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3 Université de Caen Normandie, LMNO, Campus II, Science 3, Caen 14032, France
4 Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
5 College of Nursing, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar

* Correspondence: Email: drfarrukh1982@gmail.com; Tel: +923216802194.
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BBXII distribution. Convincing results are obtained.
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1. Introduction

A variety of new generators, families of (absolutely continuous or discrete) distributions, and
methods of inducing additional shape parameters into a baseline distribution have been added to the
statistical literature, resulting in more flexible statistical models [1–3]. One of the most useful
families of absolutely continuous distributions is without doubt the T-X family introduced by
Alzaatreh et al. [4]. These developments provide practitioners with more flexible model choices for
better fitting and eventually more accurate results in many applicable disciplines.

On the other hand, for many empirical and theoretical situations in life testing and reliability
investigations, the Burr XII (BXII) distribution (initiated by Irving Burr [5]) offers a straightforward,
elegant, and close-form solution. Numerous of its extensions have been elaborated in many
references. See [6–13], to name a few. When the related probability density functions (PDFs) have
several shapes, these lifetime models are useful for estimating the histogram shape of data. Several
widely used distributions, including the logistic, gamma, and log-normal distributions, cover the BXII
distribution [6]. The logistic and Weibull distributions are the asymptotic limit cases of the BXII
distribution, and are highly well-liked for modeling lifetime data, such as those presenting
monotonous hazard rates. Because of its skewed (left and right) PDF forms, the Weibull distribution
might be a good starting point when modeling monotone hazard rates. It does not, however, offer an
adequate parametric fit for modeling phenomena such as non-monotone hazard rates that are
frequently observed in various applied areas. As opposed to equivalent models based on exponential
tails, the BXII distribution includes algebraic tails, which are useful for modeling data that occurs less
frequently.

On the mathematical side, the three-parameter BXII distribution [12, 13], or sometimes called the
Singh-Maddala distribution [14], has the following cumulative distribution function (CDF):

G (x; a, b, k) = 1 −
[
1 +

( x
a

)b
]−k

, (1.1)

for a, b, k > 0 and x > 0. As a matter of fact, Eq (1.1) turned to many commonly used distributions for
specific values of the parameters. For example, if b = 1, it reduces to Pareto Type II distribution, or if
k = 1, it reduces to the Fisk distribution, which is sometimes referred as the log-logistic distribution, a
special case of Champernowne distribution. Furthermore, the paralogistic distribution can be obtained
by replacing b = k in Eq (1.1). By transforming Eq (1.1) as G∗ (x; a, b, k) = 1−G (1/x; a, b, k), we get
the CDF of a distribution called the Dagum distribution or Burr III distribution, or simply the inverse
BXII distribution. The Dagum distribution is also called the generalized log-logistic distribution.

In this paper, motivated by the features of the T-X family and the willingness to propose a
completely new extended BXII distribution, we first develop the Bell-X family of (absolutely
continuous) distributions. It is based on a specific Bell-type distribution, which finds its first trace in
the work of Castellares et al. [16]. To be more specific, it defines a discrete Bell distribution based on
well-known Bell numbers [15] to achieve somewhat better fits than the Poisson model. Later, the Bell
distribution was broadened by Fayomi et al. [17] to propose its generalized class analogy to the
exponentiated Poisson generalized family of distributions, named the exponentiated Bell-generalized
family, extending (in some sense) the Poisson-X family proposed by Tahir et al. [18]. In our study, we
consider a natural sub-family to the one in [17], named the Bell-X family, while examining its
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significant mathematical features and taking into account its numerous properties and real-world
applications.

After a general investigation of the Bell-X family, the new extended BXII distribution, named the
Bell-BXII (BBXII) distribution, is presented, and several important properties are derived. Among
them, the main functions of the distribution are quite manageable, with extremely flexible PDF and
hazard rate function (HRF). In particular, it is demonstrated that the HRF can take on a variety of
shapes, including unimodal, upside-down bathtub-shaped, increasing, and decreasing trends, which
makes it suitable for real-world applications in various fields. On the statistical aspect, following the
spirit of the references [19–24], various frequentist estimation techniques, including the methods of
maximum likelihood estimation (MLE), percentile estimation (PE), least squares estimation (LSE),
weighted least squares estimation (WLSE), Cramér von-Mises estimation (CME), Anderson-Darling
estimation (ADE), and right-tail Anderson-Darling estimation (RTADE) are investigated. A
simulation study utilizing all these techniques is offered to highlight their effectiveness. Application
of the BBXII model to actual data in the fields of medicine and reliability show its powerfull
practicality. It is compared with several top-ranked comparable models, including the exponentiated
Poisson Burr-XII (EPBXII) [7], Kumaraswamy Burr-XII (KBXII) [8], Marshall-Olkin Burr-XII
(MBXII) [9], Topp Leone Burr-XII (TLBXII) [10], beta Burr-XII (B-BXII) [11], and Burr-XII
(BXII) [12] models. As a result of this study, we show that the BBXII model outperforms several
well-known extended versions of the BXII model, such as the EPBXII, KBXII, MBXII, TLBXII,
B-BXII, and BXII models. Last but not least, a group acceptance sampling plan (GASP) is designed
when the product lifespan follows the BBXII model with a real data application.

The manuscript is structured into the eight following sections: Section 2 presents the Bell-X family,
including some of its fundamental characteristics. Section 3 is focused on the BBXII distribution
and some of its important properties. Section 4 shows the parameter estimation using seven different
frequentist estimation methods. Simulation analysis is examined in Section 5. Real data applications
are provided in Section 6. Section 7 focuses on the design of GASP when a product’s life cycle follows
the BBXII model. Finally, Section 8 is devoted to some concluding remarks. An appendix containing
technical elements is given at the very end.

2. The Bell-X family with motivation

2.1. Construction

To begin, a restrospective on the family introduced in [17] is necessary. Let us start with a concrete
modeling scenario. Suppose a company where each system consists of c parallel units that operate
independently in K systems. If any one of these systems fails, the entire system will fail. The random
variables Wi,1, Wi,2, . . . ,Wi,c, which represent the hazard rates of the parallel components of the ith
system, are assumed to be independent and possessing the same standard uniform distribution.
Furthermore, assume that K is a random variable that follows the truncated Bell distribution and is
given by

P (K = k) =
ςk exp(1 − eς)Bk

k!
[
1 − exp(1 − eς)

] , k = 1, 2, . . . (2.1)

where Bk is the well-known Bell numbers as defined in [15] and ς > 0. Let T be the first of the K
operational systems’ time to failure, so we can write T = min(V1, . . . ,VK), with
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Vi = max(Wi,1, Wi,2, . . . ,Wi,c). Then the conditional CDF of T under K = k, say R(t|K = k). Then we
have

R (t|K = k) = P [T ≤ t|K = k] = 1 − P [T > t|K = k] = 1 − [P(V1 > t)]k

= 1 −
[
1 − P

(
W1,1 ≤ t, W1,2 ≤ t, . . . ,W1,c ≤ t

)]k

= 1 − (1 − tc)k .

