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Abbreviation: CIF: complex intuitionistic fuzzy, CCIFWA: confidence complex intuitionistic fuzzy 

weighted averaging, CCIFOWA: confidence complex intuitionistic fuzzy ordered weighted averaging, 

CCIFWG: confidence complex intuitionistic fuzzy weighted geometric, CCIFOWG: confidence 

complex intuitionistic fuzzy ordered weighted geometric, CCIFEWA: confidence complex 

intuitionistic fuzzy Einstein weighted averaging, CCIFEOWA: confidence complex intuitionistic fuzzy 

Einstein ordered weighted averaging, CCIFEWG: confidence complex intuitionistic fuzzy Einstein 

weighted geometric, CCIFEOWG: confidence complex intuitionistic fuzzy Einstein ordered weighted 

geometric, MADM: Multi-attribute decision-making, FS: fuzzy sets, IFS: intuitionistic fuzzy sets, CFS: 

complex fuzzy sets, CIFS: complex intuitionistic fuzzy sets. 

1. Introduction 

A strategic decision-making tool is one of the dominant and valuable techniques in computer 

science, business administration, and enterprises and is especially used in the selection of different 

products in markets. One thing is clear, every attribute is played a very important and many different 

roles in the decision-making process. These different fluctuating roles are typically shown at distinct 

attribute weights in the MADM technique. But because of ambiguity and uncertainty in genuine life, 

experts may provide their decision based on the ambiguity and uncertainty. Thus, the always expert 

obtain the grade of hesitancy among attributes and decision-making, and hence, the expert obtained 

result based on the above-cited analysis is not beneficial and hence not suitable, considered the best 

decision. But Zadeh [1] evaluated the above problematic situation by introducing the theory of FS in 

1965, represented as a whole and completed structure for evaluating awkward and unreliable 

information. The main and original form of FS was evaluated with the grade of supporting whose value 

is contained in the unit interval [0, 1]. Further, aggregating and finding the distance among any number 

of attributes is a very challenging task for everyone, due to problematic scenarios, certain attentions 

are available in the form of utilization of FS in different fields [2–4]. After some time of the 

investigation of FS, certain people have taken about the range of the FS, because it contained only the 

supporting grade, but ignoring the falsity/supporting against grade and due to these reasons, many 

scholars have faced a lot of ambiguity during decision-making procedures. Therefore, Atanassov [5] 

utilized the support against grade in the field of FS by introducing the theory of IFS. The mathematical 

shape of the supporting grade is stated by: 𝜇(𝑦) and the mathematical shape of the supporting against 

grade is expressed by: ℵ(𝑦) with a rule: 

0 ≤ 𝜇(𝑦) + ℵ(𝑦) ≤ 1. 

Noticed that the theory of FS is the particular case of the IFS, because by using the value of 

ℵ(𝑦) = 0, then we obtained the theory of FS from the theory of IFS. Further, aggregating and finding 

the distance among any number of attributes is a very challenging task for everyone, due to problematic 

scenario, certain attentions are available in the form of utilization of IFS in different fields, for instance, 

variable weighted-based hybrid approach for interval-valued IFS was derived by Liu et al. [6], Thao [7] 

discovered the entropies and divergence measures under the consideration of Archimedean norms for 

IFS, Gohain et al. [8] evaluated the distance and similarity information for IFSs, Garg and Rani [9] 

discovered the similarity measures for IFS, Hayat et al. [10] determined the new aggregation operators 

for depicting the collection of information into a one set under the consideration of IFS, Ecer and 

Pamucar [11] examined the MARCOS technique under the presence of IFSs, distance-based 

knowledge measures for IFS was derived by Wu et al. [12], Augustine [13] discovered the correlation 

co-efficient under the consideration of IFS, Yang and Yao [14] evaluated the three-ways construction 
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for IFS and their application in decision-making theory, Mahmood et al. [15] derived the power 

aggregation operators for improved intuitionistic hesitant fuzzy information, Ocampo et al. [16] 

presented the TOPSIS method under the presence of the IFSs, Dymova et al. [17] evaluated the 

TOPSIS technique under the consideration of IFSs, and Alcantud et al. [18] formulated the aggregation 

of finite chain under the presence of temporal IFSs. 

