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Abstract: This paper is devoted to analysis the behavior of heat transfer of Casson-Carreau fluid at 

the magnetohydrodynamic (MHD) stagnation point with thermal radiation over a continuous moving 

sheet. The suitable similarity transform is utilized to transfer the governing differential equations into 

a system of differential equations and then solve the converted non-linear system by the collocation 

technique based on the B-spline function (CTBS) and Runge-Kutta method (RK). The 

quasi-linearization technique is utilized to approach the non-linear equations of the model to a 

system of linear equations and used CTBS to acquire the solution of the system of linear equations. 

The obtained results are investigated with the present literature by direct comparison. It is found that 

an increment in the value of the Weissenberg number decreases the velocity profile and enhances the 

temperature profile for Casson and Carreau fluids. Conversely, increasing the values of the magnetic 

parameter, shrinking parameter, and Casson fluid parameter improve the velocity profile and 

depreciate the thermal distribution. Further, the temperature profile declines with an improvement in 

radiation parameter and Prandtl number for Casson and Carreau fluids. The influence of distinct 

physical parameters on the velocity and temperature profiles are depicted via tables and illustrative 

graphs. 
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1. Introduction 

Magnetohydrodynamic stagnation point flow with thermal performance impact has 

implementations in various engineering processes such as blood flow models, polymer, and thinning 

and annealing of conductive material. Hiemenz [1] was the first to analyze the conventional 2D 

unsteady flow on a flat plate. Sakiadis [2] started an investigation on the flow through a continuous 

moving surface. Following that, several scholars continued to analysis the flow over an elongation 

sheet from a variety of perspectives [3–7]. However, the non-Newtonian flow is found in a various of 

large-scale industrial process such as blood flow models, polymer, thinning and annealing of 

conductive material, and ice flows. Furthermore, the Carrea fluid is one of a several non-Newtonian 

fluids. This type of non-Newtonian fluid is suitable to incompressible flows with higher and lower 

shear rates. Thus, it has advantages in numerous technological and production flows. Taking this into 

consideration, Georgiou [8] studied the time- dependent Micropolar fluid flows of a Carrea fluid 

with the existence of the slip impact and found that as the slip increases, the frequency and amplitude 

of oscillation in the radiate direction decrease. Naby et al. [9] studied heat transfer performance of 

Carreau fluid and focused on the peristalsis flow properties of Carreau fluid in the uniform canal. 

Magnetohydrodynamic is the physical characteristic that explains the behavior of a highly 

conducting fluid with the existent of an electric field. The conductive fluids produce an electrical 

current due to the liquid flow, and generated force increases the mechanistic behaviors of liquid. The 

electrically conducting peristaltic flow has considerable implementation in the biological fluids: such 

as blood flows, peristalsis flows, and nano fluid see [10–13]. The finite difference discretization 

(FDD) is used to study the radiation impact over magnetohydrodynamic boundary layer flow across 

heated shrinking surface [14]. Turkyilmazoglu in [15] studied the rotating flows in both stationary 

and rotational frames wall stretching in MHD. The Buongiorno nanofluid model is used to study the 

continuous 2D flow and heat transmission on a stretched surface of nanofluid [16]. A shear-thinning 

Cassion fluid is another kind of non-Newtonian fluid that generates the produce of shear stresses. 

Due to its rheological properties, it has been classified as the most widely used non-Newtonian fluid. 