The unconditional CDF of T is obtained as

R(t) = E(R (t|K = k) |k=K) =

∞∑
k=1

ςk exp(1 − eς)Bk

k!
[
1 − exp(1 − eς)

] [
1 − (1 − tc)k

]
=

1 − exp
(
−eς

[
1 − e−ςtc

])
1 − exp (1 − eς)

. (2.2)

The absolutely continuous Bell-distribution is thus defined. The PDF corresponding to Eq (2.2) is
given by

r(t) =
ς c tc−1eς(1−tc) exp

(
−eς

[
1 − e−ςtc

])
1 − exp (1 − eς)

, t ∈ [0, 1]. (2.3)

It is understood that r(t) = 0 for t < [0, 1].
Now, let us present in brief the basics of the T-X family. Let r(t) be a PDF with support (a, b) for

a < b (possibly infinite). Let us consider a function Ω(t), t ∈ [0, 1], with values into an interval [a, b],
such that Ω(t) is differential and non-decreasing by monotonically, and that Ω(0) and Ω(1) tends to a
and b, respectively. Then the T-X family, as described by [4], is defined with the following CDF:

F (x) =

∫ Ω[G(x)]

a
r(t) dt, x ∈ R, (2.4)

where G(x) represents the baseline CDF of an absolutely continuous distribution. By simply taking
Ω(t) = t and r(t) as in Eq (2.3) with ς = 1 to avoid the hyper parameterization problem (and a = 0),
the CDF of the T-X family becomes

F(x) =
1 − exp

(
−e

[
1 − e−G(x)c

])
1 − exp (1 − e)

, x ∈ R. (2.5)

The considered Bell-X family is thus defined by this CDF, which can be viewed as a sub-family of the
one in [17] because of ς = 1. It is of interest for the reasons listed below:

• It has an original functional structure.
• Thanks to the addition of only one shape parameter, i.e. c (combined with the originality of

the functional structure), the Bell-X family is capable of making the baseline distribution more
flexible by changing its functional form.
• All significant HRF shapes can be supported by the special sub-distributions of the Bell-X

family, including the bathtub, constant, upside-down bathtub, increasing,
decreasing-increasing-decreasing, and decreasing shapes. As a result, many applied fields can
use its unique family to model various kinds of real-world data.

AIMS Mathematics Volume 8, Issue 3, 6970–7004.



6974

• Last but not least, compared to its direct model competitors, and the baseline model in particular,
the unique sub-models derived from the Bell-X family may offer better fits.

To support these statements, we again refer to [17]. In complement to the CDF, the PDF
corresponding to Eq (2.5) is given by

f (x) =
c g(x) G(x)c−1 e1−G(x)c

exp
(
−e

[
1 − e−G(x)c

])
1 − exp (1 − e)

, (2.6)

where g(x) represents the baseline PDF.
Among the other functions of interest, let us mention the survival and hazard rate functions.

2.2. Survival and hazard rate functions

We recall that the survival function (SF) provides the probability that a particular object of interest
(patient or device) will survive past a certain time. It is sometimes called the reliability function (in
engineering) or simply the survivor function (in human mortality). On his side, the HRF (or failure rate
function) refers to the likelihood that a system will fail, assuming that failure has not already occurred
at a certain time.

In the Bell-X family setting, the SF and HRF are given by

S (x) =
exp

(
−e

[
1 − e−G(x)c

])
− exp (1 − e)

1 − exp (1 − e)
(2.7)

and

h(x) =
c g(x) G(x)c−1e1−G(x)c

exp
(
−e

[
1 − e−G(x)c

])
exp

(
−e

[
1 − e−G(x)c])

− exp (1 − e)
, (2.8)

respectively. These functions will play a central role in various practical aspects, among others.

2.3. Quantile function

The QF of the Bell-X family, say Q(p), is given by

Q(p) = G−1

(1 − log
{
log

(
1 − p

[
1 − exp

(
1 − e

)])
+ e

})1/c , p ∈ [0, 1], (2.9)

where G−1(x) is the inverse function of G(x), that is, the QF of the baseline distribution. The median
of the Bell-X family can be obtained by setting p = 0.5 in Eq (2.9). In addition, the L-moments of the
Bell-X family can be expressed by using it. For instance, the first four L-moments are as follows:

L1 =

1∫
0

Q(p) dp, L2 =

1∫
0

Q(p) (2p − 1) dp, L3 =

1∫
0

Q(p)
(
6p2 − 6p + 1

)
dp

and

L4 =

1∫
0

Q(p)
(
20p3 − 30p2 + 12p − 1

)
dp.
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2.4. Useful expansion

Here we derive a linear functional representation of the Bell-X family, which is useful for acquiring
several important properties. In some sense, we revisit a result established in [17].

Proposition 2.1. A linear functional representation of the PDF and CDF are given by

f (x) =

∞∑
p=0

∇pwc(p+1) (x) (2.10)

and

F(x) =

∞∑
p=0

∇pWc(p+1) (x) , (2.11)

respectively, where

∇p =
e

(p + 1)!
[
1 − exp (1 − e)

] ∞∑
u=0

∞∑
v=0

(−1)v+u+p

v!

(
v
u

)
(1 + u)p ev, (2.12)

Wc(p+1) (x) = G(x)c(p+1) and wc(p+1) (x) = c (p + 1) g (x) G(x)c(p+1)−1 are the CDF and PDF, respectively,
of the exp-G family with power parameter c(p + 1).

Proof. As the main general formulas, there are the binomial expansion and the power series for the
exponential functions, given as

(1 − ρ)z =

∞∑
u=0

(−1)u
(
z
u

)
ρu, (2.13)

where
(

z
u

)
represents the generalized binomial coefficient (the formula remaining valid for ρ such that

|ρ| < 1 only) and

exp (−m xn) =

∞∑
v=0

(−1)v mv xvn

v!
, (2.14)

for any real numbers m, n and x, respectively.
By using Eq (2.14) to the last term of Eq (2.6), we obtain

exp
(
−e

[
1 − e−G(x)c])

=

∞∑
v=0

(−1)v

v!

(
e
[
1 − e−G(x)c])v

. (2.15)

We can bound the final power term by using Eq (2.13), which gives

(
e
[
1 − e−G(x)c])v

= ev
∞∑

u=0

(−1)u
(
v
u

)
e−uG(x)c

. (2.16)

After simplification, Eq (2.6) reduces as follows:

f (x) =
ev+1c g(x) G(x)c−1

1 − exp (1 − e)

∞∑
u=0

∞∑
v=0

(−1)v+u

v!

(
v
u

)
e−(1+u)G(x)c

. (2.17)
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Again using Eq (2.14) to the last term to Eq (2.17), we get

e−(1+u)G(x)c
=

∞∑
p=0

(−1)p (1 + u)p

p!
G(x)cp, (2.18)

and Eq (2.6) becomes

f (x) =
ev+1

(p + 1)
[
1 − exp (1 − e)

] ∞∑
p=0

∞∑
u=0

∞∑
v=0

(−1)v+u+p

v!p!

(
v
u

)
(1 + u)p

× c (p + 1) g(x) G(x)c(p+1)−1.

The desired expansion is obtained for f (x). The expansion for F(x) is obtained upon integration. This
ends the proof of Proposition 2.1. �

As a remark, the constant term in Eq (2.12) satisfies
∑∞

p=0 ∇p = 1. Thanks to Proposition 2.1, it can
be noted that all quantities of the following integral form:

∫ ∞
−∞

u(x) f (x)dx has a linear representation
with simple coefficients.

Corollary 2.1. Let δ > 0. Then the following expansion holds:

f (x)δ =

∞∑
u=0

wug(x)δ G(x)cu+δ(c−1),

where

wu =
cδeδ

u!
[
1 − exp(1 − e)

]δ ∞∑
%=0

∞∑
ω=0

1
%!

(−1)%+ω+u

(
%

ω

)
(δe)% (ω + δ)u. (2.19)

Corollary 2.1 will be useful to give mathematical expansion of complex measures, such as entropy
measures, which are the subject of the next part.

2.5. Entropy measures

The goal of the entropy measure is to highlight a random variable’s uncertainty variation. For a
complete overview, we may refer to [26]. Here, we determine the expansions of four well-established
entropy measures for the Bell-X family, namely the Rényi entropy, the Havrda and Charvat entropy,
the Arimoto entropy, and the Tsallis entropy.

Rényi entropy: The Rényi entropy of an absolutely continuous distribution having a PDF f (x) can
be expressed as follows:

Rδ(x) = δ∗ log
[∫ ∞

−∞

f (x)δdx
]
, (2.20)

where δ∗ = (1 − δ)−1, δ > 0 and δ , 1. Hereafter, such assumptions on δ will be supposed. In the
context of the Bell-X family, by using Corollary 2.1, we can expand it as follows:

Rδ(x) = δ∗ log

 ∞∑
u=0

wu

∫ ∞

−∞

g(x)δ G(x)cu+δ(c−1)dx

 , (2.21)
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where wu is defined in Eq (2.19). For a given absolutely continuous baseline distribution, the
remaining integral term is calculable or can be found in many references dealing with the exp-G
family.