We analyzed that the information available in the above paragraph has very limited application in 

genuine life because the prevailing information is computed based on FS and IFS which deal with one-

dimension information at a time and due to these reasons, it is possible experts have lost a lot of 

information. Instead of FS and IFS, we have needed such sort of technique which will be perfect and 

deal with two-dimension information. After some efforts, Ramot et al. [19] find the solution to the 

above problem by introducing the novel theory of CFS by including the periodic term in the supporting 

grade, called phase term which plays a very effective and valuable role during the decision-making 

procedure. Further, aggregating and finding the distance among any number of attributes is a very 

challenging task for everyone, due to problematic scenarios, certain attentions are available in the form 

of utilization of CFS in different fields, for instance, Liu et al. [20] examined the distance and cross-

entropy measures for CFSs, Al-Qudah and Hassan [21] derived various operations under the presence 

of complex multi-fuzzy sets, Alkouri and Salleh [22] evaluated the linguistic variables based on CFS 

and their application, and finally, Li and Chiang [23] discovered the complex neuro-fuzzy information 

under the presence of CFSs. After some time of the investigation of CFS, certain people have taken 

about the range of the CFS, because it contained only the supporting grade in the shape of complex-

valued but ignoring the falsity/supporting against grade and due to these reasons, many scholars have 

faced a lot of ambiguity during decision-making procedures. Therefore, Alkouri and Salleh [24] 

utilized the complex-valued support against grade in the field of CFS by introducing the theory of 

CIFS. The mathematical shape of the supporting grade is stated by: 

𝜇(𝑦) = 𝜇𝑅(𝑦)𝑒𝑖2𝜋 𝜔𝜇
𝑅(𝑦) 

and the mathematical shape of supporting against grade is expressed by: 

ℵ(𝑦) = ℵ𝑅(𝑦)𝑒𝑖2𝜋 𝜔ℵ
𝑅(𝑦) 

with a rule: 

0 ≤ 𝜇𝑅(𝑦) + ℵ𝑅(𝑦) ≤ 1,0 ≤ 𝜔𝜇
𝑅(𝑦) + 𝜔ℵ

𝑅(𝑦) ≤ 1. 

Noticed that the theory of CFS is the particular case of the CIFS, because by using the value of 

ℵ(𝑦) = 0, then we obtained the theory of CFS from the theory of CIFS. Further, aggregating and 

finding the distance among any number of attributes is a very challenging task for everyone, due to 

problematic scenarios, certain attentions are available in the form of utilization of CIFS in different 

fields, for instance, Garg and Rani [25] examined the new aggregation operators under the 

consideration of CIFS, Garg and Rani [26] derived the robust aggregation information for CIFSs, Garg 

and Rani [27] discovered the generalized geometric aggregation information under the presence of 

CIFS, and Ali et al. [28] derived the theory prioritized aggregation operators for complex intuitionistic 

fuzzy soft information and their application in decision-making. Many individuals have combined 

different types of structures for evaluating the collection of information into a singleton set. But it is 

also a very complicated and unreliable task for all researchers is how to combine three or more different 

structures under the consideration of CIFS. The confidence level is also played a very valuable and 

dominant role in many awkward and complicated satiations. Here, we have two challenges: 

(i) How to utilize the theory of confidence level in the environment of aggregation operators for 
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algebraic t-norm and t-conorm under the CIFS. 

(ii) How to utilize the theory of confidence level in the environment of aggregation operators for 

Einstein t-norm and t-conorm based on CIFS. 

The main benefits and advantages of the presented information are stated below: 

(i) By removing the phase information from the derived work, then the derived work will be 

changed for simple IFSs. 

(ii) By removing the phase information and imaginary part from the derived work, then the derived 

work will be changed for simple FSs. 

(iii) By removing the confidence level from the derived work, then the derived work will be 

changed for simple aggregation operators under the consideration of algebraic and Einstein t-

norm and t-conorm for CIFSs. 

(iv) By removing the confidence level and non-membership grade from the derived work, then the 

derived work will be changed for simple aggregation operators under the consideration of 

algebraic and Einstein t-norm and t-conorm for CFSs. 

(v) By removing the algebraic t-norm and t-conorm from the derived work, then the derived work 

will be changed for Einstein aggregation operators under the consideration of Einstein t-norm 

and t-conorm for CIFSs. 

(vi) By removing the Einstein t-norm and t-conorm from the derived work, then the derived work 

will be changed for simple aggregation operators under the consideration of Algebraic t-norm 

and t-conorm for CIFSs. 

