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Abstract: A connected graph with n vertices and m edges is called k-cyclic graph if k = m−n+1.We
call a signed graph is Laplacian integral if all eigenvalues of its Laplacian matrix are integers. In this
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connected Laplacian integral signed trees, unicyclic, bicyclic and tricyclic signed graphs.
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1. Introduction

All graphs considered here are simple and undirected. The vertex set and edge set of a graph G
will be denoted by V(G) and E(G), respectively. A signed graph Γ = (G, σ) consists of an unsigned
graph G = (V, E) and a sign function σ : E(G) → {+1,−1}. The G is its underlying graph, while σ its
sign function (or signature). An edge viv j is positive (negative) if σ(viv j) = +1 (resp. σ(viv j) = −1).
If a signed graph has the all-positive (resp. all-negative) signature, then it is denoted by (G,+) (resp.
(G,−)).

The adjacency matrix of a signed graph Γ is defined by Aσ = A(Γ) = (σi j), where σi j = σ(viv j)
if vi ∼ v j, and σi j = 0 otherwise. The Laplacian matrix of a signed graph Γ is defined by Lσ =
L(Γ) = L(G, σ) = D(G) − A(Γ), where D(G) is the diagonal matrix of vertex degrees. The Laplacian
eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn of a signed graph Γ are identified to be the eigenvalues of L(Γ).
Recently, the spectra of the signed graphs have attracted many studies, see [1–3, 7, 18, 19].

A graph is called integral (resp. Laplacian integral, signless Laplacian integral) if all eigenvalues of
its adjacency matrix (resp. Laplacian matrix, signless Laplacian matrix) are integers. This notion was
first introduced by Harary and Schwenk in [8], who proposed the problem of classifying all integral
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graphs. The study of this problem has fascinated many mathematicians. In [4] and [16], Cvetković and
Schwenk classified the connected integral graphs of maximum degree at most 3. In [14], Kirkland
proved that there are 21 connected Laplacian integral graphs of maximum degree 3 on at least 6
vertices. For more results about (Laplacian) integral graphs see [5,6,9]. Integral and Laplacian integral
signed graphs are defined in the same way. Very recently, there have some interests in characterizing the
(Laplacian) integral signed graphs. In [18] and [19], the authors characterized all connected integral
subcubic signed graphs and all connected Laplacian integral subcubic signed graphs, respectively.
In [17], Stanić determined all integral 4-regular net-balanced signed graphs and the integral 4-regular
net-balanced signed graphs whose net-balance is a simple eigenvalue.

A connected graph with n vertices and m edges is called a k-cyclic graph if k = m−n+1. A k-cyclic
graph (k ≥ 1) is said to be a k-cyclic base graph if contains no pendent vertices. In particular, the tree
and unicyclic, bicyclic and tricyclic graph are respectively defined as the k-cyclic graph with k = 0, 1, 2
and 3. In [15], Liu and Liu determined all Laplacian integral unicyclic and bicyclic graphs. In [12],
Huang et al. determined all Laplacian integral tricyclic graphs. In [13], Zhang et al. determined all
signless Laplacian integral unicyclic, bicyclic and tricyclic graphs. Note that L(G,+) = L(G) and
L(G,−) = Q(G) = D(G) + A(G), where L(G) and Q(G) are the Laplacian matrix and the signless
Laplacian matrix of G, respectively. Thus L(G, σ) can be viewed as a common generalization of
the L(G) and Q(G) of the underlying graph G. So there arises a natural problem: which unicyclic,
bicyclic and tricyclic signed graphs are Laplacian integral? In this paper, we will generalize the results
of [12, 13, 15] and characterize all connected Laplacian integral signed trees, unicyclic, bicyclic and
tricyclic signed graphs.

Most of the concepts defined for graphs can be directly extended to signed graphs. For example,
the degree of a vertex v in G (denoted by dv) is also its degree in Γ, ∆(Γ) and δ(Γ) denote the maximum
degree and minimum degree of vertex, respectively. If dv = 1, then we call v a pendent vertex of Γ.
Let Kn,m denote the complete bipartite graph. In all figures of signed graphs in this paper, positive
edges are depicted as thin lines, while negative edges are depicted as dashed lines. For other undefined
notationss and terminology from the theory of signed graphs, we refer to Zaslavsky [20].