Havrda and Charvat entropy: The Havrda and Charvat entropy of an absolutely continuous
distribution having a PDF f (x) can be expressed as follows:

HCδ(x) =
1

21−δ − 1

[∫ ∞

−∞

f (x)δdx − 1
]
. (2.22)

In the context of the Bell-X family, by using Corollary 2.1, in a similar way to the Rényi entropy,
we can express it as

HCδ(x) =
1

21−δ − 1

 ∞∑
u=0

wu

∫ ∞

−∞

g(x)δ G(x)cu+δ(c−1)dx − 1

 .
Arimoto entropy: The Arimoto entropy of an absolutely continuous distribution having a PDF f (x)

can be expressed as

Aδ(x) =
δ

1 − δ

(∫ ∞

−∞

f (x)δdx
)1/δ

− 1
 . (2.23)

In the context of the Bell-X family, by using Corollary 2.1, in a similar way to the Rényi entropy,
we can express it as

Aδ(x) =
δ

1 − δ


 ∞∑

u=0

wu

∫ ∞

−∞

g(x)δ G(x)cu+δ(c−1)dx

1/δ

− 1

 .
Tsallis entropy: The Tsallis entropy of an absolutely continuous distribution having a PDF f (x) can

be expressed as

Tδ(x) = −δ∗
[
1 −

∫ ∞

−∞

f (x)δdx
]
. (2.24)

In the context of the Bell-X family, by using Corollary 2.1, in a similar way to the Rényi entropy,
we can express it as

Tδ(x) = −δ∗
1 −  ∞∑

u=0

wu

∫ ∞

−∞

g(x)δ G(x)cu+δ(c−1)dx

 .
The expansions above provide the mathematical basis for more of the computation of the considered
entropy measures. In particular, by taking the Rényi entropy as an example, the following
approximation is conceptually valid:

R̃Π,δ(x) = δ∗ log

 Π∑
u=0

wu

∫ ∞

−∞

g(x)δ G(x)cu+δ(c−1)dx

 ≈ Rδ(x), (2.25)

where Π denotes a large enough integer. Similar approximations can be used for the other entropy
measures. An alternative evaluation apporach is the determination of bounds for such entropy
measures. See, for example, [27].

The next section focuses on a special Bell-X distribution of interest, extending the scope of the BXII
distribution, as sketched in the introductory section.
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3. The BBXII distribution

3.1. Definition

Here, we define the BBXII distribution, using the Bell-X family and the three-parameter BXII
distribution given by Zimmer et al. [12] as an absolutely continuous baseline distribution. First, we
recall that the CDF and PDF of the (three-parameter) BXII distribution are indicated as

G (x; a, b, k) = 1 −
[
1 +

( x
a

)b
]−k

, x > 0 (3.1)

and

g (x; a, b, k) = k b a−b xb−1
[
1 +

( x
a

)b
]−k−1

, x > 0, (3.2)

respectively, with parameters a, b and k > 0. The CDF and PDF of the corresponding Bell-X
distribution are obtained directly by setting Eqs (3.1) and (3.2) in Eqs (2.5) and (2.6), respectively.
Hence, they are indicated as

F(x ; a, b, k, c) =

1 − exp
(
−e

[
1 − e−

(
1−[1+(x/a)b]−k

)c])
1 − exp

(
1 − e

) (3.3)

and

f (x ; a, b, k, c) = c k b a−b xb−1
[
1 +

( x
a

)b
]−k−1 1 − (

1 +

( x
a

)b
)−kc−1

e1−
[
1−(1+(x/a)b)−k

]c

× exp
(
−e

{
1 − e−

(
1−[1+(x/a)b]−k

)c}) [
1 − exp (1 − e)

]−1 , (3.4)

respectively. The BBXII distribution is thus defined.
Graphical illustrations of the PDF are available in Figure 1. It is interesting to see all the possible

shapes (almost symmetrical, spikes, bumps, decreasing, etc.), so much more flexible than those of the
BXII distribution. This is a consequence of the original transform behind the Bell-X family and the
new tuning parameter c.

The SF and HRF of the BBXII distribution are given by

S (x ; a, b, k, c) =

exp
(
−e

[
1 − e−

(
1−[1+(x/a)b]−k

)c])
− exp (1 − e)

1 − exp (1 − e)
and

h(x ; a, b, k, c) = c k b a−b xb−1
[
1 +

( x
a

)b
]−k−1 1 − (

1 +

( x
a

)b
)−kc−1

× e1−
[
1−(1+(x/a)b)−k

]c

exp
{
−e

[
1 − e−

[
1−(1+(x/a)b)−k

]c]}
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×

{
exp

(
−e

[
1 − e−

(
1−[1+(x/a)b]−k

)c])
− exp (1 − e)

}−1

,

respectively.
Graphical illustrations of the HRF are given in Figure 2. We can distinguish unimodal, upside-down

bathtub-shaped, increasing and decreasing trends for the shapes, making the HRF extremely flexible
and useful for various statistical modeling based on lifetime data.

On the other hand, since the QF of the BXII distribution is given by

G−1 (p; a, b, k) = a
[
(1 − p)−1/k

− 1
]1/b

,

using Eq (2.9), the QF of the BBXII distribution is derived as

Q(p ; a, b, k, c) = a


1 −


(
1 − log

{
log

[
1 − p

(
1 − exp

(
1 − e

))]
+ e

})1/c
−1/k

− 1


1/b

,

p ∈ [0, 1]. (3.5)

By setting p = 0.5, in Eq (3.5), the median of the BBXII distribution follows.

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

a = 10  b = 5  k = 10.5  c = 0.8

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

f(
x)

a = 3.1  b = 20.2  k = 0.4  c = 0.08

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

x

f(
x)

a = 2.1  b = 20.2  k = 0.4  c = 0.08

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

a = 2.1  b = 20.2  k = 0.49  c = 0.02

0.0 0.5 1.0 1.5

0
1

2
3

4
5

x

f(
x)

a = 4  b = 0.5  k = 1.5  c = 1.2

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

f(
x)

a = 1.5  b = 0.5  k = 2.2  c = 10.7

Figure 1. Graphical illustrations of the PDF of the BBXII distribution at some parametric
values.
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Figure 2. Graphical illustrations of HRF of the BBXII distribution at some parametric values.

3.2. Properties

Various mathematical properties of the BBXII distribution are now being investigated. We first
derive a linear functional representation of the PDF, which will allow us to express various of its
mathematical features, such as moments and entropy measures.

Proposition 3.1. The PDF of the BBXII distribution can be expanded as

f (x ; a, b, k, c) =

∞∑
θ=0

∆θ g [x; a, b, k(θ + 1)] , (3.6)
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where

∆θ =

∞∑
p=0

∇p
c (p + 1)
θ + 1

(−1)θ
(
c(p + 1) − 1

θ

)
,

∇p being defined by Eq (2.12), and g [x; a, b, k(θ + 1)] is the PDF of the BXII distribution.

Proof. By using Eq (2.10), the PDF can be expressed as follows:

f (x ; a, b, k, c) =

∞∑
p=0

∇pc (p + 1) k b a−b xb−1
[
1 +

( x
a

)b
]−k−1 1 − [

1 +

( x
a

)b
]−kc(p+1)−1

. (3.7)

Then, by applying Eq (2.13) to the last power term, we obtain1 − [
1 +

( x
a

)b
]−kc(p+1)−1

=

∞∑
θ=0

(−1)θ
(
c(p + 1) − 1

θ

) [
1 +

( x
a

)b
]−θk

. (3.8)

This yields the desired expansion, and ends the proof. �

From Proposition 3.1, we see that the PDF of the BBXII distribution can be expressed as an infinite
general linear mixture of PDFs of the BXII distribution. Therefore, a number of significant properties
of the BXII distribution can be transposed to derive those of the BBXII distribution. Some of them will
be presented later.