(vii) By removing the algebraic t-norm and t-conorm and non-membership grade from the derived 

work, then the derived work will be changed for Einstein aggregation operators under the 

consideration of Einstein t-norm and t-conorm for CFSs. 

(viii) By removing the Einstein t-norm and t-conorm and non-membership grade from the derived 

work, then the derived work will be changed for simple aggregation operators under the 

consideration of Algebraic t-norm and t-conorm for CFSs. 

Further, from the presented information, we can easily describe the simple form of 

averaging/geometric aggregation operators under the consideration of CIFS. The derived approaches 

based on CIFS are very famous and valuable compared to existing theories. Under the consideration 

or presence of the above brief evaluation, our main contribution is listed below: 

(i) To derive the theory of CCIFWA, CCIFOWA, CCIFWG, and CCIFOWG operators under the 

consideration of CIFSs. 

(ii) To describe the properties of the presented operators such as idempotency, monotonicity, and 

boundedness. 

(iii) To discover the theory of CCIFEWA, CCIFEOWA, CCIFEWG, and CCIFEOWG operators 

under the consideration of CIFSs. 

(iv) To describe the properties of the presented operators such as idempotency, monotonicity, and 

boundedness. 

(v) To demonstrate a valuable and dominant theory of MADM under the presence of invented 

operators. 

(vi) To compare the derived work with various existing works is to show the stability and worth of 

the presented approach with the help of some suitable examples. 

The main evaluation of this theory is available in the shape: In Section 2, we use the idea of CIFS 

and their laws for diagnosing a new work in the next section. In Section 3, we diagnosed the CCIFWA, 

CCIFOWA, CCIFWG, and CCIFOWG operators and explained their valuable properties 

“idempotency, monotonicity and boundedness” and results. Further, we modified the presented 
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operators by taking Einstein t-norm and t-conorm instead of simple algebraic t-norm and t-conorm. In 

Section 4, we diagnosed certain Einstein operational laws with the help of CIF information and then 

we exposed the theory of CCIFEWA, CCIFEOWA, CCIFEWG, and CCIFEOWG operators and 

explained their valuable properties “idempotency, monotonicity, and boundedness” and results. In 

Section 5, we illustrated a MADM tool based on invented operators to present the rationality and worth 

of the diagnosed approaches. The illustrated ranking results are also compared with the existing 

operators. The conclusion of this theory is available in Section 6. 

2. Preliminaries 

In this analysis, we use the idea of CIFS and its laws for diagnosing a new work in the next section. 

Definition 1: [24] A CIFS Œ on Y is defined as: 

Œ = {(𝑦, 𝜇(𝑦), ℵ(𝑦))|𝑦 ∈ 𝑌}.        (1) 

Where the truth grade is expressed by: 

𝜇(𝑦) = 𝜇𝑅(𝑦)𝑒𝑖2𝜋𝜔𝜇
𝑅(𝑦) 

and falsity grade is represented by: ℵ(𝑦) = ℵ𝑅(𝑦)𝑒𝑖2𝜋𝜔ℵ
𝑅(𝑦)  with 0 ≤ 𝜇𝑅(𝑦)  + ℵ𝑅(𝑦) ≤ 1,0 ≤

𝜔𝜇
𝑅(𝑦) + 𝜔ℵ

𝑅(𝑦) ≤ 1 and 𝑖 = √−1. A pair ((𝜇𝑅 , 𝜔𝜇
𝑅), (ℵ𝑅 , 𝜔ℵ

𝑅)) is called a CIF number (CIFN). 

Definition 2: [24] Consider three CIFNs 

𝑐1 = ((𝜇1
𝑅, 𝜔𝜇1

𝑅 ), (ℵ1
𝑅 , 𝜔ℵ1

𝑅 )), 

𝑐2 = ((𝜇2
𝑅, 𝜔𝜇2

𝑅 ), (ℵ2
𝑅 , 𝜔ℵ2

𝑅 )), 

and 

𝑐 = ((𝜇𝑅 , 𝜔𝜇
𝑅), (ℵ𝑅 , 𝜔ℵ

𝑅)), 

then 

𝑐1 ⊕ 𝑐2 = ((𝜇1
𝑅 + 𝜇2

𝑅 − 𝜇1
𝑅𝜇2

𝑅)𝑒𝑖2𝜋(𝜔𝜇1
𝑅 +𝜔𝜇2

𝑅 −𝜔𝜇1
𝑅 𝜔𝜇2

𝑅 ), ℵ1
𝑅ℵ2

𝑅𝑒𝑖2𝜋(𝜔1
𝑅𝜔ℵ2

𝑅 )),   (2) 

