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1. Introduction and main results

A well-known and active direction in the study of derivations is the local derivations problem, which
was initiated by Kadison [8] and Larson and Sourour [9]. Recall that a linear map ϕ of an algebra A
is called a local derivation if for each x ∈ A, there exists a derivation ϕx of A, depending on x, such
that ϕ(x) = ϕx(x). The question of determining under what conditions every local derivation must be
a derivation has been studied by many authors (see [4, 6, 7, 13, 15]). Recently, Brešar [2] proved that
each local derivation of algebras generated by all their idempotents is a derivation.

A linear map ϕ of an algebra A is called a Lie derivation if ϕ([x, y]) = [ϕ(x), y] + [x, ϕ(y)] for all
x, y ∈ A, where [x, y] = xy − yx is the usual Lie product, also called a commutator. A Lie derivation
ϕ of A is standard if it can be decomposed as ϕ = d + τ, where d is a derivation from A into itself and
τ is a linear map from A into its center vanishing on each commutator. The classical problem, which
has been studied for many years, is to find conditions on A under which each Lie derivation is standard
or standard-like. We say that a linear map ϕ from A into itself is a local Lie derivation if for each
x ∈ A, there exists a Lie derivation ϕx of A such that ϕ(x) = ϕx(x). In [3], Chen et al. studied local Lie
derivations of operator algebras on Banach spaces. We remark that the methods in [3] depend heavily
on rank one operators in B(X). Later, Liu and Zhang [10] proved that each local Lie derivation of factor
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von Neumann algebras is a Lie derivation. Liu and Zhang [11] investigated local Lie derivations of a
certain class of operator algebras. An et al. [1] proved that every local Lie derivation on von Neumann
algebras is a Lie derivation.

It is quite common to study local derivations in algebras that contain many idempotents, in the
sense that the linear span of all idempotents is ‘large’. The main novelty of this paper is that we shall
deal with the subalgebra generated by all idempotents instead of their span. LetM2 be the algebra of
2 × 2 matrices over L∞[0, 1]. By [6],M2 is generated by, but not spanned by, its idempotents. In what
follows, we denote by J(A) the subalgebra of A generated by all idempotents in A. The purpose of the
present paper is to study local Lie derivations of a certain class of generalized matrix algebras. Finally
we apply the main result to full matrix algebras and unital simple algebras with nontrivial idempotents.

Let A and B be two unital algebras with unit elements 1A and 1B, respectively. A Morita context
consists of A, B, two bimodules AMB and BNA, and two bimodule homomorphisms called the pairings
ΦMN : M ⊗B N → A and ΨNM : N ⊗A M → B satisfying the following commutative diagrams:

M ⊗B N ⊗A M
ΦMN⊗IM
−−−−−−→ A ⊗A M

IM⊗ΨNM

y �

y
M ⊗B B

�
−−−−−→ M

and
N ⊗A M ⊗B N

ΨNM⊗IN
−−−−−−→ B ⊗B N

IN⊗ΦMN

y �

y
N ⊗A A

�
−−−−−→ N

If (A, B,M,N,ΦMN ,ΨNM) is a Morita context, then the set

G =

(
A M
N B

)
=

{(
a m
n b

)
| a ∈ A,m ∈ M, n ∈ N, b ∈ B

}
forms an algebra under matrix-like addition and multiplication. Such an algebra is called a generalized
matrix algebras. We further assume that M is faithful as an (A, B)-bimodule. The most common
examples of generalized matrix algebras are full matrix algebras and triangular algebras.

Consider algebra G. Any element of the form(
a 0
0 b

)
∈ G

will be denoted by a ⊕ b. Let us define two natural projections πA : G → A and πB : G → B by

πA :
(

a m
n b

)
7→ a and πB :

(
a m
n b

)
7→ b.

The center of G is

Z(G) = {a ⊕ b | am = mb, na = bn for all m ∈ M, n ∈ N}.
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Furthermore, πA(Z(G)) ⊆ Z(A) and πB(Z(G)) ⊆ Z(B), and there exists a unique algebra isomorphism η

from πB(Z(G)) to πA(Z(G)) such that η(b)m = mb and nη(b) = bn for all m ∈ M, n ∈ N (see [14]). Set

e =

(
1A 0
0 0

)
, f =

(
0 0
0 1B

)
.