3.3. Ordinary moments

As a consequence of Proposition 3.1, the rth ordinary moment of a random variable X that follows
the BBXII distribution is given by

µ′r = E(Xr) = ark
∞∑
θ=0

∆θ(θ + 1) β
[(

k(θ + 1) −
r
b

)
,
( r
b

+ 1
)]
, (3.9)

for r < bk, where β(a, b) represents the standard beta function. Setting r = 1 in Eq (3.9) yields the
mean of X. As usual, the variance of X can be obtained as σ2 = µ′2 − (µ′1)2. By using Eq (3.9), the zth
central moment and cumulant of X can be obtained as

µz = E[(X − µ′1)z] =

z∑
m=0

(−1)m
(

z
m

)
(µ′1)zµ′z−m

and

kz = µ′z −

z−1∑
m=1

(
z − 1
m − 1

)
kmµ

′
z−m

with k1 = µ′1, respectively (see [28]). Based on it, the skewness and kurtosis coefficients of X are
defined by CS = µ3/σ

3 and CK = µ4/σ
4, respectively. The plot of the mean and variance of X, as well

as its skewness and kurtosis coefficients are presented in Figure 3 by taking a = 1, b = 1.5 and k = 2.5.
As the values of parameters c and b increase, the skewness and kurtosis tend to decrease. Following

the interaction between the parameters c and b, Figure 3 shows that when the values of c and b increase,
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the values of the mean and variance also tend to increase, but at a certain point the variance tends to
decrease.
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Figure 3. Graphical illustrations of the mean and variance, as well as the skewness and
kurtosis coefficients of the BBXII distribution.

Table 1 presents the main variability measures of the BBXII distribution at some parametric
values. The following six different and arbitrary combinations of parameters a, b, k, c are used, and
the well-known relationship between the ordinary and non-central moments is used to find the central
moments: ω1 = [1.5, 1.2, 10.2, 1.5], ω2 = [5.5, 1.2, 10.2, 4], ω3 = [0.5, 1.2, 10.2, 0.5],
ω4 = [2.5, 2.2, 10.2, 0.5], ω5 = [2.5, 2.2, 6, 10.5] and ω6 = [0.5, 3.2, 1.6, 4.5]. Based on Table 1, the
values of CS and CK indicate that the BBXII distribution is right-skewed and leptokurtic at various
combinations of parametric values.
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Table 1. Numerical values of some moment measures of the BBXII distribution.

Measures ω1 ω2 ω3 ω4 ω5 ω6

µ′1 0.1541 1.1453 0.0184 0.3108 1.7036 0.5616
µ′2 0.0448 1.7098 0.0015 0.1869 3.0505 0.3475
µ′3 0.0220 3.4383 0.0003 0.1645 5.7871 0.2497
µ′4 0.0166 9.5498 0.0001 0.1865 11.7558 0.2437
σ2 0.0210 0.3980 0.0012 0.0903 0.1484 0.0321
σ 0.1450 0.6309 0.0344 0.3005 0.3852 0.1791

CV 0.9409 0.5508 1.8700 0.9672 0.2261 0.3189
µ2 0.0210 0.3980 0.0012 0.0903 0.1484 0.0321
µ3 0.0086 0.5682 0.0002 0.0503 0.0848 0.0185
µ4 0.0077 2.0931 0.0001 0.0624 0.1719 0.0419
CS 2.8351 2.2625 4.4993 1.8528 1.4847 3.2246
CK 14.524 10.211 32.959 4.6441 4.8082 37.704

3.4. Incomplete moments

As a consequence of Proposition 3.1, the sth incomplete moment of a random variable X that follows
the BBXII distribution is given by

µs(x) = E(Xs1{X≤x}) = ask
∞∑
θ=0

∆θ(θ + 1) βz

[(
k(θ + 1) −

s
b

)
,
( s
b

+ 1
)]
, (3.10)

where z = ab/(ab + xb) and βz (m, n) =
∫ z

0
pm−1(1 − p)n−1dp is the incomplete beta function. The first

incomplete moment can be obtained by taking s = 1 in Eq (3.10), among other incomplete moments
of interest.

3.5. Entropy measures

We now aim to give the four expressions of the entropy measures, previously introduced in full
generality for the Bell-X family, for the BBXII distribution.

Rényi entropy: Based on Eq (2.20) and Proposition 3.1, the Rényi entropy of the BBXII distribution
can be expanded as follows:

Rδ(x) = δ∗ log

 ∞∑
u=0

∞∑
z=0

w∗u,z β
[
δ(b − 1) + 1

b
,

bk(δ + z) + δ − 1
b

] , (3.11)

where

w∗u,z =
(
kδbδa−bδ

) aδ(b−1)+1

b
wu(−1)z

(
cu + δ(c − 1)

z

)
,

and wu is given in Eq (2.19).

Havrda and Charvat entropy: Similarly, based on Eq (2.22) and Proposition 3.1, an expression of
the Havrda and Charvat entropy is

HCδ(x) =
1

21−δ − 1

 ∞∑
u=0

∞∑
z=0

w∗u,zβ
[
δ(b − 1) + 1

b
,

bk(δ + z) + δ − 1
b

]
− 1

 . (3.12)
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Arimoto: Similarly, based on Eq (2.22) and Proposition 3.1, an expression of the Arimoto entropy is

Aδ(x) =
δ

1 − δ


 ∞∑

u=0

∞∑
z=0

w∗u,zβ
[
δ(b − 1) + 1

b
,

bk(δ + z) + δ − 1
b

]
1/δ

− 1

 . (3.13)

Tsallis: Similarly, based on Eq (2.22) and Proposition 3.1, an expression of the Tsallis entropy is

Tδ(x) = −δ∗

1 − ∞∑
u=0

∞∑
z=0

w∗u,zβ
[
δ(b − 1) + 1

b
,

bk(δ + z) + δ − 1
b

] . (3.14)

The plot of the Rényi entropy (denoted as RE), Havrda and Charvat (denoted as HC), Arimoto and
Tsallis are presented in Figure 4 by fixing the scale parameter as a = 1, and the following shape
parameters: for the Rényi entropy b = 1.5, k = 2.5, for the Havrda and Charvat entropy: b = 1.5, k =

2.5, for the Arimoto entropy: b = 1.5, k = 4.5 and for the Tsallis entropy: b = 1.5, k = 2.5.
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Figure 4. Graphical illustrations of entropy measures of the BBXII distribution.
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As a remark, the interaction of the parameters c and δ resulted in Figure 4 shows that, as c and δ
values increase, the value of RE tends to increase as well. In contrast, as c and δ values increase, the
values of Arimoto entropy decrease. Various non-monotonic shapes are also observed in all the plots,
illustrating the complexity of the uncertainty hidden behind the BBXII distribution.

4. Estimation

An essential component of modeling is parameter estimation. By maximizing or minimizing an
objective function, system identification, inverse modeling, or parameter estimation are used to solve
optimization problems and arrive at the optimal model parameters within the permissible range. Thus,
by using data assimilation, parameter estimation refers to finding the optimal values for specific
parameters in a numerical model. An accurate estimation of the system’s parameters is necessary for
a mathematical model to be able to anticipate a system’s behavior in various scenarios. There are
several approaches for estimating unknown parameters that have been described in the literature.
Here, we apply seven well-known estimation techniques to estimate the a priori unknown parameters
a, b, k and c of the BBXII model.

Hereafter, we consider x1, x2, . . . , xn as the observations a random sample of size n from the BBXII
distribution with parameters a, b, k and c. We will denote byΩ = [a, b, k, c]T the vector of parameters,
and, for the sake of simplicity, the functions of the BBXII distribution will be sometimes written under
the following forma: F (x;Ω) instead of F (x; a, b, k, c).

