)
− ϑn(1 − ϑn)ϕ(‖T un − Swn‖). (3.8)

Using (3.8) and Lemma 2, we have

‖un+1 − u∗‖2 ≤ ‖(1 − ηn)(zn − u∗) + ηn(T zn − u∗)‖2

≤ (1 − ηn)‖zn − u∗‖2 + ηn‖T zn − u∗‖2

− ηn(1 − ηn)ϕ(‖zn − T zn‖)
≤ (1 − ηn)‖zn − u∗‖2 + ηn‖zn − u∗‖2

− ηn(1 − ηn)ϕ(‖zn − T zn‖)
= ‖zn − u∗‖2 − ηn(1 − ηn)ϕ(‖zn − T zn‖)
≤ ‖un − u∗‖2 − ϑnζn(1 − ζn)ϕ(‖un − Sun‖)
− ϑn(1 − ϑn)ϕ(‖T un − Swn‖)
− ηn(1 − ηn)ϕ(‖zn − T zn‖). (3.9)

From (3.9), we have the following important two inequalities.

ϑn(1 − ϑn)ϕ(‖T un − Swn‖) ≤ ‖un − u∗‖2 − ‖un+1 − u∗‖2 (3.10)

and

ϑnζn(1 − ζn)ϕ(‖un − Sun‖) ≤ ‖un − u∗‖2 − ‖un+1 − u∗‖2. (3.11)
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Note that c2(1 − ĉ2) ≤ ϑn(1 − ϑn) and c2c3(1 − ĉ3) ≤ ϑnζn(1 − ζn).
Using (3.10) and (3.11), we obtain

c2(1 − ĉ2)
n∑

i=1

ϕ(‖T ui − Swi‖) ≤ ‖u1 − u∗‖2 − ‖un+1 − u∗‖2, ∀n ∈ N (3.12)

and

c2c3(1 − ĉ3)
n∑

i=1

ϕ(‖ui − Sui‖) ≤ ‖u1 − u∗‖2 − ‖un+1 − u∗‖2, ∀n ∈ N. (3.13)

It follows from (3.12) and (3.13) that we obtain

∞∑
n=1

ϕ(‖T un − Swn‖) < ∞ (3.14)

and
∞∑

n=1

ϕ(‖un − Sun‖) < ∞. (3.15)

Using (3.14) and (3.15), we have

lim
n→∞
‖T un − Swn‖ = 0 (3.16)

and

lim
n→∞
‖un − Sun‖ = 0. (3.17)

In addition, using (3.17), we have

‖wn − un‖ = ‖QK ((1 − ζn)un + ζnSun) − QK (un)‖,
≤ ‖Sun − un‖

→ 0 (as n→ ∞). (3.18)

Since S is uniformly continuous, it follows from Lemma 3 that

lim
n→∞
‖wn − Swn‖ = 0. (3.19)

Thus from (3.16)–(3.19), we have

‖un − T un‖ ≤ ‖un − Sun‖ + ‖Sun − T un‖

≤ ‖un − Sun‖ + ‖Sun − Swn‖ + ‖Swn − T un‖

≤ ‖un − Sun‖ + ‖Sun − un‖ + ‖un − Swn‖

+ ‖Swn − T un‖

≤ ‖un − Sun‖ + ‖Sun − un‖ + ‖un − wn‖
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+ ‖wn − Swn‖ + ‖Swn − T un‖

→ 0 (as n→ ∞). (3.20)

(iii) By assumption, E satisfies Opial’s condition. Let w∗ ∈ Ψ such that w∗ ∈ Bλ[u∗] ∩ K . From
Lemma 5, we have that limn→∞ ‖un − w∗‖ exists. Suppose that there are two subsequences {unq} and
{uml} which converge to two distinct points u∗ and v∗ in Bλ[u∗] ∩ K , respectively. Then, since both
I-S and I-T have the demiclosed property at 0, we have that Su∗ = T u∗ = u∗ and Sv∗ = T v∗ = v∗.
Moreover, using Opial’s condition, we have

lim
n→∞
‖un − u∗‖ = lim

q→∞
‖unq − u∗‖ < lim

l→∞
‖uml − v∗‖ = lim

n→∞
‖un − v∗‖.

Similarly, we obtain
lim
n→∞
‖un − v∗‖ < lim

n→∞
‖un − u∗‖

which is a contradiction. Therefore, u∗ = v∗. Hence, the sequence {un} converges weakly to an element
of Ψ ∩ Bλ[u∗] ∩ K . �

Since every nonexpansive mapping is uniformly continuous. By using the same ideas and
techniques as in Theorem 1 and Lemma 4, we can state the following result without proofs.

Theorem 2. LetK be a nonempty closed convex subset of a uniformly convex Banach space E with QK
as the sunny nonexpansive retraction. Let S,T : K → E be nonexpansive mappings with ψ , ∅. Let
{ηn},{ϑn} and {ζn} be sequences of real numbers such that 0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤ ϑn ≤ ĉ2 < 1
and 0 < c3 ≤ ζn ≤ ĉ3 < 1 for all n ∈ N. From an arbitrary u1 ∈ K , PΨ(u1) = u∗, define the sequence
{un} by using Algorithm 1. Then, we have the following:
(i) {un} is in a closed convex bounded set Bλ[u∗] ∩ K , where λ is a constant

in (0,∞) such that ‖u1 − u∗‖ ≤ λ.
(ii) limn→∞ ‖un − Sun‖ = 0 and limn→∞ ‖un − T un‖ = 0.
(iii) If E fulfills Opial’s condition, then {un} converges weakly to an

element of Ψ ∩ Bλ[u∗].

If S and T are nonexpansive self-mappings on a nonempty closed convex subsetK of a real Hilbert
spaceH . Hence, from Theorem 1, we can obtain the following result.