We immediately notice that e and f are orthogonal idempotents of G and so G may be represented as
G = (e + f )G(e + f ) = eGe + eG f + fGe + fG f . Then each element x = exe + ex f + f xe + f x f ∈ G can
be represented in the form x = eae+em f + f ne+ f b f = a+m+n+b, where a ∈ A, b ∈ B,m ∈ M, n ∈ N.

We close this section with a well known result concerning Lie derivations.

Proposition 1.1. (See [5],Theorem 1 ) Let G be a generalized matrix algebra. Suppose that
(1) Z(A) = πA(Z(G)) and Z(B) = πB(Z(G));
(2) either A or B does not contain nonzero central ideals.
Then every Lie derivation ϕ : G → G is standard, that is, ϕ is the sum of a derivation d and a linear
central-valued map τ vanishing on each commutator.

2. Main results

Our main result reads as follows.

Theorem 2.1. Let G be a generalized matrix algebra. Suppose that
(1) A = J(A) and B = J(B);
(2) Z(A) = πA(Z(G)) and Z(B) = πB(Z(G));
(3) either A or B does not contain nonzero central ideals.

Then every local Lie derivation ϕ from G into itself is a sum of a derivation δ and a linear central-
valued map h vanishing on each commutator.

To prove Theorem 2.1, we need some lemmas. In the following, ϕ is a local Lie derivation and,
for any x ∈ G, the symbol ϕx stands for a Lie derivation from G into itself such that ϕ(x) = ϕx(x).
It follows from A = J(A) that every a in A can be written as a linear combination of some elements
p1 p2 · · · pi (i = 1, 2, . . . , k), where p1, p2, . . . , pi are idempotents in A.

Lemma 2.2. Let p, q ∈ G be idempotents, then for every x ∈ G, there exist linear maps τ1, τ2, τ3, τ4 :
G → Z(G) vanishing on each commutator such that

ϕ(pxq) = ϕ(px)q + pϕ(xq) − pϕ(x)q + p⊥τ1(pxq)q⊥

− pτ2(p⊥xq)q⊥ + pτ3(p⊥xq⊥)q − p⊥τ4(pxq⊥)q,

where p⊥ = 1 − p and q⊥ = 1 − q.

Proof. Proposition 1.1 implies that for every idempotents p, q ∈ G and x ∈ G, there exist derivations
d1, d2, d3, d4 : G → G and linear maps τ1, τ2, τ3, τ4 : G → Z(G) vanishing on each commutator such
that

ϕ(pxq) = ϕpxq(pxq) = d1(pxq) + τ1(pxq), (2.1)

ϕ(p⊥xq) = ϕp⊥xq(p⊥xq) = d2(p⊥xq) + τ2(p⊥xq), (2.2)
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ϕ(p⊥xq⊥) = ϕp⊥xq⊥(p⊥xq⊥) = d3(p⊥xq⊥) + τ3(p⊥xq⊥), (2.3)

ϕ(pxq⊥) = ϕpxq⊥(pxq⊥) = d4(pxq⊥) + τ4(pxq⊥). (2.4)

It follows from (2.1)–(2.4) that

p⊥ϕ(pxq)q⊥ = p⊥τ1(pxq)q⊥, pϕ(p⊥xq)q⊥ = pτ2(p⊥xq)q⊥,

pϕ(p⊥xq⊥)q = pτ3(p⊥xq⊥)q, p⊥ϕ(pxq⊥)q = p⊥τ4(pxq⊥)q.

Hence

ϕ(pxq)q⊥ = pϕ(pxq)q⊥ + p⊥ϕ(pxq)q⊥

= pϕ(xq)q⊥ − pϕ(p⊥xq)q⊥ + p⊥ϕ(pxq)q⊥

= pϕ(xq)q⊥ + p⊥τ1(pxq)q⊥ − pτ2(p⊥xq)q⊥

= pϕ(xq) − pϕ(xq)q + p⊥τ1(pxq)q⊥ − pτ2(p⊥xq)q⊥,

ϕ(pxq⊥)q = pϕ(pxq⊥)q + p⊥ϕ(pxq⊥)q
= pϕ(xq⊥)q − pϕ(p⊥xq⊥)q + p⊥ϕ(pxq⊥)q
= pϕ(xq⊥)q − pτ3(p⊥xq⊥)q + p⊥τ4(pxq⊥)q.