4.1. Method of MLE

The log-likelihood function of Ω is given by

l (Ω) =

n∑
i=1

log[ f (xi;Ω)] = n log(k c b) − nb log (a)

+ (b − 1)
n∑

i=1

log (xi) − (k + 1)
n∑

i=1

log
[
1 +

( xi

a

)b
]

+ (c − 1)
n∑

i=1

log
1 − [

1 +

( xi

a

)b
]−k +

n∑
i=1

1 − 1 − [
1 +

( xi

a

)b
]−kc

−

n∑
i=1

e

1 − e
−

[
1−

[
1+( xi

a )b
]−k

]c − n log
[
1 − exp(1 − e)

]
. (4.1)

The MLE estimates are given as the vector Ω̂ =
[
â, b̂, k̂, ĉ

]T
maximizing this log-likelihood function

with respect to Ω. This maximization procedure can be done by finding the vector of parameters such
that ∂l (Ω)/∂a = 0, ∂l (Ω)/∂b = 0, ∂l (Ω)/∂k = 0 and ∂l (Ω)/∂c = 0. Thus, we obtain a system of
equations with no explicit solution. Consequently, it needs to use nonlinear numerical computational
methods (quasi Newton-Raphson) to obtain (approximate values of) the MLE estimates.
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4.2. Method of PE

The idea of the PE technique is to simultaneously solve the equations that follow from equating
two values of the CDFs with their respective percentiles. Then we consider the CDF of the BBXII
distribution given in Eq (3.3) and its QF is given in Eq (3.5). The PE method as described by [25] is
based on the fact that pi = i/(n+1) must be an unbiased estimate of F (xi:n;Ω) ,where x1:n, x2:n, . . . , xn:n

represent the ordered values of x1, . . . , xn. That is, let us consider the following function:

P (Ω) =

n∑
i=1

[
xi:n − Q(pi;Ω)

]2 . (4.2)

The PE estimates are given as the vector of parameter values minimizing this function with respect to
Ω. This minimization procedure can be done by finding the vector of parameters such that ∂P (Ω)/∂a =

0, ∂P (Ω)/∂b = 0, ∂P (Ω)/∂k = 0 and ∂P (Ω)/∂c = 0. These partial derivatives are complicated in
the analytical sense, and they can be found in Appendix to illustrate this remark. Thus, as for the
MLE estimates, we obtain a system of equations with no explicit solution, so it needs to use nonlinear
numerical computational methods (quasi Newton-Raphson) to obtain the PE estimates.

4.3. Method of LSE and WLSE

Swain et al. [29] suggest the LSE and WLSE methods, initially utilized to estimate the parameters
of the beta distribution. In the BBXII distribution setting, let us consider the two following functions:

S (Ω) =

n∑
i=1

[
F(xi:n;Ω) −

i
n + 1

]2

(4.3)

and

Z(Ω) =

n∑
i=1

wi

[
F(xi:n;Ω) −

i
n + 1

]2

, (4.4)

where wi = (n + 1)2(n + 2)/[i(n − i + 1)]. The LSE estimates are given as the vector of parameter
values minimizing the function S (Ω) with respect to Ω, and the WLSE estimates are given as the
vector of parameter values minimizing the function Z(Ω) with respect to Ω. Again, we can proceed
with the partial derivatives of these functions, but in the end, the computer power is necessary to
determine the estimates.

4.4. Method of CME

The CME method is a well-known parameter estimation technique that was first developed by [30].
In the setting of the BBXII distribution, let us consider the following function:

C(Ω) =
1

12n
+

n∑
i=1

[
F(xi:n;Ω) −

2i − 1
2n

]2

. (4.5)

The CME estimates are given as the vector of parameter values minimizing the function C(Ω) with
respect to Ω. Again, we can move forward with the partial derivatives of this function, but in the end,
the estimations must be computed.
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4.5. Method of ADE and RTADE

The ADE method was first presented by [31], along with a variant, the RTADE method. In the
BBXII distribution setting, let us consider the two following functions:

A(Ω) = −n −
1
n

n∑
i=1

(2i − 1)
{
log F(xi:n;Ω) + log[S (xn+1−i:n;Ω)]

}
(4.6)

and

R(Ω) =
n
2
− 2

n∑
i=1

F(xi:n;Ω) −
1
n

n∑
i=1

(2i − 1) log[S (xn+1−i:n;Ω)]. (4.7)

The ADE estimates are given as the vector of parameter values minimizing the function A(Ω) with
respect to Ω, and the RTADE estimates are given as the vector of parameter values minimizing the
function R(Ω) with respect toΩ. Again, we can proceed with the partial derivatives of these functions,
but in the end, the computer power is necessary to determine the estimates.

5. Simulation analysis

This section includes a simulation analysis to illustrate the performance of the parameter estimates
of the BBXII model over a defined replication r = 1, 000. We make N = 1, 000 samples of varying
sizes (n = 20, 50, 100, 300) and combine the parameters a, b, k, c in various ways. For example,
we take set I and set II as follows: [a = 3.20, b = 1.02, k = 0.50, c = 2.15] and [a = 0.50, b =

1.30, k = 2.50, c = 1.15], respectively. Using the MLE, PCE, LSE, WLSE, CME, ADE, and RTADE
methods as described in the aforementioned section, the unknown parameters are estimated. The
simulation study’s findings demonstrated that, as sample size increases, mean square errors (MSEs)
and biases decrease. Therefore, the confidence intervals for the BBXII model can be constructed using
these estimates (asymptotically unbiased estimators). The results of the simulation analysis of average
estimates (AEs) and MSEs in parentheses, as well as estimate biases, are shown in Tables 2 and 3.
All estimation techniques are working effectively, but MLE seems to be stable. The R computation
programming language is used to perform all of the calculations for the various estimation methods.
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Table 2. Simulation result summary of the AEs and MSEs of various estimation methods.
MLE PCE LSE WLSE CME ADE RTADE

n = 20
â 3.158(0.076) 3.206(0.107) 2.796(0.496) 2.842(0.448) 2.890(0.358) 2.883(0.382) 2.852(0.449)
b̂ 1.027(0.042) 1.461(0.264) 1.029(0.052) 1.044(0.050) 1.099(0.061) 1.071(0.052) 1.089(0.061)
k̂ 0.518(0.002) 0.546(0.022) 0.459(0.007) 0.460(0.008) 0.458(0.007) 0.461(0.008) 0.456(0.007)
ĉ 1.979(0.030) 2.138(0.053) 2.089(0.020) 2.089(0.024) 2.110(0.013) 2.102(0.020) 2.107(0.015)

n = 50
â 3.212(0.022) 3.225(0.099) 2.901(0.278) 2.920(0.263) 2.928(0.250) 2.938(0.243) 2.929(0.258)
b̂ 1.006(0.018) 1.501(0.278) 1.054(0.029) 1.061(0.028) 1.086(0.033) 1.068(0.027) 1.087(0.035)
k̂ 0.510(0.004) 0.571(0.021) 0.456(0.005) 0.459(0.006) 0.454(0.005) 0.459(0.006) 0.455(0.006)
ĉ 1.980(0.027) 2.146(0.054) 2.092(0.015) 2.101(0.014) 2.107(0.010) 2.103(0.015) 2.106(0.013)

n = 100
â 3.233(0.007) 3.237(0.062) 2.931(0.205) 2.940(0.210) 2.944(0.192) 2.974(0.169) 2.960(0.177)
b̂ 1.003(0.009) 1.519(0.286) 1.063(0.019) 1.060(0.017) 1.080(0.021) 1.069(0.016) 1.093(0.024)
k̂ 0.508(0.002) 0.592(0.023) 0.455(0.005) 0.460(0.005) 0.454(0.004) 0.463(0.005) 0.456(0.005)
ĉ 1.981(0.029) 2.146(0.064) 2.090(0.014) 2.102(0.011) 2.096(0.012) 2.093(0.013) 2.093(0.013)

n = 300
â 3.244(0.005) 3.259(0.025) 2.974(0.141) 2.987(0.145) 2.98(0.140) 3.000(0.128) 2.991(0.127)
b̂ 1.002(0.004) 1.540(0.290) 1.065(0.009) 1.057(0.007) 1.070(0.009) 1.061(0.008) 1.077(0.011)
k̂ 0.507(0.001) 0.612(0.025) 0.457(0.004) 0.466(0.003) 0.458(0.003) 0.463(0.003) 0.458(0.004)
ĉ 2.012(0.023) 2.167(0.030) 2.080(0.014) 2.099(0.011) 2.086(0.013) 2.095(0.013) 2.089(0.013)