2. Preliminaries

First we will present some basic results about signed graphs. Let Γ = (G, σ) be a signed graph
and C a cycle of Γ. The sign of C is denoted by σ(C) =

∏
e∈C σ(e). A cycle whose sign is +1 (resp.

−1) is called positive (resp. negative). A signed graph is called balanced if all its cycles are positive,
otherwise it is called unbalanced. Throughout this paper, we denote a positive and a negative cycle of
length n by C+n and C−n , respectively.

For Γ = (G, σ) and U ⊂ V(G), let ΓU be the signed graph obtained from Γ by reversing the signatures
of the edges in the cut [U,V(G) \U], namely σΓU (e) = −σΓ(e) for any edge e between U and V(G) \U,
and σΓU (e) = σΓ(e) otherwise. The signed graph ΓU is said to be switching equivalent to Γ, and we
write Γ ∼ ΓU . Switching equivalence leaves the many signed graphic invariants, such as adjacency
spectrum and Laplacian spectrum.

The following lemma is used to prove two signed graphs are switching equivalent.

Lemma 2.1. [20, Lemma 3.1] Let G be a connected graph and T a spanning tree of G. Then each
switching equivalent class of signed graphs on the graph G has a unique representative which is +1 on
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T. Indeed, given any prescribed sign function σT : T −→ {+1,−1}, each switching class has a single
representative which agrees with σT on T.

Hou et al. [11] provided a basic result about the µn(Γ) of a signed graph Γ.

Lemma 2.2. [11, Theorem 2.5] Let Γ = (G, σ) be a connected signed graph with n vertices. Then
µn(Γ) = 0 if and only if Γ is balanced.

From Lemma 2.2, we have the following observations.

Proposition 2.3. Let Γ = (G, σ) be a connected unbalanced Laplacian integral signed graph. Then
(i) µn(Γ) ≥ 1.
(ii) Lσ − I is positive semi-definite (if µn(Γ) = 1) or positive definite (if µn(Γ) > 1).

By Proposition 2.3, we can obtain that if Γ = (G, σ) is a connected unbalanced Laplacian integral
signed graph, then δ(Γ) ≥ 2 and hence Γ has no pendent vertex.

Lemma 2.4. Let Γ = (G, σ) be a connected unbalanced Laplacian integral signed graph. Then δ(Γ) ≥
2.

Proof. Suppose u is a pendent vertex and v is the neighbor of u, then 2×2 principal submatrix of Lσ− I
corresponding to u and v equals

S =
[

0 −σ(uv)
−σ(uv) dv − 1

]
.

We have det S = −1, which contradicts to Proposition 2.3 (ii). Hence δ(Γ) ≥ 2. □

Corollary 2.5. Let Γ = (G, σ) be a connected unbalanced Laplacian integral k-cyclic signed graph.
Then the underlying graph G is a k-cyclic base graph.

Proof. By Lemma 2.4, we know that Γ has no pendent vertex. Hence the underlying graph G is a
k-cyclic base graph. □

By Proposition 2.3 (ii), we can also give a considerable reduction on the possible induced subgraphs.

Lemma 2.6. Let Γ = (G, σ) be a connected unbalanced Laplacian integral signed graph. If there are
two vertices of degree 2 such that they are adjacent, then there must exist one negative 3-cycle that
contains vertices u and v.

Proof. Suppose that w is the another neighbor of u, by Lemma 2.1, we can assume that σ(vu) =
σ(uw) = +1. Then the 3 × 3 principal submatrix of Lσ − I corresponding to v, u,w equals

S =


1 −1 −σ(vw)
−1 1 −1
−σ(vw) −1 dw − 1

 ,where σ(vw) ∈ {0,+1,−1}.

By direct calculations, we have det S = −1 if σ(vw) = 0 and det S = −4 if σ(vw) = +1, which
contradicts to Proposition 2.3 (ii). Thus σ(vw) = −1 and {v, u,w} is a negative 3-cycle. This completes
the proof. □
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It is straightforward to see that if Γ = (G, σ) is a connected signed graph with maximam degree at
most 2, then the necessarily the underlying graph G is a path or cycle.

Lemma 2.7. [1,19] Let Γ = (G, σ) be a connected signed graph with maximam degree at most 2, then
Γ is Laplacian integral if and only if it is switching equivalent to one of the K1, (P2, σ), (P3, σ), C+3 ,
C−3 , C

+
4 or C+6 .