Thus,

ϕ(pxq) = ϕ(pxq)q⊥ + ϕ(pxq)q
= ϕ(pxq)q⊥ + ϕ(px)q − ϕ(pxq⊥)q
= ϕ(px)q + pϕ(xq) − pϕ(x)q + p⊥τ1(pxq)q⊥

− pτ2(p⊥xq)q⊥ + pτ3(p⊥xq⊥)q − p⊥τ4(pxq⊥)q. �

It is easy to verify that for each derivation d : G → G, we have

d(e) = −d( f ) ∈ M ⊕ N, d(A) ⊆ A ⊕ M ⊕ N, d(M) ⊆ A ⊕ M ⊕ B. (2.5)

Lemma 2.3. eϕ(e)e + fϕ(e) f ∈ Z(G).

Proof. For any m ∈ M, there exists a Lie derivation ϕe of G such that

ϕe(m) = ϕe([e,m])
= [ϕ(e),m] + [e, ϕe(m)]
= ϕ(e)m − mϕ(e) + eϕe(m) f − fϕe(m)e.

Multiplying the above equality from the left by e and from the right by f , we arrive at

eϕ(e)m = mϕ(e) f .

Similarly, for any n ∈ N, we have from ϕe(n) = ϕe([n, e]) = [ϕe(n), e] + [n, ϕ(e)] that

fϕ(e)n = nϕ(e)e.

Hence
eϕ(e)e + fϕ(e) f ∈ Z(G).

�
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In the sequel, we define φ : G → G by φ(x) = ϕ(x) − [x, eϕ(e) f − fϕ(e)e]. One can verify that φ is
also a local Lie derivation. Moreover, by Lemma 2.3, we have φ(e) = eϕ(e)e + fϕ(e) f ∈ Z(G).

Lemma 2.4. φ(M) ⊆ M and φ(N) ⊆ N.

Proof. Let a ∈ A,m ∈ M and p1 be any idempotent in A. Taking p = p1, x = a and q = e + m in
Lemma 2.2, it follows from the facts p⊥xq⊥ and pxq⊥ can be written as commutators that τ3(p⊥xq⊥) =

τ4(pxq⊥) = 0, hence

φ(p1a + p1am) = φ(p1a)(e + m) + p1φ(a + am) − p1φ(a)(e + m)
+ (1 − p1)τ1(p1a + p1am)( f − m)
− p1τ2(a + am − p1a − p1am)( f − m)

= φ(p1a)e + φ(p1a)m + p1φ(a) f + p1φ(am)
− p1φ(a)m + τ1(p1a) f − τ1(p1a)m + p1τ1(p1a)m
+ p1τ2(a − p1a)m. (2.6)

Multiplying (2.6) from the right by e, we arrive at

φ(p1am)e = p1φ(am)e.

In particular,
φ(p1m)e = p1φ(m)e.

By the above two equations, then

φ(p1 p2 · · · pnm)e = p1φ(p2 · · · pnm)e
= p1 p2 · · · pn−1φ(pnm)e
= p1 p2 · · · pnφ(m)e

for any idempotents p1, . . . , pn ∈ A. It follows from A = J(A) that

φ(am)e = aφ(m)e (2.7)

for all a ∈ A,m ∈ M. This implies that fφ(M)e = 0.
The hypothesis (2), (3) and Proposition 1.1 imply that there exist a derivation d : G → G and a

linear map τ : G → Z(G) vanishing on each commutator such that

φ(e + m) = d(e + m) + τ(e + m)
= d(e + m) + τ(e). (2.8)

It follows from (2.5), (2.8) and the fact fφ(M)e = 0 that

0 = fφ(e + m)e = f d(e)e

and hence by (2.5) and (2.8) again,

eφ(e)e + eφ(m)e = ed(m)e + eτ(e)e = ed(m f )e + eτ(e)e
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= md( f )e + eτ(e)e = −md(e)e + eτ(e)e
= eτ(e)e

and

fφ(e) f + fφ(m) f = f d(m) f + f τ(e) f = f d(e)m + f τ(e) f

= f τ(e) f .