Table 3. Simulation result summary of the AEs and MSEs of various estimation methods.
MLE PCE LSE WLSE CME ADE RTADE

n = 20
â 0.465(0.015) 0.437(0.061) 0.511(0.031) 0.495(0.022) 0.479(0.014) 0.483(0.016) 0.478(0.016)
b̂ 1.256(0.080) 1.352(0.122) 1.084(0.120) 1.107(0.110) 1.124(0.097) 1.121(0.101) 1.142(0.090)
k̂ 2.493(0.025) 2.544(0.036) 2.343(0.094) 2.375(0.082) 2.385(0.070) 2.383(0.076) 2.399(0.062)
ĉ 0.912(0.188) 0.539(0.556) 0.974(0.162) 0.971(0.171) 0.953(0.149) 0.960(0.157) 0.922(0.163)

n = 50
â 0.450(0.008) 0.424(0.027) 0.472(0.008) 0.461(0.008) 0.462(0.006) 0.464(0.007) 0.463(0.006)
b̂ 1.223(0.071) 1.334(0.170) 1.111(0.095) 1.145(0.079) 1.115(0.091) 1.140(0.079) 1.173(0.068)
k̂ 2.488(0.022) 2.557(0.030) 2.374(0.065) 2.394(0.058) 2.392(0.060) 2.390(0.059) 2.407(0.052)
ĉ 0.908(0.145) 0.408(0.646) 0.948(0.127) 0.925(0.124) 0.953(0.121) 0.923(0.123) 0.875(0.135)

n = 100
â 0.477(0.006) 0.415(0.016) 0.459(0.005) 0.452(0.005) 0.459(0.005) 0.453(0.005) 0.451(0.005)
b̂ 1.276(0.059) 1.231(0.270) 1.130(0.081) 1.160(0.066) 1.139(0.077) 1.131(0.080) 1.184(0.058)
k̂ 2.499(0.018) 2.572(0.015) 2.389(0.051) 2.436(0.029) 2.403(0.046) 2.409(0.045) 2.405(0.045)
ĉ 0.938(0.117) 0.309(0.760) 0.930(0.121) 0.910(0.114) 0.919(0.115) 0.939(0.113) 0.865(0.131)

n = 300
â 0.490(0.005) 0.404(0.010) 0.450(0.004) 0.441(0.005) 0.450(0.004) 0.450(0.004) 0.449(0.004)
b̂ 1.284(0.046) 1.548(0.081) 1.132(0.077) 1.188(0.052) 1.131(0.075) 1.155(0.066) 1.201(0.048)
k̂ 2.488(0.014) 2.587(0.008) 2.409(0.041) 2.441(0.027) 2.414(0.038) 2.416(0.037) 2.415(0.035)
ĉ 0.987(0.090) 0.727(0.604) 0.937(0.111) 0.890(0.111) 0.936(0.108) 0.911(0.111) 0.847(0.128)
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6. Applications

Here, we demonstrate the significance of the BBXII model by using two actual datasets. The
BBXII model is contrasted with several well-known models, including the EPBXII [7], KBXII [8],
MBXII [9], TLBXII [10], B-BXII [11], and BXII [12] models. Let us now present our first dataset
under consideration. Based on 73 patients’ acute bone cancer survival rates, expressed in days, the
data are as follows: 0.090, 0.760, 1.810, 1.100, 3.720, 0.720, 2.490, 1.000, 0.530,0.660, 31.610,
0.600, 0.200, 1.610, 1.880, 0.700, 1.360, 0.430, 3.160, 1.570, 4.930, 11.070, 1.630, 1.390, 4.540,
3.120,86.010, 1.920, 0.920, 4.040, 1.160, 2.260, 0.200, 0.940, 1.820, 3.990, 1.460, 2.750, 1.380,
2.760, 1.860, 2.680, 1.760, 0.670, 1.290, 1.560, 2.830, 0.710, 1.480, 2.410, 0.660, 0.650, 2.360,
1.290, 13.750, 0.670, 3.700, 0.760, 3.630, 0.680,2.650, 0.950, 2.300, 2.570, 0.610, 3.930, 1.560,
1.290, 9.940, 1.670, 1.420, 4.180 and 1.370. This dataset is named Data-1. Patient survival times
range from 0.090 days (minimum) to 86.01 days (maximum), respectively, while it takes 3.755 days
on average to survive. The data are represented by an histogram and a boxplot in Figure 5.

It is clear from Figure 5 that the data are right-skewed with several extreme values, so far beyond a
normal distribution representation. Recently, Mansour et al. [32] suggested the novel Burr XII
distribution and fitted it to these data. He found the AD test of 0.66184 and the CM test of 0.1046 as
accuracy measures for model selection. When the same dataset is used and our proposed model is
fitted to it, the results reveal superior fitting because both measures are at their lowest values, with the
AD test of 0.31107 and the CM test of 0.0422. The second dataset considered may be described as
follows: A complete sample from a clinical study is provided in the second dataset, and 50 individuals
with arthritis are chosen to report their relief time (in hours). Joint stiffness and pain are the main
signs and symptoms of arthritis, and these symptoms usually get worse as people age. The two most
prevalent kinds of arthritis are rheumatoid arthritis and osteoarthritis. Osteoarthritis results in the
deterioration of cartilage, the tough, slippery tissue covering the ends of bones where they meet to
create a joint. The following data are extracted from [33]: 0.700, 0.840, 0.580, 0.500, 0.550, 0.820,
0.590, 0.710, 0.720, 0.610, 0.570, 0.440, 0.440,0.620, 0.490, 0.540, 0.360, 0.360, 0.710, 0.350, 0.640,
0.840, 0.550, 0.730, 0.800, 0.870, 0.590, 0.290 ,0.750, 0.460, 0.460, 0.600, 0.600, 0.360, 0.520,
0.680, 0.750, 0.500, 0.610, 0.560, 0.490, 0.700, 0.340, 0.340, 0.840, 0.550, 0.800, 0.810, 0.290 and
0.710. This dataset is named Data-2. The mean relief time is 0.5906 hours. The data are represented
by an histogram and a boxplot in Figure 6.

From Figure 6, we observe that the data are almost symmetrical and unimodal. The estimated
parameters together with the AD, CM, and p-value (PV) for the Kolmogorov-Smirnov (KS) test are
shown in Table 4. Seven different estimation techniques were used, and the analysis showed that MLE
performed better, having the lowest results for the AD, CM, and KS tests and the highest PV.

Tables 5 and 6 show the fitted models with estimated parameters via the MLE method, standard
errors (SEs), and goodness of fit tests for both datasets. The general findings of the analysis revealed
that the proposed BBXII model outperforms the competitive models for both datasets, due to least
goodness of fit measures, AD [0.3107; 0.3432], CM [0.0422; 0.0445] and KS [0.0683; 0.0772] and
higher PV [0.8849; 0.9267], respectively. As for the simulation part, the R programming language is
used for all computational work.

Graphical illustrations of fitted Data-1 and Data-2 under the BBXII model can be found in Figures 7
and 8, respectively. We observe that all the data objects are well fitted by the estimated model. This
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visually confirms the numerical interpretation of the previous tables. We complete this graphical work
by showing the probability-probability (P-P) plots of the considered estimation methods based on Data-
1 and Data-2 in Figures 9 and 10, respectively.
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Figure 5. Plots of (a) the histogram and (b) the boxplot of Data-1.
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Figure 6. Plots of (a) the histogram and (b) the boxplot of Data-2.
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Table 4. Result summary of the various estimation methods.

Data-1
Method â b̂ k̂ ĉ −2 ˆ̀ KS PV

MLE 2.5035 3.6552 0.2245 0.4804 138.1650 0.0683 0.8849
PCE 2.0454 4.0976 0.1362 0.4534 138.9397 0.0854 0.6620
LSE 3.3182 0.7624 2.8585 4.7395 140.4668 0.0719 0.8450

WLSE 3.3856 0.9052 2.4535 3.3356 140.3859 0.0708 0.8577
CME 1.7302 0.9049 1.8272 4.2053 140.4170 0.0740 0.8184
ADE 1.8236 0.9569 1.6388 3.4315 139.8749 0.0778 0.7694

RTADE 2.0716 2.3838 0.4449 0.8747 138.4828 0.0747 0.8105

Data-2
MLE 0.9616 23.1756 11.5502 0.1774 22.7833 0.0772 0.9267
PCE 0.9720 9.5006 3.2861 0.4314 21.0036 0.0773 0.9260
LSE 0.8233 7.5933 0.8197 0.5461 18.6692 0.0885 0.8282

WLSE 1.0367 4.5754 3.8267 1.0547 19.3969 0.0830 0.8816
CME 1.0159 5.2182 3.2196 0.8550 19.4207 0.0798 0.9075
ADE 1.0007 7.6908 3.6513 0.5395 20.5754 0.0812 0.8965

RTADE 0.9401 8.0645 2.6614 0.5544 20.6363 0.0853 0.8597

Table 5. The detailed statistical summary of the fitted models of Data-1.