Corollary 1. Let K be a nonempty closed convex subset of a real Hilbert spaceH , let S,T : K → K
be nonexpansive mappings with Ψ , ∅ and let {ηn},{ϑn} and {ζn} be sequences of real numbers for
which 0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤ ϑn ≤ ĉ2 < 1 and 0 < c3 ≤ ζn ≤ ĉ3 < 1 for all n ∈ N. From an
arbitrary u1 ∈ K , define the sequence {un} by

wn = (1 − ζn)un + ζnSun

zn = (1 − ϑn)T un + ϑnSwn

un+1 = (1 − ηn)zn + ηnT zn, ∀n ∈ N.
(3.21)

Then, {un} converges weakly to an element of Ψ.

4. Applications

In this section, we shall utilize the methods mentioned above to study common zeros of accretive
operators, convexly constrained least square problems and convex minimization problems.
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4.1. Application to common zeros of accretive operators

Setting S = JAµ and T = JBµ , and by using (3.21), we derive its convergence analysis to solve (1.1).

Theorem 3. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E
satisfying Opial’s condition. Let A : D(A) ⊆ K → 2E and B : D(B) ⊆ K → 2E be accretive
operators such that D(A) ⊆ K ⊆ ∩µ>0R(I + µA), D(B) ⊆ K ⊆ ∩µ>0R(I + µB) and A−1(0) ∩
B−1(0) , ∅. Let {ηn}, {ϑn} and {ζn} be sequences of real numbers such that 0 < c1 ≤ ηn ≤ ĉ1 < 1,
0 < c2 ≤ ϑn ≤ ĉ2 < 1 and 0 < c3 ≤ ζn ≤ ĉ3 < 1 for all n ∈ N. Let µ > 0, u1 ∈ K and
PA−1(0)∩B−1(0)(u1) = u∗. Let {un} be defined by

wn = (1 − ζn)un + ζnJAµ un,

zn = (1 − ϑn)JBµ un + ϑnJAµ wn,

un+1 = (1 − ηn)zn + ηnJBµ zn, ∀n ∈ N.
(4.1)

Then, we have the following:
(i) {un} is in a closed convex bounded set Bλ[u∗] ∩ K , where λ is a constant

in (0,∞) such that ‖u1 − u∗‖ ≤ λ.
(ii) limn→∞ ‖un − JAµ un‖ = 0 and limn→∞ ‖un − JBµ un‖ = 0.
(iii) {un} converges weakly to an element ofA−1(0) ∩ B−1(0) ∩ Bλ[u∗].

Proof. By the assumption D(A) ⊆ K ⊆ ∩µ>0R(I + µA), we know that JAµ , J
B
µ : K → K is

nonexpansive. Note thatD(A) ∩D(B) ⊆ K ; hence,

u∗ ∈ A−1(0) ∩ B−1(0)⇒ u∗ ∈ D(A) ∩D(B) with 0 ∈ Au∗ and 0 ∈ Bu∗
⇒ u∗ ∈ K with JAµ u∗ = u∗ and JBµ u∗ = u∗
⇒ u∗ ∈ Fix(JAµ , J

B
µ ) ∩ K .

Set S = JAµ and T = JBµ . Hence, Theorem 3 follows from Theorem 2. �

4.2. Application to convexly constrained least square problems

LetA,B ∈ B(H) and y, z ∈ H . Define ϕ, ψ : H → R by

ϕ(u) =
1
2
‖Au − y‖2 and ψ(u) =

1
2
‖Bu − z‖2

for all u ∈ H , whereH is a real Hilbert space. Let K be a nonempty closed convex subset ofH . The
objective is to find b ∈ K such that

b ∈ argmin
u∈K

ϕ(u) ∩ argmin
u∈K

ψ(u), (4.2)

where argmin
u∈K

ϕ(u) := {u∗ ∈ K : ϕ(u∗) = in f
u∈K

ϕ(u)}.

We give an application of Theorem 2 for finding common solutions to two convexly constrained
least square problems.
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Proposition 1. ( [20]) Let H be a real Hilbert space, A ∈ B(H) with the adjoint A∗ and y ∈ H . Let
K be a nonempty closed convex subset ofH . Let b ∈ H and δ ∈ (0,∞). Then, the following statements
are equivalent:
(i) b solves the following problem:

min
u∈K

1
2
‖Au − y‖2.

(ii) b = PK (b − δA∗(Ab − y)).
(iii) 〈Av −Ab, y −Ab〉 ≤ 0 for all v ∈ K .

Theorem 4. LetK be a nonempty closed convex subset of a real Hilbert spaceH , y, z ∈ H andA,B ∈
B(H) such that the solution set of the problem in (4.2) is nonempty. Let {ηn}, {ϑn} and {ζn} be sequences
of real numbers such that 0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤ ϑn ≤ ĉ2 < 1 and 0 < c3 ≤ ζn ≤ ĉ3 < 1 for all
n ∈ N. Let u1 ∈ H , Pargminu∈K ϕ(u) ∩ argminu∈K ψ(u)(u1) = u∗ and δ ∈ (0, 2 min{ 1

‖A‖2
, 1
‖B‖2
}). From an arbitrary

u1 ∈ K , define the sequence {un} by
wn = (1 − ζn)un + ζnSun,

zn = (1 − ϑn)T un + ϑnSwn,

un+1 = (1 − ηn)zn + ηnT zn,∀n ∈ N,
(4.3)

where S,T : K → K is defined by Su = PK (u− δA∗(Au− y)) and T u = PK (u− δB∗(Bu− z)) for all
u ∈ K . Then, we have the following:
(i) {un} is in the closed ball Bλ[u∗], where λ is a constant in (0,∞) such that

‖u1 − u∗‖ ≤ λ.
(ii) limn→∞ ‖un − Sun‖ = 0 and limn→∞ ‖un − T un‖ = 0.
(iii) {un} converges weakly to an element of

argminu∈K ϕ(u) ∩ argminu∈K ψ(u) ∩ Bλ[u∗].