Then we have from the fact φ(e) = eφ(e)e + fφ(e) f ∈ Z(G) that

eφ(m)e + fφ(m) f = τ(e) − φ(e) ∈ Z(G). (2.9)

We assume without loss of generality that A does not contain nonzero central ideals. By (2.7) and (2.9)
that eφ(m)e in the central ideal of A. Thus eφ(M)e = 0. So, by (2.9), we get fφ(M) f = 0. Hence,
φ(M) ⊆ M.

With the same argument, we can obtain that φ(N) ⊆ N. �

Lemma 2.5. There exist a linear map h1 from A into Z(G) such that φ(a) − h1(a) ∈ A for all a ∈ A and
a linear map h2 from B into Z(G) such that φ(b) − h2(b) ∈ B for all b ∈ B.

Proof. Taking m = 0 in (2.6), we have

eφ(p1a) f = p1φ(a) f and fφ(p1a) f = τp1a(p1a) f ∈ πB(Z(G)). (2.10)

In particular,
eφ(p1) f = p1φ(e) f = 0.

By the two equations above, we obtain

eφ(p1 p2 · · · pn) f = p1φ(p2 · · · pn) f

= p1 p2 · · · pn−1φ(pn) f

= 0

for all idempotents pi in A. It follows from A = J(A) that eφ(a) f = 0. Similarly, by taking p = e,
x = a and q = p1 in Lemma 2.2, we get

fφ(ap1)e = fφ(a)p1.

This implies that fφ(a)e = 0. So φ(a) ∈ A ⊕ B.
By the hypothesis (2) of Theorem 2.1, there exists a algebra isomorphism η : Z(B) → Z(A) such

that η(b) ⊕ b ∈ Z(G) for any b ∈ Z(B).
It follows from (2.10) that fφ(a) f ∈ πB(Z(G)) = Z(B). We define h1 : A → Z(G) by h1(a) =

η( fφ(a) f ) ⊕ fφ(a) f . It is clear that h1 is linear and

φ(a) − h1(a) = eφ(a)e + fφ(a) f − η( fφ(a) f ) − fφ(a) f

= eφ(a)e − η( fφ(a) f ) ∈ A.

With the similar argument, we can define a linear map h2 : B→ Z(G) such that φ(b)− h2(b) ∈ B for
all b ∈ B. �
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Now for any x ∈ G, we define two linear maps h : G → Z(G) and δ : G → G by

h(x) = h1(exe) + h2( f x f ) and δ(x) = φ(x) − h(x).

It is easy to verify that δ(e) = 0. Moreover, we have

δ(A) ⊆ A, δ(B) ⊆ B, δ(M) = φ(M) ⊆ M, δ(N) = φ(N) ⊆ N.

Lemma 2.6. δ is a derivation.

Proof. We divide the proof into the following three steps.
Step 1. We first prove that

δ(p1 p2 . . . pnm) = δ(p1 p2 . . . pn)m + p1 p2 . . . pnδ(m) (2.11)

for all idempotents pi in A and m ∈ M.
Let a ∈ A, m ∈ M and p1 be any idempotent in A. Taking p = p1, x = a and q = e + m in (2.2), we

have

φ(a + am − p1a − p1am) = d2(a + am − p1a − p1am)
+ τ2(a + am − p1a − p1am)

= d2(a + am − p1a − p1am)
+ τ2(a − p1a). (2.12)

It follows from (2.5) and (2.12) that

0 = f d2(a − p1a)e = f d2(e(a − p1a))e = f d2(e)(a − p1a)

and hence by (2.5) and (2.12) again,

fφ(a − p1a) f = f d2(am − p1am) f + f τ2(a − p1a) f

= f d2(e)(a − p1a)m + f τ2(a − p1a) f

= f τ2(a − p1a) f . (2.13)

Multiplying (2.6) by f from both sides, we arrive at

fφ(p1a) f = f τ1(p1a) f . (2.14)

By (2.13) and (2.14), then mτ1(p1a) = mφ(p1a) and

p1mτ2(a − p1a) = p1mφ(a − p1a)
= p1mφ(a) − p1mφ(p1a)
= p1mφ(a) − p1mτ1(p1a).