The connected Laplacian integral signed graphs Γ = (G, σ) of maximum degree 3 have been
determined by Schwenk [16], Kirkland [14], Wang and Hou [19]. The following result showes all
connected unbalanced Laplacian integral signed graphs of maximum degree 3.

Lemma 2.8. [19] Let Γ = (G, σ) be a connected unbalanced Laplacian integral signed graph of
maximum degree 3. Then Γ is switching equivalent to one of the signed graphs of Figure 1.

n ≡ 0 mod 6 and n ≥ 6

n ≡ 3 mod 6 and n ≥ 9

n ≡ 0 mod 6 and n ≥ 6
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Figure 1. Laplacian integral (unbalanced) signed graphs of maximum degree 3.

The following three lemmas characterize the connected Laplacian integral unicyclic, bicyclic and
tricyclic unsigned graphs. Let S 1(n) (n ≥ 4) denote the (unique) unicyclic graph obtained from K1,n−1

by adding one edge between pendent vertices of K1,n−1.

Lemma 2.9. [15, Theorem 3.2] If G is a connected unicyclic graph of order n (n ≥ 3), then G is
Laplacian integral if and only if G � S 1(n), G � C3, G � C4, G � C6.

Let S 1
2(n) and S 2

2(n) (n ≥ 5) denote the two bicyclic graphs obtained from K1,n−1 by adding two edge
to the pendent vertices of K1,n−1. See Figure 2.

Lemma 2.10. [15, Theorem 3.3] If G is a connected bicyclic graph of order n (n ≥ 4), then G is
Laplacian integral if and only if G � S 1

2(n), S 2
2(n),K2,3, F, H in Figure 2.

F HS1
2(n) S2

2(n)

Figure 2. Laplacian integral bicyclic graphs.
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Lemma 2.11. [12, Theorems 4.1 and 5.1] If G is a connected tricyclic graph of order n (n ≥ 4), then
G is Laplacian integral if and only if G � Gi, i = 1, 2, . . . , 9, R, S , T, W in Figure 3.

R S T W

G1 G2 G3 G4 G5 G6 G7

G8 G9

Figure 3. Laplacian integral tricyclic graphs.

3. Laplacian integral signed graphs with few cycles

In this section, we will characterize the connected Laplacian integral k-cyclic signed graphs with
k = 0, 1, 2 and 3.

If k = 0, it is known that the underlying graph G is a tree. Then

Theorem 3.1. If Γ = (T, σ) is a signed tree of order n (n ≥ 2), then Γ is Laplacian integral if and only
if Γ is switching equivalent to (K1,n−1,+).

Proof. Note that any signed tree shares the same L-spectrum with its underlying graph. Hence by
Corollary 3.1 of [15] , Γ is Laplacian integral if and only if Γ ∼ (K1,n−1,+). □

Now we will determine all connected Laplacian integral unicyclic signed graphs.

Theorem 3.2. If Γ = (G, σ) is a connected unicyclic signed graph of order n (n ≥ 3), then Γ is
Laplacian integral if and only if Γ is switching equivalent to C+3 , C

−
3 , C

+
4 , C

+
6 or (S 1(n),+).

Proof. If Γ is balanced, then Γ is Laplacian integral if and only if it is switching equivalent to C+3 , C
+
4 ,

C+6 or (S 1(n),+) (by Lemma 2.9). Then we consider the unbalanced case. By Corollary 2.5, we know
that the the underlying graph G must be a cycle. So Γ is an unbalanced signed cycle C−n . Hence by
Lemma 2.7, we can obtain that Γ is switching equivalent to C−3 . This completes the proof. □

Next we consider the connected Laplacian integral bicyclic signed graphs. It is well-known that
there are three types of bicyclic graphs in term of their base graph as described next (see Figure 4).

B1 B2 B3

Ca Cb Ca Cb

Figure 4. Three types of bicyclic graphs.
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The type B1 is the union of three internally disjoint paths Pp+2, Pq+2, and Pr+2 which have the same
two distinct end vertices, where p ≥ 0, q ≥ 0 and r ≥ 0.

The type B2 consists of two vertex disjoint cycles Ca and Cb joined by a path Pr having only its end
vertices in common with the cycles, where a ≥ 3, b ≥ 3 and r ≥ 2.

The type B3 is the union of two cycles Ca and Cb with precisely one vertex in common, where a ≥ 3
and b ≥ 3.