The yield shear stress behaves like a solid when it is higher than the shear stress while the liquid 

begins to move when the yield shear stress is smaller than the shear stress, such as human blood, fruit 

juice, and tomato sauce. The Casson fluid has major applications in different aspects of real life like 

in cancer homeo-therapy and fibrinogen. Due to these significant advantages, it has been an area of 

interest to many researchers. A 3D Casson fluid through a thin linearly stretching surface with 

convection constrain is studied in [17]. 3D MHD stagnation point flow of incompressible Casson 

fluid in the porous material is studied via Shahzad [18]. 3D Casson-Carreau fluid in an unsteady 

stretched sheet is investigated by Raju and Sandeep [19]. The analysis of the Casson fluid flow on an 

expansion plate with the existent of the Dufour and Soret influences is studied in [20]. The dual 

solutions for a Casson fluid thermal properties and heat transfer enhancement on a porous continuous 

moving sheet are investigated in [21]. Aziz et al. [22] studied the magnetohydrodynamic Casson 

fluid across stretched surface for viscous dissipation estimation and Hall impacts. Very recently, heat 

transfer and stagnation-point flow over elastic sheets and cylinders with an incoming flow is 

analyzed by Mustafa [23]. Ali et al. investigated the thermal variations for Cattaneo-Christov 

characteristics and self-induced bioconvective microorganisms submerged in the water nanofluid and 

the boundary layer flow across a wedge with an unstable MHD stagnation point see [24–27]. Further, 

Mahabaleshwar et al. in [28] studied the THD attribution of boundary layer incompressible viscous 
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fluid with two types of carbon nanotubes (CNTs). Finally, the influence of morphological nanolayer 

on the MHD nanofluid flow is studied in [29]. The magnetohydrodynamic micropolar ferrofluid flow 

and heat transfer over stretching sheet is analyzed in [30]. 

The main object of the present paper is to extend the study of magnetohydrodynamic stagnation 

points flow of Casson-Carreau fluid electrically conducting in the existent of thermal radiation and 

transverse magnetic field. The proposed model has significance in different industrial as well as 

technological applications and applied sciences. The Maple 2020 program is employed to solve the 

converted mathematical problem using the Runge Kutta method (RK) and the collocation method 

based on the B-spline function. The present results are compared with that those reported 

in [14,31,32]. The numerical and graphical representations of the influence of emerging parameters 

on velocity and thermal distributions are provided. 

2. Mathematical model 

Consider 2D magnetohydrodynamic stagnation point flow of an incompressible viscous Casson- 

Carreau fluid flow electrically conducting intruding regularly over heated continuous moving plate. 

Assume that the magnetic Renolds parameter is represented by small Shercliff [33] and the velocity 

field and the uniform stationary magnetic field of strength B  are perpendicular. Here, the produced 

magnetic field is disregarded compare to the force field. The electric field is zero, no polarization 

voltage is supplied with the valid the boundary layer and the Boussinesq approximations see Figure 1. 

The equations of motion of steady 2D magnetohydrodynamic incompressible viscous 

Casson-Carreau fluid flow is given as follows: 
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The electric conductivity of the fluid is  , pressure represented p  and Z  represents the free 

stream velocity. 

 

Figure 1. The sketch of the present model. 
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In the absence of the viscous dissipation the thermal allocation equation for our boundary value 

problem is as follows [14]: 

( ) 0x y yy yc zT wT T q + = − ,                       (2.2) 

when is the given thermal ability at fixed pressure, represents the temperature, represents the heat 

conductivity constant, and is the radiative thermal flux. The radiative thermal flow using Resseland 

approximation [34] is simplified as follows: 

44

3
yq T

k


= ,                            (2.3) 

when  represents the mean absorption parameter and k represents the Stefan-Boltzmann number. 
4T represents the thermal fluctuation inside the flow which is considered to be a linear function 

of temperature. Appling the Taylor series about T 
for expanding

4T  

4 3(4 3 )T T T T − .                        (2.4) 

Taking Eq (2.3) and Eq (2.4), the Eq (2.2) is reduced to 
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The above equation depicts that the enhance of thermal conductivity is due to the impact of 

radiation. Assume that 0

34

kk
Nr

T 

= is the radiation parameter. Thus, Eq (2.5) becomes 

0
x y yy

k
zT wT T

k
+ = ,                              (2.6) 

where 
4

3

Nr
k

Nr

=

+

. 