Proof. Note that ∇ϕ(u) = A∗(Au − y) for all u ∈ H ; we obtain that ‖∇ϕ(u) − ∇ϕ(v)‖ = ‖A∗(Au −
y) − A∗(Av − y)‖ ≤ ‖A‖2‖u − v‖ for all u, v ∈ H , Thus, ∇ϕ(u) is an 1

‖A‖2
-ism; hence, (I − δ∇ϕ) is

nonexpansive from K intoH for σ ∈ (0, 2
‖A‖2

). Therefore, S = PK (I − σ∇ϕ) and T = PK (I − τ∇ϕ))
are nonexpansive mappings from K into itself for σ ∈ (0, 2

‖A‖2
) and τ ∈ (0, 2

‖B‖2
), respectively. Thus,

Theorem 4 follows from Theorem 2. �

4.3. Application to convex minimization problems

LetH be a Hilbert space and let g1, g2 : H → (−∞,∞] be proper convex and lower-semicontinuous
functions. We consider the following problem of finding x ∈ H such that

x ∈ ∂g−1
1 (0) ∩ g−1

2 (0). (4.4)

Note that J∂g1
µ = proxµg1 . We give an application to common solutions for convex programming

problems in a Hilbert space.

Theorem 5. Let K be a nonempty closed convex subset of a real Hilbert space H . Let g1, g2 ∈ Γ0H

such that the solution set of the problem in (4.4) is nonempty. Let {ηn}, {ϑn} and {ζn} be sequences of
real numbers such that 0 < c1 ≤ ηn ≤ ĉ1 < 1 and 0 < c2 ≤ ϑn ≤ ĉ2 < 1 and 0 < c3 ≤ ζn ≤ ĉ3 < 1 for all
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n ∈ N. Let µ > 0, u1 ∈ H and P∂g−1
1 (0) ∩ g−1

2 (0)(u1) = u∗. From an arbitrary u1 ∈ K , define the sequence
{un} by 

wn = (1 − ζn)un + ζn proxµg1(un),
zn = (1 − ϑn)proxµg2(un) + ϑn proxµg1(wn),
un+1 = (1 − ηn)zn + ηn proxµg2(zn), ∀n ∈ N.

(4.5)

Then, we have the following:
(i) {un} is in the closed ball Bλ[u∗], where λ is a constant in (0,∞) such that

‖u1 − u∗‖ ≤ λ.
(ii) limn→∞ ‖un − proxµg1(un)‖ = 0 and limn→∞ ‖un − proxµg2(un)‖ = 0.
(iii) {un} converges weakly to an element of ∂g−1

1 (0) ∩ g−1
2 (0) ∩ Bλ[u∗].

Proof. Using Lemma 1, we have that ∂g1 is maximal monotone. We see that R(I + µ∂ f ) = H by the
maximal monotonicity of ∂g1. It follows that J∂g1

µ = proxµg1 : H → H is nonexpansive. Similarly,
J∂g2
µ = proxµg2 : H → H is nonexpansive. Thus, Theorem 5 follows from Theorem 2. �

5. Numerical experiments with application to real-world problems

In this section, some real-world problems such as differential problems, image restoration problems
and signal recovering problems, are used to illustrate the effectiveness of our algorithm.

5.1. Differential problems

Let us consider the following simple and well known one-dimensional heat equation with Dirichlet
boundary conditions and initial data:

ut = βuxx + f (x, t), 0 < x < l, t > 0.

u(x, 0) = u0(x), 0 < x < l, (5.1)

u(0, t) = γ1(t), u(l, t) = γ2(t), t > 0,

where β is constant, u(x, t) represents the temperature at a point (x, t) and f (x, t), γ1(t) and γ2(t) are
sufficiently smooth functions. Below, we use the notations un

i and (uxx)n
i to represent the numerical

approximations of u(xi, tn) and uxx(xi, tn), with tn = n∆t, and where ∆t denotes the temporal mesh size.
A set of schemes to solve the problem of (5.1) is based on the following well-known Crank-Nikolson
type of scheme [38, 39]:

un+1
i − un

i

∆t
=
β

2

[
(uxx)n+1

i + (uxx)n
i

]
+ f n+1/2

i , i = 2, . . . ,N − 1 (5.2)

with the initial data
u0

i = u0(xi), i = 2, . . . ,N − 1 (5.3)

and Dirichlet boundary conditions

un+1
1 = γ1(tn+1), un+1

N = γ2(tn+1). (5.4)

AIMS Mathematics Volume 8, Issue 3, 7163–7195.



7175

For the approximate term of (uxx)k
i , k = n, n + 1, we use the standard centered discretization with space.

The matrix form of the second-order finite difference scheme (FDS) for solving the heat problem
of (5.1) can be written as

Aun+1 = Gn, (5.5)

where Gn = Bun + fn+1/2,

A =



1 + η −
η

2
−
η

2
1 + η −

η

2
. . .

. . .
. . .

−
η

2
1 + η −

η

2
−
η

2
1 + η


, B =



1 − η
η

2η

2
1 − η

η

2
. . .

. . .
. . .

η

2
1 − η

η

2η

2
1 − η


,

un =


uk

2
uk

3
...

uk
N−2

uk
N−1

 , fn+1/2 =



η

2
γn+1/2

1 + ∆t f n+1/2
2

∆t f n+1/2
3
...