Model Estimates with SEs AD CM KS PV

BBXII MLE 2.5035 3.6552 0.2245 0.4804 – 0.3107 0.0422 0.0683 0.8849
SE 0.7714 2.3145 0.2354 0.3742 –

EPBXII MLE 1.9392 4.0796 0.2568 0.4118 – 0.3253 0.0436 0.0708 0.8578
SE 0.5169 2.1910 0.2143 0.2829 –

KBXII MLE 1.6629 2.6563 0.0086 0.7348 30.4729 0.3607 0.0478 0.0713 0.8521
SE 0.6503 0.6046 0.0076 0.2249 13.8601

MBXII MLE 3.7224 2.1189 0.3573 0.0559 – 0.3489 0.0473 0.0695 0.8737
SE 2.7944 0.2649 0.3240 0.1116 –

TLBXII MLE 1.6525 4.2474 0.1380 0.3796 – 0.3404 0.0453 0.0727 0.8346
SE 0.4565 2.3838 0.1146 0.2808 –

B-BXII MLE 1.6661 4.0125 0.0992 0.4047 2.6861 0.3354 0.0447 0.0722 0.8408
SE 0.4492 2.1233 0.4321 0.2848 10.857

BXII MLE 1.2024 2.2157 0.6612 – – 0.4566 0.0611 0.0718 0.8456
SE 0.2877 0.3837 0.2174 – –
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Table 6. The detailed statistical summary of the fitted models of Data-2.

Model Estimates with SEs AD CM KS PV

BBXII MLE 0.9616 23.1756 11.5502 0.1774 – 0.3432 0.0445 0.0772 0.9267
SE 0.0280 0.0955 0.4674 0.0196 –

EPBXII MLE 0.9435 24.0679 15.5320 0.1320 – 0.5238 0.0793 0.1224 0.4426
SE 0.0187 0.0682 0.3918 0.0171 –

KBXII MLE 2.1205 13.3822 5.3173 0.3157 85.075 0.3901 0.0477 0.0827 0.8834
SE 0.1819 0.1424 0.5857 0.0332 45.650

MBXII MLE 1.5510 4.4574 43.574 0.8254 – 0.3922 0.0466 0.0881 0.8327
SE 0.9578 0.9930 113.62 0.8336 –

TLBXII MLE 1.2645 6.0841 15.988 0.5810 – 0.4310 0.0584 0.0899 0.8143
SE 0.7162 4.1118 44.349 0.5668 –

B-BXII MLE 1.6996 5.8230 11.789 0.6220 11.9329 0.4209 0.0561 0.0862 0.8511
SE 2.2049 4.3171 76.911 0.6637 80.5337

BXII MLE 1.5490 4.2880 41.877 – – 0.3944 0.0477 0.0851 0.8616
SE 0.9584 0.4966 104.20 – –
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Figure 7. Graphical illustrations of fitted Data-1 under the BBXII model.
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Figure 8. Graphical illustrations of fitted Data-2 under the BBXII model.
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Figure 9. P-P plots of the BBXII model under various estimation methods for Data-1.
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Figure 10. P-P plots of the BBXII model under various estimation methods for Data-2.

7. GASP based on the BBXII distribution

7.1. Motivation

In today’s fiercely competitive global market, product quality is a key consideration for both
manufacturers and customers. However, due to time and cost limitations, a complete inspection is
often not considered. Consequently, a product’s quality is ensured using the acceptance sampling
technique and statistical process control. A statistical quality control or reliability test that evaluates
whether it should accept or reject a given lot is called an acceptance sampling plan (ASP).

For a shortened life test, it is hard to choose an appropriate sample size from a large number of
items/products being investigated. To do this, the smallest testing sample can be determined using
ASP. These plans are crucial instruments to assess a product’s reliability. Unlike a GASP, which
inspects numerous items based on the number of testers accessible to the experimenter for testing, the
ordinary ASP only inspects one item at a time. This demonstrates that GASP is superior to the
traditional or ordinary sampling strategy since testing time and cost can be greatly reduced. Variable
plans, characteristics plans, expedited plans, gradually progressive plans, and group plans are all
examples of ASP [35–40]. However, the fundamental objective of these methods is to safeguard both
the producer and the consumer while deciding lot sentencing (acceptance or rejection of a lot) using a
small sample size. The creation of ASP is a topic that is commonly discussed regarding quality
assurance and reliability for lot acceptance criteria.
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7.2. Method

This part of the paper focuses on an optimization strategy for constrained situations. By utilizing
numerous things on a single tester, the experimenter can cut down on both the expense and the length
of the test time or experiment. Because samples are split up among various groups, GASP delivers a
stricter product inspection than ordinary ASP. We adopt the median as a quality index since the QF
function for the suggested BBXII model is close to being ideal. To ensure that the median life of the
items in a lot, say m, is longer than the required life, let’s say m0, we are interested in constructing a
sampling strategy. If there is strong evidence that m > m0 at specific levels of producer and consumer
risks, we will accept the lot. The lot’s acceptance probability is given by

pa(p) =

 c∑
i=0

(
r
i

)
pi (1 − p)r−i

g

, (7.1)

where p is the probability that a group item will expire prior to t0 and m is derived by substituting Eq
(3.5) in Eq (3.3), that is,

m = a
[(

1 −
{
1 − log

(
log

[
1 −

(
1 − e1−e

)
p
]

+ e
)}1/c

)−1/k
− 1

]1/b

. (7.2)

Now, considering

η =

[(
1 −

{
1 − log

(
log

[
1 −

(
1 − e1−e

)
p
]

+ e
)}1/c

)−1/k
− 1

]1/b

, (7.3)

and setting a = m/η and t = a1 m0 in Eq (3.3). The likelihood of failure is given by

F(t) =

1 − exp
{
−e

[
1 − e

−

(
1−

[
1+( a1η

r2
)b

]−k
)c]}

1 − exp
(
1 − e

) , (7.4)

where a1 and r2 are predetermined, with r2 = m/m0. Hence, the likelihood of failure can be calculated
for chosen b, k and c. Here, we evaluate the two failing probabilities associated with the consumer
risk and the producer risk, denoted as p1 and p2, respectively, based on the BBXII model. We aim
to evaluate the design parameters that simultaneously satisfy the following two equations, for a given
specific value of the constraints b, k, c, a1, r2, β and γ:

p
a
(
p1 |

m
m0

=r1

) =

 c∑
i=0

(
r
i

)
pi

1 (1 − p1)r−i

g

≤ β (7.5)

and

p
a
(
p2 |

m
m0

=r2

) =

 c∑
i=0

(
r
i

)
pi

2 (1 − p2)r−i

g

≥ 1 − γ, (7.6)

where the average ratio of producer risk to consumer risk is represented by the numbers r1 and r2.
Based on Eqs (7.5) and (7.6), the likelihood of failure under the BBXII model is given by

p1 =

1 − exp
{
−e

[
1 − e

−

(
1−[1+(a1η)b]−k

)c]}
1 − exp

(
1 − e

) (7.7)
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and

p2 =

1 − exp
{
−e

[
1 − e

−

(
1−[1+(a1η/r2)b]−k

)c]}
1 − exp

(
1 − e

) . (7.8)

Table 7 shows the design parameters at arbitrary values under the BBXII model.