Consider the following boundary conditions regarding the proposed problem 

0( , ) , ( , ) 0, ( , ) , 0

( , ) , ( , ) , .

z x y bx w x y T x y T y

z x y Z ax T x y T y  

= = = →

= = = →
                (2.7) 

Here, ( , )z x y  and ( , )z x y  represent the velocities close to and far from the wall, 

respectively. 0b   represents the shrinking ratio, 0T  represents the thermal sheet, T  is a 

representation of the fluid temperature beyond the boundary layer, and 0( )T T . Now, solving 

governing Eqs (2.1) and (2.6) with the given boundary conditions (2.7) gives the velocity and 

thermal fields for the proposed model. Hence, the following similarity transform is given 
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when   represents the similarity parameter, 0p  and a  are the strength of stagnation point and 

the stagnation pressure respectively. Satisfying the Eq (2.8) in Eq (2.1), the continuity Eq (2.1) 

satisfied and the possible fluid motion is represented by velocity field, and then putting Eq (2.8) in 

Eq (2.1) with some simple calculations, we obtain 

( )2 2 21 3
1 ( 1) 1 1 0

2
f n We ff f ff f M f
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.            (2.9) 

Putting Eq (2.8) in Eq (2.6), we obtain 

1
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+
 where Nr represents the radiation parameter. 

The considered conditions in (2.7) with taking the dimensionless parameters in consideration, 

we obtain 

(0) 0, (0) , ( ) 1,

(0) 1, ( ) 0.

b
f f B f

a

 

 = = =  =

=  =

                  (2.11) 

Here, the novelty of the present model is that the magnetohydrodynamic stagnation points flow 

of a new model of Casson-Carreau fluid on a continuous moving surface electrically conducting in 

the existing of thermal radiation and transverse magnetic field has been studied. 

3. Quartic B-spline method 

In this portion, we devote to determine a brief description of B-spline function. Here, the 

domain [ , ]a b  is split into N  distinct partition and the set of knots  1 2 1, , ,..., ,NS a s s s b−=  is 

named by knot vector. The B-spline is introduced depends on  1 2 1, , ,..., ,NS a s s s b−= . The 

recursion formula of the high degree B-splines is defined as follows: 
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The zero-degree B-splines are introduced by: 

10
1
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0 .
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The explicit less common formula is defined by: 
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Assume that the knot vector contains a set of integers defined on the domain. Thus, the uniform 

B-spline functions are obtained from the B-spline formula. The integration and derivation forms are 

as follows [35,36]. 
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To obtain the high accuracy approximate solution of the present model utilizing B-spline of 

degree l , it needs to provide 1 1, ,...,l ls s s− − + −  and 1 2, ,...,N N N ks s s+ + +  to the determined collection 

s . Thus, the generated functions span the model interval evenly. Let 1{ , ,..., }l l NB B B B− − +=  

represents the basis function set for [ , ]a b . 

Suppose ( )H x  is the numerical solution of the present model which has the following form 

( ) ( )
N

j j

j l

H x c B x
=−

= .                            (3.1) 

In the present study, we propose to compute at Gaussian points of the chosen domain instead of 

normal points to obtain the faster convergence of the collocation technique [37]. It is worth noting 

that the colocation points that appear at the zeros of determined basis functions give promising 

results [38]. 

4. Quasi linearization technique (QLT) 

To approach a non-linear ordinary differential equation (ODE) to a linear ODE the QLT 

algorithm is used. The technique depends on Newton-Raphson technique which was found by 

Mandelzweig and Tabakin [39]. The QLT is widely utilized in different fields of science like applied 

mathematics and astronomy [40]. The approximate linear ODE driven by QLT cannot be solved 

analytically, thus the collocation technique based on B-spline function is proposed to study the 

proposed problem numerically. Here, we apply the QLT to the present problem the approximate 

linear differential equation at the ( 1)m+  iteration given by: 
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Using Eq (2.9) and Eq (2.10), we get 
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The QLT formula is given as follows: 
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 (4.2) 

Associate with the boundary conditions: 

1 1 1

1 1

(0) 0, (0) , ( ) 1,

(0) 1, ( ) 0,

m m m

m m

f f B f

 

+ + +

+ +

 = =  =

=  =
                     (4.3) 

when m  is the iteration number. 