∆t f n+1/2
N−2η

2
γn+1/2

2 + ∆t f n+1/2
N−1

 ,

η = β∆t/
(
∆x2

)
, γn+1/2

i = γi(tn+1/2), i = 1, 2 and f n+1/2
i = fi(tn+1/2), i = 2, . . . ,N − 1.

From Eq (5.5), the matrix A is square and symmetric positive definite. Traditionally, iterative
methods have been presented to find the solution of the linear system (5.5). The well-known
weight Jacobi (WJ) and successive over-relaxation (SOR) methods [39, 40] have been chosen for
exemplification here (see Table 1).

Table 1. Specific names of WJ and SOR for solving the linear system of (5.5).

Linear system Iterative method Specific name

Aun+1 = Gn Du(n+1,s+1) = (D − ωA) u(n+1,s) + ωGn WJ

(D − ωL) u(n+1,s+1) =
(
(D − ωL) − ωA

)
u(n+1,s) + ωGn SOR

And, ω is a weight parameter, D is the diagonal part of the matrix A and L is the lower triangular part
of the matrix D-A, respectively.

The discussion on the stability of WJ and SOR in solving the linear system (5.5) can be found
in [39, 40].

Let us consider the linear system
Au = G, (5.6)
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where A : Rl → Rl is a linear and positive operator and u,G ∈ Rl. To find the solution of the linear
system (5.6), we manipulate this linear system into the form of the fixed-point equation u = T (u).
For example, the well-known weight Jacobi (WJ), successive over-relaxation (SOR) and Gauss-Seidel
(GS, SOR with ω = 1) methods [38–40] present the linear system (5.6) in the form of fixed-point as
TWJ (u) = u, T SOR (u) = u and T GS (u) = u, respectively (see Table 2).

Table 2. Different way of rearranging the linear system (5.6) into the form u = T (u).

Linear system Fixed-point mapping T (u)

Au = G TWJ (u) =
(
I − ωD−1A

)
u + ωD−1G

T SOR (u) =
(
I − ω (D − ωL)−1 A

)
u + ω (D − ωL)−1 G

Let Tu = Su + c, where u, c ∈ K , and let S be a self-mapping on a nonempty closed convex subset
K of a uniformly convex Banach space E with ‖ S ‖< 1; then, T is a nonexpansive mapping on K .
Indeed, for all u, v ∈ K and n ≥ 1, we have

‖ Tu − T v ‖=‖ Su − Sv ‖≤‖ S ‖‖ u − v ‖<‖ u − v ‖ .

Therefore, in controlling the operators TWJ and T SOR in the form of TWJu = SWJu + cWJ, where

SWJ = I − ωD−1A, cWJ = ωD−1G

and T SORu = SSORu + cSOR , where

SSOR = I − ω (D − ωL)−1 A, cSOR = ω (D − ωL)−1 G

are nonexpansive mappings, their weight parameter must be properly modified. The implemented
weight parameter ω for the operator SWJ and SSOR are defined as its norm of less than one. Moreover,
the optimal weight parameter ωo to yield the smallest norm for each type of operator S is indicated in
Table 3.
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Table 3. Implemented weight parameter and optimal weight parameter of operator S .

Different types Implemented weight Optimal weight
of operator S parameter ω parameter ωo

SWJ 0 < ω <
2

λmax(D−1A)
ωo =

2
λmin(D−1A) + λmax(D−1A)

SSOR 0 < ω < 2 ωo =
2

1 +
√

1 − ρ2

The parameters λmax(D−1A) and λmin(D−1A) are the maximum and minimum eigenvalue of the matrix
A, respectively, and ρ is the spectral radius of the iteration matrix of the Jacobi method.

Next, we introduce the proposed method for solving the linear system (5.5) by using the
nonexpansive mappings T i and T j. The generated sequence {un} is created iteratively by u0 ∈ Rn

and

w(n,s+1) = (1 − ζn)u(n,s) + ζnT
iu(n,s),

z(n,s+1) = (1 − ϑn)T ju(n,s) + ϑnT
iw(n,s+1),

u(n+1,s+1) = (1 − ηn)z(n,s+1) + ηnT
jz(n,s+1), n ≥ 0,

(5.7)

where the second superscript “s” denotes the number of iterations s = 0, 1, . . . , Ŝ n; set

ζn = ϑn = ηn = 0.9 (5.8)

as the default parameter. Since we focus on the convergence of the proposed algorithm, the stability
analysis in terms of choosing the step sizes for time is not discussed in detail. The step size for time for
the proposed algorithm is based on the smallest step size chosen for the WJ and SOR methods when
solving the linear system (5.5) generated from the discretization of the considered problem (5.1). In all
computations, we used β = 25, ∆t = ∆x2/10 (step size for time) and εd = 10−10. For testing purposes
only, both computations are performed for 0 ≤ t ≤ 0.01 (when t � 0.05, u(x, t) → 0). The following
stopping criterion is used:

‖u(n+1,Ŝ n+1) − u(n+1,Ŝ n)‖2 < εd,

where “ Ŝ n ” denotes the number of the last iteration at time tn and set u(n+1,Ŝ n+1) = u(n,0). All
computations can be performed by using a uniform grid of 101 nodes, which corresponds to the
solution of the linear system (5.5) with a 99 × 99 size. The weight parameter ω of the proposed
algorithm should be set as its optimum weight parameter (ωo) defined in Table 3. We apply the WJ,
SOR, GS and proposed algorithms with two different operators T i and T j (proposed algorithm with
T i−T j) to obtain the solution of the linear system (5.5) of the heat problem with Dirichlet boundary
conditions and the initial data described by (5.1). For the proposed algorithm, the nonexpansive
mapping T i is chosen from the following operators: T GS,TWJ and T SOR.
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Let us consider the following heat problem:

ut = βuxx + 0.4β(4π2 − 1)e−4βt cos(4πx), 0 ≤ x ≤ 1, 0 < t < ts,

u(x, 0) = cos(4πx)/10, u(0, t) = e−4βt/10, u(1, t) = e−4βt/10,
u(x, t) = e−4βt cos(4πx)/10.