𝑐1 ⊗ 𝑐2 = (𝜇1
𝑅𝜇2

𝑅𝑒𝑖2𝜋(𝜔𝜇1
𝑅 𝜔𝜇2

𝑅 ), (ℵ1
𝑅+ℵ2

𝑅 − ℵ1
𝑅ℵ2

𝑅)𝑒𝑖2𝜋(𝜔1
𝑅+𝜔ℵ2

𝑅 −𝜔1
𝑅𝜔ℵ2

𝑅 )),    (3) 

𝜏𝑐 = ((1 − (1 − 𝜇𝑅)𝜏)𝑒𝑖2𝜋(1−(1−𝜔𝜇
𝑅)𝜏), ℵ𝑅𝜏

𝑒𝑖2𝜋(𝜔ℵ
𝑅𝜏

)),     (4) 

𝑐𝜏 = (𝜇𝑅𝜏
𝑒𝑖2𝜋(𝜔𝜇

𝑅𝜏
), (1 − (1 − ℵ𝑅)𝜏)𝑒𝑖2𝜋(1−(1−𝜔ℵ

𝑅𝜏
)),     (5) 

Definition 3: [24] The score function of CIFN 𝑐 = ((𝜇𝑅 , 𝜔𝜇
𝑅), (ℵ𝑅 , 𝜔ℵ

𝑅)) is defined as: 

𝕊(𝑐) = 𝜇𝑅 − ℵ𝑅 + 𝜔𝜇
𝑅 − 𝜔ℵ

𝑅.        (6) 
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And accuracy function of CIFN c = ((𝜇𝑅 , 𝜔𝜇
𝑅), (ℵ𝑅 , 𝜔ℵ

𝑅)) is defined as: 

ℍ(𝑐) = 𝜇𝑅 + ℵ𝑅 + 𝜔𝜇
𝑅 + 𝜔ℵ

𝑅 .        (7) 

Suppose 

𝑐1 = ((𝜇1
𝑅, 𝜔𝜇1

𝑅 ), (ℵ1
𝑅 , 𝜔ℵ1

𝑅 )), 

𝑐2 = ((𝜇2
𝑅, 𝜔𝜇2

𝑅 ), (ℵ2
𝑅 , 𝜔ℵ2

𝑅 )), 

are two CIFNs, then if 𝕊(𝑐1) < 𝕊(𝑐2) then 𝑐1 < 𝑐2that is 𝑐1 is smaller than 𝑐2. If 𝕊(𝑐1) = 𝕊(𝑐2) 

then if ℍ(𝑐1) < ℍ(𝑐2) then 𝑐1 < 𝑐2that is 𝑐1 is smaller than 𝑐2, if ℍ(𝑐1) = ℍ(𝑐2) then 𝑐1 =
𝑐2that is 𝑐1 and 𝑐2 represent the same information. 

3. CIF aggregation operators under confidence levels 

The primary influence of the current analysis is to diagnose the CCIFWA, CCIFOWA, CCIFWG, 

and CCIFOWG operators and explained their valuable properties “idempotency, monotonicity and 

boundedness” and results. Consider a collection (𝑐1, 𝑐2, … , 𝑐𝑛) of CIFNs and 𝑘𝑗be the confidence 

levels of CIFN 𝑐𝑗 and 0≤ 𝑘𝑗 ≤ 1, w = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be a weight vector such that 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1 

Definition 4: The CCIFWA operator is defined as: 

CCIFWA(< 𝑘1, 𝑐1 >, < 𝑘2, 𝑐2 >, … , < 𝑘𝑛 , 𝑐𝑛 >) =

𝑛
⊕

𝑗 = 1
𝑤𝑗(𝑘𝑗𝑐𝑗) = 𝑤1(𝑘1𝑐1) ⊕ 𝑤2(𝑘2𝑐2) ⊕ … ⊕ 𝑤𝑛(𝑘𝑛𝑐𝑛). (8) 

If 

𝑘1 = 𝑘2 =. . . = 𝑘𝑛 = 1, 

then the CCIFWA operator reduces to CIF weighted averaging (CIFWA) operator. 