The above conditions at zero are satisfied by the initial guesses 0 ( )f B =  and 0 ( ) 1  = . The 

solution of the proposed model is studied numerically utilizing the B-spline basis: 

,( ) ( )
N

m j m j

j l

f c B 
=−

= and 
,( ) ( )

N

m j m j

j l

a B  
=−

= .               (4.4) 

Here, we choose the following assignments instead of the initial guesses satisfy the boundary 

conditions at zero: 

2( )m mf B f  = + and ( ) 1m m  = + .                   (4.5) 

Now, mf  and m  satisfy the first and second conditions of the stream function and first 

condition of the heat function, respectively. 

The following residual equations at each iteration are obtained after substituting mf  and m  

from system (4.2) into (4.1) 
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Here, we have constructed a system of 2 2 1N k+ −  equations, our goal is to reduce the residuals 

by collocating at each point. Using LU-factorization methodology to find the value of coefficients 

,j mc  and ,j ma  which are utilized to form 
mf  and 

m  as a supposition for the next iteration’s 

solution. 
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    (4.6) 

The function ( )iB s  is locally supported non-negative over 2 3[ , ]i is s− + . 

Table 1 is used to find and its derivatives. 

Table 1. Coefficient of quartic B-splines and its derivatives at nodes 
js . 
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2 ( )jh B z  0 1

2
 1

2

−  1

2

−  1

2
 0 

3 ( )jh B z  0 1 -1 1 -1 0 

5. Results and discussion 

In this portion, the gained approximate solutions using collocation technique based on B-spline 

function (4.4) are discussed. The condition ( ) 1f G =  is used instead of the condition ( ) 1f   =  for 

some sufficiently large G  [41]. The solution obtained by CTBS of the proposed problem is 

investigated to show the characteristic of Casson and Carreau fluid flow for various magnetic field 

and velocity parameter values. The non-dimensional parameters are considered as Pr 0.7,=  

1, 2, 1, 0.5,M n We B = = = = − =   and 3Nr =  in numerical results except the variations. In 
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illustrative graphs, the red color profiles and blue color profiles are signalize the flow of Casson fluid 

and the flow of Carreau fluid, respectively. Figure 2 describes the impact of B  on the velocity 

distribution for Casson and Carreau fluids. The natural velocity ( )f   and the horizontal velocity 

( )f   improve with increasing magnitude of shrinking parameter B . Hence, as the value of B  

decreases the velocity becomes thicker. Here, we deduce that for high values of the shrinking 

parameter, the stretches of the vertical flow regime grow as the horizontal flow reversal induces the 

vertical flow reversal in the region around the stagnation point. Figure 3 demonstrates the strength of 

the magnetitic field parameter on the solutions ( )f   and velocity distribution. We find that the 

normal ( )f   and the horizontal velocities profiles ( )f  are enhanced with increment of values M . 

The impact of the values of shrinking and magnetic parameters on the thermal profiles is shown in 

Figure 4 for Casson and Carreau fluids. 

 

Figure 2. The solution of CTBS ( )f   and ( )f  for several values of B . 

 

Figure 3. The solution of CTBS ( )f   and ( )f  for several values of M . 
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Figure 4. Influence of M and velocity parameter B on temperature profiles. 