(5.9)

The results of the basic iterative methods (WJ, GS, SOR) and the proposed algorithms are
demonstrated and discussed for the following cases:
Case I: WJ method, Case II: GS method, Case III: SOR method,

Case IV: The proposed algorithm with TWJ−T GS,

Case V: The proposed algorithm with TWJ−T SOR,

Case VI: The proposed algorithm with T GS−TWJ,

Case VII: The proposed algorithm with T GS−T SOR,

Case VIII: The proposed algorithm with T SOR−TWJ,

Case IX: The proposed algorithm with T SOR−T GS.

The exact error can be measured by using ‖un − u‖2. Figure 1 shows the approximate solution of
problem (5.9) with 101 nodes at t = 0.01, as obtained by using the basic iterative methods and the
proposed algorithm for Cases I–IX.
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Figure 1. Approximate solutions of problem (5.9) for all cases of the basic iterative methods
and the proposed algorithms with 101 nodes.

It can be seen in Figure 1 that all numerical solutions match the analytical solution reasonably well.
Thus, it can be concluded that all sequences generated by the proposed method with two different
operators T i and T j converge to their common fixed-point solution.

Figure 2 shows the trend of the iteration number for the basic iterative methods and the proposed
algorithm for Case IV–IX to solve problem (5.5), as generated from the discretization of the considered
problem (5.9) with 101 nodes.
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Figure 2. Evolution of iteration number for GS, WJ, SOR and the proposed algorithm for
application to problem (5.1) with β = 25 and t ∈ (0, 1].

It can be seen in Figure 2 that the proposed method with two different operators T i and T j uses
fewer iterations on each step of time as compared with the basic iterative methods. And, the proposed
methods with T GS−T SOR and T SOR−T GS give us the smallest number of iterations on each step of time.

Next, the proposed algorithm with T SOR−T GS is chosen to test and verify the order of accuracy
for the presented FDS in solving the heat equation problem (5.9). And, all computations have been
performed by using uniform grids of 11, 21, 41, 81 and 161 nodes, which correspond to the solution
of the discretization of the heat equation problem (5.9) with ∆x = 0.1, 0.05, 0.025, 0.0125, 0.0625,
respectively. We found that the proposed algorithm with T SOR−T GS can be seen as the second order of
accuracy (Figure 3) when the distance between the graphs of all computational grid sizes are compared.
That is, the order of accuracy of the proposed algorithm with T SOR−T GS agrees with the construction
of their FDS. Figure 4 shows the trend of the average iteration number for the basic iterative methods
as compared with all cases of the proposed algorithm when applied for solving the discretization of the
considered problem (5.9) with various grid sizes.
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Figure 3. Evolution of iteration number for the basic iterative methods and the proposed
algorithm for problem (5.1) with 101 nodes and t ∈ (0, 1].
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Figure 4. Evolution of the average iteration number on each step of time for GS, WJ, SOR
and the proposed algorithm for problem (5.1)) with ϑ = 25 and t ∈ (0, 1].

It can be seen in this figure that the average number of iterations on each step of time for the
proposed method, with Cases IV–IX being less than the average number of iterations on each step of
time for the WJ, GS and SOR methods. Moreover, the average number of iterations on each step of
time for the proposed algorithm with T SOR-T GS gives us the smallest number of iterations for all of
the considered grid sizes. However, even using a small amount of iterations per step of time shows the
excellent performance of the proposed method, but the stability condition of the proposed algorithm
needs to be considered carefully, as chosen for the results of the stability analysis with time.

5.2. Image restoration problems

Let B be the degraded image of the true image U in the matrix form of m̃ rows and ñ columns
(B,U ∈ Rm̃×ñ). The key to obtaining the image restoration model is to rearrange the elements of the
images B and U into the column vectors by stacking the columns of these images into two long vectors
b and u where b = vec(B) and u = vec(U), both of length n = m̃ñ. The image restoration problem can
be modeled in a one-dimensional vector by using the following linear equation system:

b = Mu, (5.10)

where u ∈ Rn is an original image, b ∈ Rn is the observed image, M ∈ Rn×n is the blurring operation
and n = m̃ñ. In order to solve problem (5.10), we aim to approximate the original image, vector b,
which is known as the following least squares (LS) problem:

min
u

1
2
‖b − Mu‖22, (5.11)

where ‖.‖2 is defined by ‖u‖2 =
√∑n

i=1 |ui|
2.

Next, we will apply our method for solving the LS problem (5.11) and the image restoration
problem (5.10) by applying the following settings as follows: Let M ∈ Rn×n be a degraded matrix
and b ∈ Rn. We obtain the following proposed method to find the common solution of the image
restoration problem

wn = (1 − ζn)un + ζnTun,
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zn = (1 − ϑn)Tun + ϑnTwn, (5.12)
un+1 = (1 − ηn)zn + ηnT zn,

where Tu = u − µMT (Mu − b), µ ⊂
(
0, 2/||MT M||2

)
and ηn, ϑn, ζn ∈ (0, 1) for all n ∈ N.