Table 7. GASP of the BBXII model for the arbitrary values chosen as a = 1.0, b = 1.5, c = 1
and k = 1.5, minimizing design parameters.

r = 5 r = 10
a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c p(a) g c p(a) g c p(a) g c p(a)
0.25 2 94 3 0.957 44 4 0.961 19 4 0.9688 – – –

4 14 2 0.993 3 2 0.9743 3 2 0.9845 1 3 0.987
6 4 1 0.9837 1 1 0.9712 2 1 0.9658 1 2 0.9837
8 4 1 0.9929 1 1 0.987 2 1 0.9848 1 2 0.9948

0.1 2 – – – – – – 125 5 0.9814 – – –
4 22 2 0.9891 4 2 0.9658 4 2 0.9794 2 3 0.9742
6 6 1 0.9756 4 2 0.9933 2 1 0.9658 1 2 0.9837
8 6 1 0.9894 2 1 0.9741 2 1 0.9848 1 2 0.9948

0.05 2 – – – – – – 163 5 0.9758 – – –
4 29 2 0.9857 5 2 0.9575 5 2 0.9743 2 3 0.9742
6 7 1 0.9716 5 2 0.9916 5 2 0.9952 2 2 0.9677
8 7 1 0.9876 2 1 0.9741 3 1 0.9773 2 2 0.9896

0.01 2 – – – – – – 250 5 0.9631 – – –
4 45 2 0.9783 23 2 0.9893 8 2 0.9592 3 3 0.9616
6 11 1 0.9557 7 2 0.9883 8 2 0.9924 2 2 0.9677
8 11 1 0.9807 3 1 0.9614 4 1 0.9698 2 2 0.9896

*Note: Cells for a very large sample size are marked with hyphens (–).

7.3. Real data application

Here, we consider carbon fiber breaking strength data for GASP illustration, recently used by [34],
for designing GASP under the so-called MOKw-E model. The data are as follows: 1.1200, 0.1700,
0.6400, 4.3200, 1.2200, 0.3700, 1.1600, 1.4200, 0.0900, 1.6700, 0.1300, 0.2500, 0.0800, 0.0400,
2.3500, 0.2000, 0.7800, 0.3400, 1.0200, 0.1700, 1.7600, 2.3900, 0.5000, 1.3500, 3.3600, 0.4500,
0.9000, 2.9200, 6.5300, 1.6200, 7.4600, 3.1900, 2.4900, 1.4000, 7.4900, 0.5700, 0.1400, 0.6300,
5.2300, 0.7100, 0.6800, 0.1200, 0.0900, 3.4700, 5.9300, 1.8200, 4.2000, 7.2900, 3.1300 and 3.4100.
The related dataset is named Data-3. The parameters are estimated using different methods in Table 8.
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Table 8. Output summary of the various estimation methods.

Data-3

Method â b̂ k̂ ĉ −2 ˆ̀ KS PV

MLE 8.4960 5.7675 0.8072 0.1399 87.688 0.0567 0.9971

PCE 18.775 1.6411 5.0243 0.5536 88.034 0.0785 0.9179

LSE 9.6398 0.5969 2.6646 2.0711 90.639 0.0966 0.7397

WLSE 20.689 1.2128 3.9184 0.7051 88.791 0.0616 0.9914

CME 6.0295 0.9582 1.6804 1.1553 89.785 0.0779 0.9214

ADE 2.6899 0.5068 2.1355 3.4264 91.406 0.0981 0.7212

RTADE 7.6934 0.9783 2.2681 1.2291 89.634 0.0996 0.7037

Since the MLE method yields better PV and KS tests, we use it for our data application of the
considered GASP. The estimated parameters with SEs of the estimates under the BBXII model are
given by â = 8.4960(0.03512), b̂ = 5.7675(0.0251), k̂ = 0.8072(0.0554) and ĉ = 0.1399(0.0138).
According to the KS test, there is a maximum difference of 0.0567 with a PV of 0.9971 between the
original data and the data that is based on the BBXII distribution. Table 9 shows the design parameters
based on the BBXII model. Here, a1 = [0.5, 1] and r = [5, 10]. The true median life r2 ranges from
2, 4, 6, 8 with β = [0.25, 0.1, 0.05, 0.01]. When β = 0.25, r2 = 4, a1 = 0.5, the number of units
needed to put on a life test should be 160 (32 × 5 = 160), but when r is increased to 10 a considerable
reduction can be observed, only 60 total units are needed to put on a life test.

Here, 10 groups would be preferred in this situation. The general finding from Table 9 clearly shows
that when the r2 grows, the number of groups for the considered GASP decreases, and the operating
characteristic values increase. As it is obvious from Table 10, when β = 0.1, a1 = 1 and r = 10, the
design parameters decreased and operating curve values increased as r2 increased.

The study ends with a graphical analysis of Data-3 analyzed with the BBXII model, to complete
the related GASP. Figure 11 illustrates the nice fit of the BBXII model, whereas Figure 12 presents the
P-P plots of the considered estimation methods.
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Table 9. GASP of the BBXII model for â = 8.4960, b̂ = 5.7675, ĉ = 0.1399 and k̂= 0.8072,
minimizing design parameters with Data-3.

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c p(a) g c p(a) g c p(a) g c p(a)

0.25 2 – – – – – – – – – – – –
4 32 3 0.9663 44 4 0.9838 6 4 0.9743 3 5 0.9778
6 7 2 0.9547 7 3 0.983 3 3 0.9724 2 4 0.9782
8 7 2 0.9757 3 2 0.9534 3 3 0.9874 1 3 0.9731

0.1 2 – – – – – – – – – – – –
4 588 4 0.9828 73 4 0.9732 10 4 0.9575 5 5 0.9633
6 52 2 0.9834 12 3 0.971 5 3 0.9544 4 4 0.9675
8 11 2 0.9621 12 3 0.9872 5 3 0.9791 3 4 0.9871

0.05 2 – – – – – – – – – – – –
4 764 4 0.9777 95 4 0.9653 40 5 0.9805 – – –
6 68 3 0.9783 15 3 0.9639 13 4 0.9861 3 4 0.9569
8 14 2 0.9520 15 3 0.984 6 3 0.9750 4 4 0.9828

0.01 2 – – – – – – – – – – – –
4 – – – – – – 61 5 0.9704 – – –
6 104 3 0.9671 146 4 0.9876 20 4 0.9787 10 5 0.9843
8 104 3 0.9860 23 3 0.9756 9 3 0.9628 5 4 0.9785

*Note: Cells for a very large sample size are marked with hyphens (–).
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Figure 11. Graphical illustrations of fitted Data-3 under the BBXII model.
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Figure 12. P-P plots of the BBXII model under various estimation methods for Data-3.

Table 10. The proposed GASP for the carbon fiber breaking strength.

r2 2 4 6 8
n – 50 40 30
g – 5 4 3
c – 5 4 4

p(a) – 0.9633 0.9675 0.9871

8. Conclusions

We develop the Bell-X family, as a sub-family of the one introduced in [17]. A special distribution,
called the BBXII distribution, extending the functionalities of the famous BXII distribution, is
highlighted It is of particular interest because it can take on various shapes, such as unimodal,
upside-down bathtub-shaped, reversed upside-down bathtub-shaped, increasing, and declining trends.
Several important properties of the BBXII distribution are presented, such as useful functional
expansions, quantiles, moments, skewness, kurtosis, and various entropy measures, such as Rényi,
Havrda and Charvat, Arimoto, and Tsallis. Seven frequentist estimation methods with complete
mathematical illustrations are presented for parameter estimation. Additionally, a group acceptance
sampling plan is constructed based on the BBXII distribution, utilizing the median as a quality
criterion. On the applied side, the BBXII model is successfully used for the analysis of acute bone
cancer and arthritis relief time data. It outperforms some well-established and widely used extended
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BXII models, such as the EPBXII [7], KBXII [8], MBXII [9], TLBXII [10], B-BXII [11], and
BXII [12] models. When an item’s lifetime follows a BBXII distribution, a group acceptance
sampling strategy is also suggested for truncated life tests, which produces quite satisfying results. As
a final comment, since the BXII distribution is commonly employed in various applied fields,
including economics and finance, actuarial science, medicine, engineering, and quality control, the
same fate is expected for the proposed BBXII model.
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Appendix

Partial derivatives of the log-likelihood
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