In Figure 4 increasing the values of B  cases depreciation in the temperature profiles. Further, 

the magnetic field supports the impinging flux which decreases the amplitude of both reversal regime 

flows and makes the thermal boundary layer thickness and hydrodynamic to decline and become 

thinner. The impact of the Weissenberg number We  on the solutions and velocity distributions is 

displayed in Figure 5 for both Casson and Carreau fluids. From Figure 5 we observe that the 

solutions and the velocity distributions enhance with decreasing in the value of the Weissenberg 

number. From Figure 7 on can observe that the thermal distributions experience a growth trend via 

increasing the value of Weissenberg number. Physically, the Weissenberg number is reversely 

proportional to the viscosity yet linearly proportional to the time constant. For bigger ratios of 

Weissenberg number, the time constant to viscosity ratio is higher. Hence, the improvement in the 

values of We  increase the thermal boundary thickness. Figure 6 describes the effect of the 

dimensionless Casson fluid coefficient on the solution and velocity profiles of both fluids. It reveals 

that a hike in the value of improves the solutions and velocity profiles. In contrast, we observed 

depreciation in the thermal distributions in Figure 7 due to increasing the values of dimensionless 

Casson fluid number. Finally, in Figure 8 the impact of Prandtl number Pr and radiation parameter 

Nr  on the thermal distributions are elucidated for both fluids. From Figure 8 one can observe that 

the thermal boundary thickness is declined with increment in the value of Pr . The same behavior 

can be observed with improving values of Nr . Hence, for larger Prandtl number the liquid has a low 

temperature conductivity, that decline the correspondent thermal boundary thickness. Thus, the rate 

of heat transfer is increased at the plate with rising Prandtl number. Further, for higher radiation 

parameter the thinning of the thermal boundary thickness is occurred. Here, one can utilize the 

radiative mode of thermal transmission to enhance the sheet heat loss. This is normal because there 

are now two different ways of heat transfer proportion that govern the temperature resistance at the 

heat transfer sheet. 
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Figure 5. The solution of CTBS ( )f   and ( )f   for several values of We . 

 

Figure 6. The solution of CMBS ( )f   and ( )f   for several values of  . 

 

Figure 7. Influence of   and We  on temperature profiles. 
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Figure 8. Effect of Pr  and Nr  on temperature profiles. 

Table 2 illustrates the comparison of values of (0)f   and (0)−  at the sheet for several values 

of velocity parameter with the existent of magnetic field. The skin friction rises for 0.25 1.25B −  . 

Conversely, an adverse trend has been observed for 1.25 2.0B −  . The non-monotonic properties of 

skin friction versus the shrinking parameter are also been shown via Wang [32]. Physically, as shown 

in Figure 2 The vertical propagation proportion of the level flow reflection region and hence 

boundary of the layer is not steady with improvement in the value of shrinking parameter. However, 

(0)−  rises due to incrementing values of shrinking parameter. The same behavior can be observed 

in Table 3 with the presence of Casson fluid parameter and Carreau fluid parameter. Table 4 

demonstrates the impact of implement magnetic field M  on (0)f   and (0)− . Clearly, the values 

of shear stresses increase due to improvement in the values of M  while the rate of the heat transfer 

from the surface experience a decline with an enhancement in the values of M . Hence, the 

impinging flow is assisted by the transverse magnetic field and decreases the horizontal and vertical 

flow reversal as depicted in Figure 3. The same behavior is observed in Table 5 with the presence of 

Casson fluid parameter and Carreau fluid parameter. Finally, in Table 6 the comparison of values of 

skin friction and heat transfer rate is given. We deduced from tables that the acquired results 

employing proposed technique are in an excellent agreement with that of Wang [32], Lok [31], 

Ashraf and Rashid [14], and Runge-Kutta method. 

Table 2. The effect of B  on (0)f   and (0)− . 

B−  CTBS (0)f   CTBS (0)−  FDD [14] (0)f   FDD [14] (0)−  RK (0)f   RK (0)−  

0.25 1.877458 0.411450 1.877455 0.412803 1.877460 0.411444 

0.50 2.120148 0.377394 2.120114 0.378822 2.120190 0.377390 

1.00 2.429951 0.300877 2.429972 0.302334 2.429962 0.300867 

1.25 2.476297 0.256815 2.476343 0.258227 2.476281 0.256804 

1.50 2.425857 0.207058 2.425917 0.208447 2.425803 0.207043 

2.00 1.805775 0.076266 1.805761 0.076282 1.805569 0.076248 
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Table 3. The effect of B  on (0)f   and (0)− . 