The goal for the image restoration problem is to find the original image from the observed
image without knowing which one is the blurring matrix. However, the blurring matrix M must be
known when applying the algorithm (5.12). Now, we present the new idea for solving the image
restoration problem when the observed image b1,b2, ...,bN can be restored by using the blurring
matrices M1,M2, ...,MN with different qualities (bi = Miu, i = 1, 2, . . . ,N). Let us consider the
following problems:

min
u∈Rn

1
2
‖M1u − b1‖

2
2,min

u∈Rn

1
2
‖M2u − b2‖

2
2, ...,min

u∈Rn

1
2
‖MNu − bN‖

2
2, (5.13)

where u is the originally true image (common solution), Mi is the blurred matrix and bi is the blurred
image by the blurred matrix Mi. However, there are many degraded matrices that must be known. For
simplicity, we give an example for applying the algorithm (5.12) to find the original image u with a
pair of blurring matrices Mi and M j:

wn = (1 − ζn)un + ζnT
iun,

zn = (1 − ϑn)T jun + ϑnT
iwn, (5.14)

un = (1 − ηn)zn + ηnT
jzn,

where T ku = u − µkMT
k (Mku − b). The implemented algorithm (5.14) is proposed for the purpose

of solving the image restoration problem by using a pair of the blurring matrices Mi and M j with the
default parameter (5.8) and µk = 1/‖MT

k Mk‖2, and it is called the proposed algorithm with T i−T j. In
the case of T i = T j, we call it the proposed algorithm with T i.

The original RGB format shown in Figure 5 is used to demonstrate the practicability of the proposed
algorithm. The Cauchy error and the relative error are measured by using the max-norm ‖un − un−1‖∞

and ‖un − u‖∞/‖u‖∞, respectively. The performance of the comparing algorithms at un for the image
deblurring process can be measured quantitatively by using the peak signal-to-noise ratio (PSNR),
which is defined by

PSNR(un) = 20log10

( 2552

MS E

)
,

where MSE = ‖un − u‖22. Three different types of the original RGB image degraded by the blurring
matrices M1,M2 and M3 are shown in Figure 6. These have been used to test the implemented
algorithm.
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Figure 5. Original RGB image with matrix size 380 × 440 × 3.

Figure 6. Original RGB image degraded by blurred matrices M1–M3 respectively.

Next, we present the restoration of images that have been corrupted by the following blur types:

Type I. Gaussian blur of filter size 9 × 9 with standard deviation σ = 4. (The original image has been
degraded by the blurring matrix M1.)

Type II. Out of focus blur (disk) with radius r = 6. (The original image has been degraded by the
blurring matrix M2.)

Type III. Motion blur specifying with motion length of 21 pixels and motion orientation 11◦ (θ = 11).
(The original image has been degraded by the blurring matrix M3.)

The image U and three different types of the blurring image B (Figure 3) are represented in the
red-green-blue component. Then, we denote Ur,Ug,Ub and Br, Bg, Bb as the gray-scale images that
constitute the red-green-blue channels of the applied image U and the blurring image B, respectively.
Thus, we define the column vector u and b from the color image U and B, and both of length n = 3m̃ñ.
After that, we applied the proposed algorithms to obtain the common solution of the image restoration
problem with these three blurring matrices. Both the theoretical and experimental results demonstrate
the convergence properties of the proposed algorithm with the permutation of the blurring matrices
M1,M2 and M3, which are demonstrated and discussed for the following cases:
Case I: Algorithm 5.12 with T 1, Case II: Algorithm 5.14 with T 2,
Case III: Algorithm 5.14 with T 3, Case IV: Algorithm 5.12 with T 1−T 2,
Case V: Algorithm 5.14 with T 1−T 3, Case VI: Algorithm 5.14 with T 2−T 1,
Case VII: Algorithm 5.12 with T 2−T 3, Case VIII: Algorithm 5.14 with T 3−T 1,
Case IX: Algorithm 5.14 with T 3−T 2.

Figure 7 shows the plot behavior for the Cauchy error and relative error of the reconstructed RGB
image in all cases.
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Figure 7. Cauchy norm and relative norm plots for the proposed algorithm for Cases I–IX.

The Cauchy error plots and the relative error plot guarantee that the presented method converge
to the common solution of the restoration problem (5.14) in all cases. Thus, the Cauchy and relative
error plots show the validity and confirm the convergence of the proposed method. Figure 8 shows all
cases of the PSNR plot for the proposed method with 100, 000 iterations. Based on the PSNR plots
in Figure 8, all restored images using the proposed algorithm to solve the deblurring problem results
in quality improvements when the iteration number increases. Moreover, the PSNR quality of the
observed image is improved when the proposed method with a pair of T i−T j and i , j is used to solve
deblurring problem compared with the proposed method in which only one blurring matrix is used.
And, the best case for recovering the observed image occurs when the proposed method with T 2−T 3

and T 3−T 2 is used.
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Figure 8. Comparison plots of PSNR quality for the proposed algorithm for Cases I–IX.

Figure 9 demonstrates the crop of reconstructed RGB images presented for the 500th iteration by
using the proposed algorithm to obtain the common solution of the restoration problem with operators
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T 1 and T 2, T 3 and T 3−T 2 respectively. It can be seen in these figures that the quality of the image
restored by using the proposed algorithm with T 3−T 2 results in the smooth quality of the applied
degraded image.

Figure 9. Reconstructed images resulting from using the proposed algorithm with operators
T 1 and T 2, T 3 and T 3−T 2, respectively, at 500th iterations

Next, we will compare the effectiveness of the proposed methods with Mann iteration [10], Ishikawa
iteration [11], S -iteration [12], Noor iteration [14], AK-iteration [15], Sahu et al. iteration [16] and
S P-iteration [18] through the PSNR plots in Figure 10. And, the parameters ζn, ϑn and ηn of the
comparative algorithms are set with the default parameter presented in (5.8). Since, all comparative
methods use only one blurring matrix on their algorithms, the proposed method with Cases I–III are
used to compare the effectiveness of our methods.