CIFWA(𝑐1, 𝑐2, … , 𝑐𝑛) =

𝑛
⊕

𝑗 = 1
𝑤𝑗𝑐𝑗 = 𝑤1𝑐1 ⊕ 𝑤2𝑐2 ⊕ …⊕ 𝑤𝑛𝑐𝑛.    (9) 

Theorem 1: The aggregated value by using the CCIFWA operator is also a CIFN, such that 

CCIFWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) = 

((1 − ∏ (1 − 𝜇𝑗
𝑅)𝑛

𝑗=1
𝑘𝑗×𝑤𝑗) 𝑒

𝑖2𝜋(1−∏ (1−𝜔𝜇𝑗
𝑅 )𝑛

𝑗=1
𝑘𝑗×𝑤𝑗)

, ∏ (ℵ𝑗
𝑅)𝑛

𝑗=1
𝑘𝑗×𝑤𝑗 𝑒

𝑖2𝜋 ∏ (𝜔ℵ𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗×𝑤𝑗

).(10) 
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Proof: Let 

CCIFWA(< 𝑘1, 𝑐1 >, < 𝑘2, 𝑐2 >, … , < 𝑘𝑛 , 𝑐𝑛 >) =

𝑛
⊕

𝑗 = 1
𝑤𝑗(𝑘𝑗𝑐𝑗) = 𝑤1(𝑘1𝑐1) ⊕ 𝑤2(𝑘2𝑐2) ⊕ … ⊕ 𝑤𝑛(𝑘𝑛𝑐𝑛) 

= ((1 − ∏ (1 − 𝜇𝑗
𝑅)

𝑛

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋(1−∏ (1−𝜔𝜇𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗×𝑤𝑗)
, ∏ (ℵ𝑗

𝑅)
𝑛

𝑗=1

𝑘𝑗×𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔ℵ𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗×𝑤𝑗

). 

We use mathematical induction (MI) to prove Eq (10), such that for 𝑛 = 2, then 

𝑤1(𝑘1𝑐1) = (1 − (1 − 𝜇1
𝑅)𝑤1𝑘1𝑒𝑖2𝜋(1−(1−𝜔𝜇1

𝑅 )𝑤1𝑘1
, ℵ1

𝑅𝑘1𝑤1𝑒𝑖2𝜋𝜔ℵ1
𝑅 𝑘1𝑤1

), 

𝑤2(𝑘2𝑐2) = (1 − (1 − 𝜇2
𝑅)𝑤2𝑘2𝑒𝑖2𝜋(1−(1−𝜔𝜇2

𝑅 )𝑤2𝑘2
, ℵ2

𝑅𝑘2𝑤2𝑒𝑖2𝜋𝜔ℵ2
𝑅 𝑘2𝑤2

), 

then, 

CCIFWA(< k1, c1 >,< k2, c2 >) = (𝑤1𝑘1)𝑐1 ⊕ (𝑤2𝑘2)𝑐2

= ((1 − (1 − 𝜇1
𝑅)𝑤1𝑘1𝑒𝑖2𝜋[1−(1−𝜔𝜇1

𝑅 )𝑤1𝑘1], ℵ1
𝑅𝑘1𝑤1𝑒𝑖2𝜋𝜔ℵ1

𝑅 𝑘1𝑤1

)

⊕ ((1 − (1 − 𝜇2
𝑅)𝑤2𝑘2𝑒𝑖2𝜋[1−(1−𝜔𝜇2

𝑅 )𝑤2𝑘2], ℵ2
𝑅𝑘2𝑤2𝑒𝑖2𝜋𝜔ℵ2

𝑅 𝑘2𝑤2

) 

= (1 − (1 − 𝜇1
𝑅)𝑤1𝑘1(1 − 𝜇2

𝑅)𝑤2𝑘2𝑒𝑖2𝜋[1−(1−𝜔𝜇1
𝑅 )𝑤1𝑘1(1−𝜔𝜇2

𝑅 )𝑤2𝑘2], ℵ1
𝑅𝑘1𝑤1ℵ2

𝑅𝑘2𝑤2𝑒𝑖2𝜋𝜔ℵ1
𝑅 𝑘1𝑤1

𝜔ℵ2
𝑅 𝑘2𝑤2

) 

= ((1 − ∏ (1 − 𝜇𝑗
𝑅)

2

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔𝜇𝑗

𝑅 )2
𝑗=1

𝑘𝑗×𝑤𝑗]
,∏ (ℵ𝑗

𝑅)
2

𝑗=1

𝑘𝑗×𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔ℵ𝑗

𝑅 )2
𝑗=1

𝑘𝑗×𝑤𝑗

). 