B  Carreau fluid (0)f   Carreau fluid (0)−  Casson fluid (0)f   Casson fluid (0)−  

-0.5 1.366443 0.340120 1.836118 0.360010 

-1.0 1.479759 0.236458 2.10440 0.276883 

-1.5 1.463260 0.123325 2.100834 0.177310 

-2.0 1.181024 0.021825 1.563769 0.051355 

Table 4. The effect of M  on (0)f   and (0)− . 

M  CTBS (0)f   CTBS (0)−  RK (0)f   RK (0)−  FDD [14] (0)f   FDD [14] (0)−  

0.0 1.495673 0.346041 1.495673 0.346037 1.495722 0.346172 

0.5 1.674182 0.356415 1.674189 0.356411 1.674222 0.356736 

1.0 2.120147 0.378352 2.120190 0.378348 2.120137 0.379832 

1.5 2.703645 0.400742 2.703762 0.400735 2.703497 0.405899 

Table 5. The effect of magnetic field parameter M  on (0)f   and (0)− . 

M  Carreau fluid (0)f   Carreau fluid (0)−  Casson fluid (0)f   Casson fluid (0)−  

0.0 1.086783 0.314312 1.2952935 0.327178 

0.5 1.172461 0.322615 1.449889 0.338060 

1.0 1.366443 0.340120 1.836118 0.360010 

1.5 1.588259 0.358007 2.341526 0.384884 

Table 6. Comparison of values of (0)f   for stretching parameter B . 

B  CTBS FDD[14] RK Wang[32] Lok[31] 

0.2 1.05113 1.05112 1.05113 1.05113 1.05129 

0.5 0.71330 0.71328 0.71329 0.71330 0.71334 

6. Conclusions 

This work considers the 2D MHD stagnation point Casson-Carreau fluid flow on a continuous 

moving surface and thermal convey of an electrically conducting fluid towards a heated shrinking 

sheet. The quasi-linearization method utilized to transfer the non-linear equations of the problem to a 

system of linear equations and then solve the obtained nonlinear system via the developed 

collocation technique based on the B-spline function. The comparison of the acquired results with 

the solutions already found illustrates the efficiency of the suggested technique. Further, we 

discussed the influence of crucial physical parameters like magnetic field number, shrinking 

parameter, Casson fluid parameter, Prandtl number, radiation parameter, and Weissenberg number on 

the velocity and thermal distributions for both Casson and Carreau fluids. This work has shown that: 

(i). The thermal profiles depreciate with improvement in the values of Prandtl number and 

radiation parameter for both fluids. Thus, the temperature distribution is decreased when the 
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temperature radiation term is present in the energy equation. 

(ii). The temperature profiles experience a decline with increasing in the value of each of 

dimensionless Casson fluid parameter, shrinking parameter, and magnetic field parameter, while the 

thermal profile faces an increment with enhancement in the value of for Casson fluid and Carreau 

fluid. 

(iii). Increasing the value of the Weissenberg number causes depreciation in the velocity profile 

for both Casson and Carreau fluids while an increment in the values of the other physical parameters 

enhance the velocity distributions. 

(iv). The shear stress significantly affected by the value of the shrinking parameter. The value of 

the shear stress improves for 0.25≤-B≤1.25. Conversely, an adverse trend can be observed 

for 1.25≤-B≤2.0. Meanwhile, for both cases the rate of the heat transfer experiences an improvement 

due to increment in the values of B . 

(v). The magnetic field also effects on the skin friction and the rate of the heat transfer. The skin 

friction enhances due to increment in the magnetic field parameter for both fluids while the rate of 

the heat transfer depreciates when the value of magnetic parameter improves. In future, one can 

utilize the developed collocation method based on B-spline functions to study the solutions of 

boundary layer problems. 
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