Theorem 3.3. If Γ = (G, σ) is a connected bicyclic signed graph of order n (n ≥ 4), then Γ is Laplacian
integral if and only if it is switching equivalent to (S 1

2(n),+), (S 2
2(n),+) (K2,3,+), (F,+), (H,+) or Γ2,

where Γ2 is shown in Figure 5.

Γ2

Figure 5. The signed graph Γ2.

Proof. If Γ is balanced, then Γ is Laplacian integral if and only if it is switching equivalent to (S 1
2(n),+),

(S 2
2(n),+) (K2,3,+), (F,+) or (H,+) (by Lemma 2.10). Then we consider the unbalanced case. By

Corollary 2.5, then the underlying graph G is a bicyclic base graph. Further, note that all bicyclic
signed graphs of types B1 and B2 have maximum degree 3. Thus, by Lemma 2.8, we can get that
Γ = (G, σ) (where G ∈ B1 or B2) is Laplacian integral if and only if Γ ∼ Γ2. Hence it suffices to
consider that the underlying graph G ∈ B3. By Lemma 2.6, we can obtain that a = b = 3, because
otherwise there have at least one pair of adjacent vertices of degree 2 and no triangle contains these
two vertices. Thus the underlying graph G is graph that two triangles meet at one vertex.

It is easy to check that there is no Laplacian integral signed graph on G. So we complete the
proof. □

By Corollary 2.5, to determine the Laplacian integral tricyclic signed graph, it suffices to consider
that the underlying graph is the tricyclic base graph. It is well-known that there are exactly 15 types
of tricyclic base graphs [10] (see Figure 6), which are denoted by Ti, for i = 1, 2, . . . , 15. Let T σi
(i = 1, 2, . . . , 15) be the set of tricyclic signed graphs whose underlying graph belongs to Ti.

Because of Lemma 2.11, we will focus on the connected unbalanced Laplacian integral tricyclic
signed graphs.

AIMS Mathematics Volume 8, Issue 3, 7021–7031.
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Figure 6. T1 − T15.

Lemma 3.4. Let Γ = (G, σ) ∈ ∪i∈XT
σ
i with X = {3, 6, 11, 14, 15} and unbalanced. Then Γ is Laplacian

integral if and only if it is switching equivalent to Γ1 or Γ3, which is depicted in Figures 1 and 7.

{6, 4, 2, 12}{6, 4, 22, 12}
Γ3 Γ4 Γ5

Figure 7. Three Laplacian integral signed graphs Γ3,Γ4,Γ5.

Proof. It is clear that for any signed graph Γ = (G, σ) ∈ ∪i∈XT
σ
i with X = {3, 6, 10, 11, 14, 15}, it has

the maximum degree of 3. Hence Γ ∼ Γ1 or Γ3 by Lemma 2.8. □

Lemma 3.5. Let Γ = (G, σ) ∈ ∪i∈XT
σ
i with X = {1, 2, 4, 5, 7}. Then Γ is not Laplacian integral.

Proof. First let Γ = (G, σ) ∈ T σi for i = 1, 2, 4, we have a = b = c = 3 and σ(Ca) = σ(Cb) =
σ(Cc) = −1 (by Lemma 2.6). Clearly, we can get that such signed graph is switching equivalent to the
all-negative signature, it suffices to find out all graphs G ∈ Ti (i = 1, 2, 4) that is signless Laplacian
integral. By [13, Theorem 3.12], Zhang et al. proved that there is no graph G ∈ Ti (i = 1, 2, 4) that is
signless Laplacian integral. So there is no Laplacian integral signed graph Γ ∈ T σi (i = 1, 2, 4).

Next let Γ ∈ T σi for i = 5, 7, by Lemma 2.6, we have a = c = 3, 3 ≤ b ≤ 4 and σ(Ca) = σ(Cc) = −1.
Thus,

if Γ ∈ T σ5 , then Γ ∼ Σ1,Σ2,Σ3 or Σ4 (see Figure 8);
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Σ1 Σ2 Σ3 Σ4

Σ5 Σ6 Σ7 Σ8

5.736.12 5.785.41

5.565.415.445.77

5.545.415.415.74Σ9 Σ10 Σ11 Σ12

Figure 8. Σ1−Σ12 (the number denotes the largest Laplacian eigenvalue of the corresponding
signed graph).

if Γ ∈ T σ7 , by Lemma 2.6, we have 1 ≤ d ≤ 2. Then Γ ∼ Σ5,Σ6,Σ7 or Σ8 (if d = 1) or Γ ∼ Σ9,Σ10,Σ11

or Σ12 (if d = 2). See Figure 8.
From Figure 8, we can see that each Σi (i = 1, 2, . . . , 12) has a non-integral Laplacian eigenvalue.