Suppose Eq (10) is true for 𝑛 = 𝑚, that is 

CCIFWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑚, 𝑐𝑚 >) = 𝑤1(𝑘1𝑐1) ⊕ 𝑤2(𝑘2𝑐2) ⊕ …⊕ 𝑤𝑚(𝑘𝑚𝑐𝑚) 

= ((1 − ∏ (1 − 𝜇𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗×𝑤𝑗]
,∏ (ℵ𝑗

𝑅)
𝑚

𝑗=1

𝑘𝑗×𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗×𝑤𝑗

). 

For 𝑛 = 𝑚 + 1, we have 

CCIFWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑚, 𝑐𝑚 >,< 𝑘𝑚+1, 𝑐𝑚+1 >) 

= 𝑤1(𝑘1𝑐1) ⊕ 𝑤2(𝑘2𝑐2) ⊕ …⊕ 𝑤𝑚(𝑘𝑚𝑐𝑚) ⊕ 𝑤𝑚+1(𝑘𝑚+1𝑐𝑚+1) 

= ((1 − ∏ (1 − 𝜇𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗
]
, ∏ (ℵ𝑗

𝑅)
𝑚

𝑗=1

𝑘𝑗𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗

) ⊕ 𝑤𝑚+1(𝑘𝑚+1𝑐𝑚+1) 

= ((1 − ∏ (1 − 𝜇𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗]
, ∏ (ℵ𝑗

𝑅)
𝑚

𝑗=1

𝑘𝑗𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗

)

⊕ (1 − (1 − 𝜇𝑚+1
𝑅 )𝑤𝑚+1𝑘𝑘+1𝑒𝑖2𝜋[1−(1−𝜔𝜇𝑚+1

𝑅 )𝑤𝑚+1𝑘𝑘+1], ℵ𝑚+1
𝑅 𝑘𝑚+1𝑤𝑚+1𝑒𝑖2𝜋𝜔ℵ𝑚+1

𝑅 𝑘𝑚+1𝑤𝑚+1

) 
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= ((1 − ∏ (1 − 𝜇𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗𝑤𝑗

) + (1 − (1 − 𝜇𝑚+1
𝑅 )𝑤𝑚+1𝑘𝑚+1) − (1 − ∏ (1 − 𝜇𝑗

𝑅)
𝑚

𝑗=1

𝑘𝑗𝑤𝑗

) (1 − (1 − 𝜇𝑚+1
𝑅 )𝑤𝑚+1𝑘𝑘+1),

∏ (ℵ𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗𝑤𝑗

ℵ𝑚+1
𝑅 𝑘𝑚+1𝑤𝑚+1𝑒

𝑖2𝜋[∏ (𝜔ℵ𝑗
𝑅 )𝑚

𝑗=1

𝑘𝑗𝑤𝑗
𝜔ℵ𝑚+1

𝑅 𝑘𝑚+1𝑤𝑚+1
]
) 

= (1 − ∏ (1 − 𝜇𝑗
𝑅)

𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗

𝑒
𝑖2𝜋[1−∏ (1−𝜔𝜇𝑗

𝑅 )𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗
]
,∏ (ℵ𝑗

𝑅)
𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔ℵ𝑗

𝑅 )𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗

). 

This shows that Eq (10) is true for 𝑛 = 𝑚 + 1, so, Eq (10) is true for all 𝑛. 

Here, we try to verify the proposed work in Eq (10) with the help of some suitable examples, for 

this, we use CIFN such as: 

𝑐1 = {
(𝑦1((0.6,0.7), (0.1,0.2))) , (𝑦2((0.61,0.71), (0.11,0.21))) ,

(𝑦3((0.62,0.72), (0.12,0.22))) , (𝑦4, ((0.63,0.73), (0.13,0.23))) ,
}, 

with weight vectors 0.4,0.3,0.2,0.1 and confidence levels 0.8,0.9,0.7,0.6, then by using the theory in 

equation (10), we have 

CCIFWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,< 𝑘3, 𝑐3 >,< 𝑘4, 𝑐4 >) = 

((1 − ∏ (1 − 𝜇𝑗
𝑅)

4

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋(1−∏ (1−𝜔𝜇𝑗

𝑅 )4
𝑗=1

𝑘𝑗×𝑤𝑗)
,∏ (ℵ𝑗

𝑅)
4

𝑗=1

𝑘𝑗×𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔ℵ𝑗

𝑅 )4
𝑗=1

𝑘𝑗×𝑤𝑗

) 

= ((0.5241,0.6232), (0.1734,0.2903)). 