It can be seen in Figure 10 that the PSNR quality from the proposed method is better than that of
the methods of Mann, Ishikawa, S , Noor and Sahu et al., while the proposed method is as effective as
the remaining methods. However, the proposed method has been designed to be used with a pair of
T i−T j where i , j. With this advantage, we found that the proposed method with Cases IV–IX is more
effective when the number of iterations is large enough (see Figure 8).
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Figure 10. PSNR plots for all methods compared with the proposed method, presented in
100, 000 iterations.

5.3. Signal recovery problems

In signal processing, compressed sensing can be modeled as the following under a determined linear
equation system:

y = Au + ν

where u ∈ Rn is an original signal with n components to be recovered, ν, y ∈ Rm are noise and the
observed signal with noise for m components respectively, and A ∈ Rm×n is a degraded matrix. Finding
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the solutions of the previous determined linear equation system can be seen as solving the LASSO
problem

min
u∈RN

1
2
‖y − Au‖22 + λ‖u‖1, (5.15)

where λ > 0. As a result various techniques and iterative schemes have been developed to solve the
LASSO problem. We can apply our method to solve the LASSO problem (5.15) by setting Tu =

proxµg(u − µ∇ f (u)) where f (u) = ‖y − Au‖22/2, g(u) = λ‖u‖1 and ∇ f (u) = AT (Au − y).
Next, we give an example by applying our algorithm to signal recovery problems. Let A ∈ Rm×n(m <

n) be a degraded matrix and y, ν ∈ Rm; we obtain the following proposed methods to find the solution
of the signal recovery problem:

wn = (1 − ζn)un + ζnTun,

zn = (1 − ϑn)Tun + ϑnTwn, (5.16)
un+1 = (1 − ηn)zn + ηnT zn,

where Tu = proxµg

(
u − µAT (Au − y)

)
, µ ∈

(
0, 2/||AtA||2

)
and ηn, ϑn, ζn ∈ (0, 1) for all n ∈ N. The

goal for a signal recovery problem is to find the original signal from the observed signal without
knowing the degraded signal operator A and noise ν. However, the degraded signal operator A must be
known when applying the algorithm (5.16). Now, we present the method for solving the signal recovery
problem when the observed signal y1, y2, ..., yN can be recovered by using the known degraded matrices
A1, A2, ..., AN ( yi = Aiu + νi, νi = λi‖u‖1, i = 1, 2, . . . ,N ). Let us consider the following problems:

min
u∈RN

1
2
‖A1u − y1‖

2
2 + λ1‖u‖1,

min
u∈RN

1
2
‖A2u − y2‖

2
2 + λ2‖u‖1, (5.17)

...

min
u∈RN

1
2
‖ANu − yN‖

2
2 + λN‖u‖1,

where a true signal u is a common solution of problem (5.17). That is, we will find the true signal u
through the common solution of N LASSO problems in the problem (5.17). However, there are many
degraded signal operators that must be known. For simplicity, we give an example of applying our
algorithm to find the common solution u for a pair of LASSO problems to Eq (5.17):

wn = (1 − ζn)un + ζnT jun,

zn = (1 − ϑn)Tkun + ϑnT jwn, (5.18)
un+1 = (1 − ηn)zn + ηnTkzn,

where
Tiu = proxµigi

(
u − µiAT

i (Aiu − yi)
)
,

gi(u) = λi‖u‖1
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and
µi = 1/‖AT

i Ai‖2,

i = 1, 2, ...,N. The implemented algorithm (5.18) is proposed for the purpose of solving the signal
recovery problem by using a pair of the degraded signal operators A j and Ak, and set ζn = ϑn = ηn = 0.9,
and it is called the proposed algorithm with the operator T j−Tk. In the case of T j = Tk, we call it the
proposed algorithm with T j.

Next, some experiments are provided to illustrate the convergence and the effectiveness of the
proposed algorithm (5.18). The original signal u with n = 1024 generated by the uniform distribution
in the interval [−2, 2] with k = 70 nonzero elements is used to create the observation signal
yi = Aiu + νi, i = 1, 2, 3 with m = 512 (see Figure 11).
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Figure 11. Original signal (u) with 70 nonzero elements.

The process is started when the signal initial data u0 with k = 70 and n = 1024 is picked randomly
(see Figure 12).
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Figure 12. Initial signal u0.
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The observation signal yi is shown in Figure 13.
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Figure 13. Degraded signals y1, y2, and y3.

The matrices Ai generated by the normal distribution with a mean of zero and variance of one, and
the white Gaussian noise νi, i = 1, 2, 3 (see on Figure 14).
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Figure 14. Noise signals ν1, ν2, and ν3.

Both the theoretical and experimental results that demonstrate the convergence properties of the
proposed algorithm with the permutation of the blurring matrices A1, A2 and A3 are demonstrated and
discussed for the following cases:
Case I: Algorithm 5.12 with T1 , Case II: Algorithm 5.14 with T2 ,
Case III: Algorithm 5.14 with T3 , Case IV: Algorithm 5.12 with T1−T2,
Case V: Algorithm 5.14 with T1−T3, Case VI: Algorithm 5.14 with T2−T1 ,
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Case VII: Algorithm 5.12 with T2−T3, Case VIII: Algorithm 5.14 with T3−T1,

Case IX: Algorithm 5.14 with T3−T2 .

The Cauchy error and the relative signal error can also measured by using max-norm. The
performance of the proposed method at the nth iteration can be measured quantitatively by using the
the signal-to-noise ratio (SNR), which is defined by

SNR(un) = 20 log10

(
‖un‖2

‖un − u‖2

)
,

where un is the recovered signal at the nth iteration by using the proposed method. The Cauchy error,
signal relative error and SNR quality of the proposed methods for recovering the degraded signal are
shown in Figure 15.
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Figure 15. Cauchy norm and relative error norm plots for the proposed method for Cases
I–IX to recover the observed signal.