Hence (2.6) implies that

δ(p1am) = φ(p1am)
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= φ(p1a)m + p1φ(am) − p1φ(a)m − mφ(p1a) + p1mφ(a)
= (δ(p1a) + h(p1a))m + p1δ(am) − p1(δ(a) + h(a))m
− m(δ(p1a) + h(p1a)) + p1m(δ(a) + h(a))

= δ(p1a)m + p1δ(am) − p1δ(a)m. (2.15)

Taking a = e in (2.15), we have from δ(e) = 0 that

δ(p1m) = δ(p1)m + p1δ(m).

This shows that (2.11) is true for n = 1. One can verify that Eq (2.11) follows easily by induction based
on (2.15). It follows from A = J(A) that δ(am) = δ(a)m + aδ(m).

Similarly, we can get δ(mb) = δ(m)b + mδ(b), δ(mb) = δ(m)b + mδ(b) and δ(na) = δ(n)a + nδ(a).
Step 2. Let a, a′ ∈ A. For any m ∈ M, on one hand, by Step 1, we have

δ(aa′m) = δ(a)a′m + aδ(a′m)
= δ(a)a′m + aδ(a′)m + aa′δ(m).

On the other hand,
δ(aa′m) = δ(aa′)m + aa′δ(m).

Comparing these two equalities, we have

(δ(aa′) − δ(a)a′ − aδ(a′))m = 0

for any m ∈ M. Since M is a faithful left A-module, we get

δ(aa′) = δ(a)a′ + aδ(a′).

Similarly, by considering δ(mbb′), we can get

δ(bb′) = δ(b)b′ + bδ(b′).

Step 3. Let m,m′ ∈ M and n ∈ N. Taking p = e − m′, x = n + m′n and q = e − m′ in Lemma 2.2,
we have from pxq = pxq⊥ = 0 that

0 = (e − m′)φ(m′n − m′nm′ + n − nm′) − (e − m′)φ(m′n + n)(e − m′)
− (e − m′)τ2(m′n − nm′)( f + m′) + (e − m′)τ3(nm′)(e − m′)

= −φ(m′nm′) − eφ(nm′) − m′φ(m′n) + m′φ(nm′)
+ φ(m′n)m′ − m′φ(n)m′ + eτ3(nm′)e − τ3(nm′)m′. (2.16)

This implies that
eφ(nm′) = eτ3(nm′)e.

Then eφ(nm′)m′ = τ3(nm′)m′ and hence by (2.16),

δ(m′nm′) = φ(m′nm′)
= −m′φ(m′n) + m′φ(nm′) + φ(m′n)m′ − m′φ(n)m′ − φ(nm′)m′
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= −m′h(m′n) + m′δ(nm′) + m′h(nm′) + δ(m′n)m′

+ h(m′n)m′ − m′δ(n)m′ − h(nm′)m′

= m′δ(nm′) + δ(m′n)m′ − m′δ(n)m′.

Replacing m′ with m + m′, we arrive at

δ(m′nm + mnm′) = δ(m′n)m + m′δ(nm) − m′δ(n)m
+ δ(mn)m′ + mδ(nm′) − mδ(n)m′.

On the other hand, by Steps 1 and 2, we have

δ(m′nm + mnm′) = δ(m′n)m + m′nδ(m) + δ(m)nm′ + mδ(nm′).

Comparing these two equalities, we have

(δ(mn) − δ(m)n − mδ(n))m′ = −m′(δ(nm) − nδ(m) − δ(n)m). (2.17)

Set
f (m, n) := δ(mn) − δ(m)n − mδ(n)

and
g(m, n) := δ(nm) − nδ(m) − δ(n)m.