Hence Γ is not Laplacian integral. □

Lemma 3.6. Let Γ = (G, σ) ∈ ∪i∈XT
σ
i with X = {8, 9, 10, 12, 13}. Then Γ is unbalanced and Laplacian

integral if and only if it is switching equivalent to Γ4 or Γ5.

Proof. If Γ ∈ T σ8 , by Lemma 2.6, we have a = 3, 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, 1 ≤ z ≤ 2 and at most one of
x, y, z equals to 1, as we only consider simple. Then the underlying graph G is isomorphism to G1

8 or
G2

8 (see Figure 9). By Lemma 2.1, for each graph G1
8,G

2
8, there are at most 23 nonequivalent signatures.

So by direct calculations, it is not too difficult to get that there is no Laplacian integral signed graph Γ
on G1

8 or G2
8.

If Γ ∈ T σ9 , by Lemma 2.6, we have a = 3, 1 ≤ w ≤ 2, 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, 1 ≤ z ≤ 2 and at most
one of w, x equals to 1. Then the underlying graph G is isomorphism to G1

9, G
2
9, G

3
9 (w = x = 2) or

G4
9, G

5
9, G

6
9 (otherwise). See Figure 9. By similar calculations, we can check that there is no Laplacian

integral signed graph on Gi
9 (i = 1, 2, 3, 5, 6) and Γ = (G4

9, σ) is Laplacian integral if and only if Γ ∼ Γ4

(see Figure 9).

G1
8 G2

8
G3

9G2
9G1

9 G6
9G5

9G4
9

G1
13 G2

13 G3
13 G4

13 G5
13 G6

13

G1
10 G2

10 G3
10 G4

10 G1
12 G2

12

Figure 9. The graphs in the proof of Lemma 3.6.
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If Γ ∈ T σ10, by Lemma 2.6, we have a = 3, 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, 1 ≤ z ≤ 2 and at most one of x, y, z
equals to 1. Then the underlying graph G is isomorphism to G1

10,G
2
10,G

3
10 or G4

10. See Fig. 9. By similar
calculations, we can check that there is no Laplacian integral signed graph on Gi

10 (i = 1, 2, 3, 4).
If Γ ∈ T σ12, by Lemma 2.6, we have 1 ≤ w ≤ 2, 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, 1 ≤ z ≤ 2 and at most

one of w, x, y, z equals to 1. Then the underlying graph G is isomorphism to G1
12 or G2

12. See Figure
9. By similar calculations, we can check that there is no Laplacian integral signed graph on G1

12 and
Γ = (G2

12, σ) is Laplacian integral if and only if Γ ∼ Γ5 (see Figure 7).
If Γ ∈ T σ13, by Lemma 2.6, we have 1 ≤ d ≤ 2, 1 ≤ w ≤ 1, 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, 1 ≤ z ≤ 2

and at most one of w, x equals to 1, at most one of y, z equals to 1. Then the underlying graph G is
isomorphism to G1

13, G2
13 or G3

13 (if d = 1) or G4
13, G5

13 or G6
13 (if d = 2). See Fig. 9. By similar

calculations, we can check that there is no Laplacian integral signed graph on Gi
13 (i = 1, 2, 3, 4, 5, 6).

This completes the proof. □

Combining with Lemmas 2.11, 3.4, 3.5 and 3.6, we have

Theorem 3.7. If Γ = (G, σ) is a connected tricyclic signed graph of order n (n ≥ 4), then Γ is Laplacian
integral if and only if it is switching equivalent to (Gi,+) for i = 1, 2, . . . , 9, (R,+), (S ,+), (T,+), (W,+),
Γ1, Γ3,Γ4 or Γ5.

4. Conclusions

In this research work, we analyzed some properties of the connected unbalanced Laplacian integral
k-cyclic signed graphs and investigated all connected Laplacian integral k-cyclic signed graphs with
k = 0, 1, 2, 3. In future work, we will study the integral k-cyclic signed graphs for more general sets of
matrices than Laplacian matrix.
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