The Cauchy error plot guarantees that all cases of the presented method converge to a common
solution of the signal recovery problem (5.17) with N = 2. It is remarkable that the signal relative error
plot decreases until it converges to some constant value. Figure 16 shows all cases of the SNR plot for
the proposed method with 100, 000 iterations. For the SNR quality plot in Figure 16, it can be seen
that the SNR value increases until it converges to some constant value. Through these results, it can be
concluded that the solution of the signal recovery problem solved by the proposed algorithm achieved
quality improvements of the observed signal. Moreover, the SNR quality of the observed signal has
been greatly improved when the proposed method with T j−Tk and T j , Tk is used for solving the
signal recovery problem. And, the optimal case for recovering the observed signal occurred when the
proposed method with T3−T1 was used.

Figure 17 shows the signals restored by using the optimal proposed algorithm with the operators
T3−T1 as compared with the proposed algorithms with the operators T1, T2 and T3.
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Figure 16. Comparison plots of the SNR quality for the proposed algorithm for Cases I–IX
to recover the observed signal.
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Figure 17. Recovering signals obtained by using the proposed algorithm with the operators
T1 and T2, T3 and T3−T1, respectively, presented in 5, 000 iterations.

Next, we will compare the effectiveness of the proposed method with the Mann iteration [10],
Ishikawa iteration [11], S -iteration [12], Noor iteration [14], AK-iteration [15], Sahu et al.
iteration [16] and S P-iteration [18] through the SNR plots in Figure 18. And, the parameters ζn, ϑn
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and ηn of the comparative algorithms are set with the default parameter of (5.8). Since all comparative
methods use only one blurring matrix on their algorithms, the proposed method with Cases I–III are
used to compare the effectiveness of our methods.

It can be seen in Figure 18 that the SNR quality from the proposed and SP methods are better than
the remaining methods. However, the proposed method has been designed to be used with a pair of
T j−Tk where j , k. With this advantage, we found that the proposed method with Cases IV–IX is more
effective when the number of iterations is large enough (see Figure 16).
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Figure 18. SNR plots for all methods compared with the proposed method, presented in
100, 000 iterations.

Moreover, we show the efficiency of the proposed method with the operators T3−T1 in solving
the k-sparse signal recovering problem with k = 70, 35, 18, 9. To solve the k-sparse signal recovering
problem, the observed signal in Figure 11 was attenuated by half until k = 9 to obtain the k-nonzero
signal. When solving these k-sparse signal recovery problems using the suggested technique with the
operators T3−T1, the regularization parameters λ1 and λ3 should be set as λ1 = λ3 = λ. The SNR
quality and the relative signal error with the effect of the regularization parameter λ where λ ∈ [5, 75],
are shown in Figure 19.
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Figure 19. SNR quality and relative error norm results for the proposed method with the
operators T3−T1 and the regularization parameter λ as applied to recover the observed signal
within 10, 000 iterations.
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The most recent figure illustrates that the offered algorithms can solve the sparse signal recovery
challenge. This figure shows that, with the optimal regularization parameter λ, the SNR quality
increased and the relative error decreased as the nonzero elements of the sparse signal were attenuated
by half. Following that, we compared the numerical simulations of the proposed method to the well-
known LASSO-ADMM methodology (see [41, 42]). When using the LASSO-ADMM algorithm to
solve the sparse signal recovery problem and compare it with the proposed method with the operators
T3−T1, we set the penalty parameter ρ = 1 and varied the regularization parameter λ from 0 to 1.

The SNR and the relative error norm plots in Figures 19 and 20, respectively, show that the
reconstruction via the recommended technique was more accurate than that resulting from the LASSO-
ADMM algorithm for its ideal regularization parameter λ.
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Figure 20. SNR and relative error norm plots of the LASSO-ADMM algorithm with the
regularization parameter λ as applied to recover the observed sparse signal.

However, the LASSO-ADMM algorithm needs fewer observations to obtain the same probability
of exact reconstruction than our technique.

This is due to the fact that the LASSO-ADMM technique is solved implicitly (the inverse of the
noise covariance matrix is necessary), whereas the suggested algorithm is not. Furthermore, while
determining the best regularization parameter λ to achieve maximum SNR quality, the SNR plot for the
LASSO-ADMM algorithm can provide an adequate regularization parameter compared to the proposed
approaches.

6. Conclusions

Splitting methods have received a lot of attention lately because many nonlinear problems that
arise in the areas used, such as signal processing and image restoration, are modeled in mathematics
as a nonlinear equation, and this operator is decomposed as the sum of two nonlinear operators.
Most investigations about the methods of separation are carried out in Hilbert spaces. This work
developed an iterative scheme in Banach spaces. By using sunny nonexpansive retractions which
are different from the metric projection in Banach spaces, we have developed the CR-iteration
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algorithm in view of two quasi-nonexpansive nonself-mappings in the setting of uniformly convex
Banach spaces. We proved the convergence theorem of our iterative scheme, as well as presented
applications for common zeros of accretive operators, convexly constrained least square problems,
convex minimization problems, differential problems, image restoration problems and signal recovery
problems. As applications, we found that, when the proposed method is used to solve the common
solution of image and signal recovering problems, it expands the quality range of the recovered image
and signal. Our algorithm was found to be flexible and have better quality than the Mann, Ishikawa,
S, Noor, AK, Sahu et al. and SP iterations (see Figures 10 and 18). And, we presented the idea of
applying the pairs of basic iterative methods such as WJ, GS and SOR to the proposed method to
solve the unique solution of the well-known one-dimensional heat equation with Dirichlet boundary
conditions and initial data. Furthermore, the proposed algorithm can solve the sparse signal recovery
challenge. The simulation results demonstrate the efficacy of the proposed algorithm for solving k-
spares signal recovery problems. Their numerical experiments also show the excellent performance of
the proposed method.
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