We assume without loss of generality that A does not contain nonzero central ideals. For any a ∈ A,
by (2.17),

f (m, n)am′ = −am′g(m, n) = a f (m, n)m′.

which is equivalent to ( f (m, n)a − a f (m, n))m′ = 0. Since M is a faithful left A-module, we get
f (m, n)a = a f (m, n). Then

f (m, n) ∈ Z(A).

By Steps 1 and 2, we have

f (am, n) = δ(amn) − δ(am)n − amδ(n)
= δ(a)mn + aδ(mn) − δ(a)mn − aδ(m)n − amδ(n)
= a f (m, n).

The above two equalities show that f (m, n) in the central ideal of A and hence

f (m, n) = 0, (2.18)

that is
δ(mn) = δ(m)n + mδ(n)

for all m ∈ M, n ∈ N. Since M is a faithful right B-module, it follows from (2.17) that

δ(nm) = nδ(m) + δ(n)m

for all m ∈ M, n ∈ N. �
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Lemma 2.7. The map h : G → Z(G) vanishes on each commutator.

Proof. Step 1. Let a ∈ A, m ∈ M , n ∈ N and b ∈ B, by the definition of h, we have h([a,m]) =

h([m, b]) = h([n, a]) = h([b, n]) = 0.
Step 2. Let a, a′ ∈ A, we have φ([a, a′]) = eφ([a, a′])e + fφ([a, a′]) f ∈ A ⊕ B. On the other

hand, Proposition 1.1 implies that φ([a, a′]) = d([a, a′]) ∈ A ⊕ M ⊕ N, where d is a derivation. Thus,
fφ([a, a′]) f = 0. This implies that h([a, a′]) = h1([a, a′]) = η( fφ([a, a′]) f ) + fφ([a, a′]) f = 0.

Similarly, we can get h([b, b′]) = 0, for all b, b′ ∈ B.
Step 3. It follows from (2.18) that

(φ(mn) − η( fφ(mn) f ) − φ(m)n − mφ(n))m′

= −m′(φ(nm) − η−1(eφ(nm)e) − nφ(m) − φ(n)m). (2.19)

Since fφ(a) f ∈ πB(Z(G)), eφ(b)e ∈ πA(Z(G)), we get that

m′ fφ(mn) f = η( fφ(mn) f )m′, eφ(nm)em′ = m′η−1(eφ(nm)e).

It further follows from (2.19) that

φ(mn)m′ − m′ fφ(mn) f − φ(m)nm′ − mφ(n)m′

= −m′φ(nm) + eφ(nm)m′ + m′nφ(m) + m′φ(n)m.

Hence

(φ(mn) − eφ(nm) − φ(m)n − mφ(n))m′

= m′(−φ(nm) + fφ(mn) f + nφ(m) + φ(n)m).

Using an argument similar to that in the proof of (2.18), we arrive that

eφ(mn)e − eφ(nm) − φ(m)n − mφ(n) = 0, (2.20)

and

− fφ(nm) f + fφ(mn) f + nφ(m) + φ(n)m = 0.

By (2.19) and (2.20), we get that eφ(nm)e = η( fφ(mn) f ). Note that h([m, n]) = h1(mn) − h2(nm) =

η( fφ(mn) f ) + fφ(mn) f − eφ(nm)e − η−1(eφ(nm)e), thus h([m, n]) = 0.
Therefore it is easily verify that h vanishing on each commutator. �

Proof of Theorem 1.1 By the definition of δ, we have ϕ(x) = δ(x) + [x, eϕ(e) f − fϕ(e)e] + h(x)
for all x ∈ A, where δ is a derivation and h is a linear map from A into its center vanishing on each
commutator. The proof is complete. �

Let A be a unital algebra and Mk×m(A) be the set of all k × m matrices over A. For n ≥ 2 and each
2 ≤ l < n − 1, the full matrix algebra Mn(A) can be represented as a generalized matrix algebra of the
form (

Ml×l(A) Ml×(n−l)(A)
M(n−l)×l(A) M(n−l)×(n−l)(A)

)
.
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Corollary 2.8. Let Mn(A) be a full matrix algebra with n ≥ 4. Then each local Lie derivation ϕ on
Mn(A) is of the form ϕ = d + τ, where d is a derivation of Mn(A) and τ is a linear map from Mn(A) into
its center Z(A) · In vanishing on each commutator.

Proof. It follows from the example (C) of [2] that the matrix algebras Ml(A) and Mn−l(A) are generated
by their idempotents for 2 ≤ l < n − 1. Since Z(Mn(A)) = Z(A) · In, Z(Ml(A)) = Z(A) · Il and
Z(Mn−l(A)) = Z(A) · In−l, the condition (2) of Theorem 2.1 is satisfied. By [5, Lemma 1], Mk(A) does
not contain nonzero central ideals for k ≥ 2. Hence by Theorem 2.1, every local Lie derivation of
Mn(A) is a sum of a derivation and a linear central-valued map vanishing on each commutator. �

Corollary 2.9. Let R be an unital simple algebra with a nontrivial idempotent. If ϕ : R→ R is a local
Lie derivation, then there exit a derivation d and a linear central map τ vanishing on each commutator,
such that ϕ = d + τ.

Proof. Let R be an unital simple algebra with a nontrivial idempotent e0 and let f0 denote the
idempotent 1 − e0. Then R can be represented in the so-called Peirce decomposition form

R = e0Re0 + e0R f0 + f0Re0 + f0R f0,

where e0Re0 and f0R f0 are subalgebras with unitary element e0 and f0, respectively, e0R f0 is an
(e0Re0, f0R f0)-bimodule.

Next, we will show that
e0xe0 · e0R f0 = {0} implies e0xe0 = 0

and
e0R f0 · f0x f0 = {0} implies f0x f0 = 0.

That is e0R f0 is faithful as an (e0Re0, f0R f0)-bimodule. Let e = f0 + e0R f0, then e2 = e and [e,R] ⊆
eR(1 − e) + (1 − e)Re. Note that

(1 − e)Re = (e0 − e0R f0)R( f0 + e0R f0) ⊆ e0R f0.

Furthermore, the assumption e0xe0 · e0R f0 = {0} implies

e0xe0eR(1 − e) = e0xe0( f0 + e0R f0)R(e0 + e0R f0) = {0}

and then
e0xe0[e,R] = {0}.

Let r = [e, y] and z,w ∈ R. It follows from

zrw = [e, z[e, r]w] − [e, z][e, rw] − [e, zr][e,w] + 2[e, z]r[e,w]

that e0xe0zrw = 0. Then
e0xe0R[e,R]R = 0. (2.21)

It is clear that I = R[e,R]R is a nonzero ideal of R. R is a simple algebra, which implies I = R.
By (2.21), e0xe0R = 0. Since 1 ∈ R, we get e0xe0 = 0. Similarly, we can show that e0R f0 · f0x f0 = {0}
implies f0x f0 = 0. Now, we can conclude that R can be represented as a generalized matrix algebra of
the form R = e0Re0 + e0R f0 + f0Re0 + f0R f0.
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It follows from the example (A) of [2] that the unital simple algebra with a nontrivial idempotent
is generated by its idempotents, the condition (1) of Theorem 2.1 is satisfied. It is clear that e0Re0

and f0R f0 satisfy the conditions (2) and (3) of Theorem 2.1. Hence by Theorem 2.1, every local
Lie derivation of R is the sum of a derivation and a linear central-valued map vanishing on each
commutator. �

Let B(H) be the set of bounded linear operators acting on a complex Hilbert space H, and let
K(H) be the ideal of compact operators on H. If H is an infinite-dimensional separable Hilbert space,
by [12, Theorem 4.1.16], the Calkin algebra B(H)/K(H) is a simple C∗-algebra.

Corollary 2.10. If H is an infinite-dimensional separable Hilbert space, then every local Lie derivation
of the Calkin algebra B(H)/K(H) is the sum of a derivation and a linear central map vanishing on each
commutator.

3. Conclusions

In this paper, we investigate local Lie derivations of a certain class of generalized matrix algebras
and show that, under certain conditions every local Lie derivation of a generalized matrix algebra is a
sum of a derivation and a linear central-valued map vanishing on each commutator. The main result is
then applied to full matrix algebras and unital simple algebras with nontrivial idempotents.
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