Definition 5: The CCIFWG operator is defined as: 

CCIFWG(< 𝑘1, 𝑐1 >, < 𝑘2, 𝑐2 >, … , < 𝑘𝑛 , 𝑐𝑛 >) =

𝑛
⊗

𝑗 = 1
(𝑐𝑗

𝑘𝑗)𝑤𝑗 = (𝑐1
𝑘1)𝑤1 ⊗ (𝑐2

𝑘2)𝑤2 ⊗ … ⊗ (𝑐𝑛
𝑘𝑛)𝑤𝑛 . (11) 

If 

𝑘1 = 𝑘2 =. . . = 𝑘𝑛 = 1, 

then the CCIFWG operator reduces to CIF weighted geometric (CIFWG) operator. 

CIFWG(𝑐1, 𝑐2, … , 𝑐𝑛) =

𝑛
⊗

𝑗 = 1
𝑐𝑗

𝑤𝑗 = 𝑐1
𝑤1 ⊗ 𝑐2

𝑤2 ⊗. . .⊗ 𝑐𝑛
𝑤𝑛 .    (12) 

Theorem 2: The aggregated value by using the CCIFWG operator is also a CIFN, such that  

CCIFWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

= (
∏ (𝜇𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗×𝑤𝑗
𝑒

𝑖2𝜋 ∏ (𝜔𝜇𝑗
𝑅 )𝑛

𝑗=1
𝑘𝑗×𝑤𝑗

,

(1 − ∏ (1 − ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗×𝑤𝑗
) 𝑒

𝑖2𝜋[1−∏ (1−𝜔ℵ𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗×𝑤𝑗
]
,

).     (13) 
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Proof: Let 

CCIFWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) = (𝑐1
𝑘1)𝑤1 ⊗ (𝑐2

𝑘2)𝑤2 ⊗ …⊗ (𝑐𝑛
𝑘𝑛)𝑤𝑛 

= (∏ (𝜇𝑗
𝑅)

𝑛

𝑗=1

𝑘𝑗×𝑤𝑗

𝑒
𝑖2𝜋(∏ (𝜔𝜇𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗×𝑤𝑗

, (1 − ∏ (1 − ℵ𝑗
𝑅)

𝑛

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1 − 𝜔ℵ𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗×𝑤𝑗]
). 

We use MI to prove Eq (13), such that for n=2, then 

𝑐1
𝑤1𝑘1 = ((𝜇1

𝑅)𝑤1𝑘1𝑒𝑖2𝜋(𝜔𝜇1
𝑅 )𝑤1𝑘1

, 1 − (1 − ℵ1
𝑅)𝑘1𝑤1𝑒𝑖2𝜋[1−(1−𝜔ℵ1

𝑅 )𝑘1𝑤1]), 

𝑐2
𝑤2𝑘2 = ((𝜇2

𝑅)𝑤2𝑘2𝑒𝑖2𝜋(𝜔𝜇2
𝑅 )𝑤2𝑘2

, 1 − (1 − ℵ2
𝑅)𝑘2𝑤2𝑒𝑖2𝜋[1−(1−𝜔ℵ2

𝑅 )𝑘2𝑤2]). 

So, 

CCIFWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >) = 𝑐1
𝑘1𝑤1 ⊗ 𝑐2

𝑘2𝑤2

= ((𝜇1
𝑅)𝑤1𝑘1𝑒𝑖2𝜋(𝜔𝜇1

𝑅 )𝑤1𝑘1
, 1 − (1 − ℵ1

𝑅)𝑘1𝑤1𝑒𝑖2𝜋[1−(1−𝜔ℵ1
𝑅 )𝑘1𝑤1])

⊗ ((𝜇2
𝑅)𝑤2𝑘2𝑒𝑖2𝜋(𝜔𝜇2

𝑅 )𝑤2𝑘2
, 1 − (1 − ℵ2

𝑅)𝑘2𝑤2𝑒𝑖2𝜋[1−(1−𝜔ℵ2
𝑅 )𝑘2𝑤2]) 

= ((𝜇1
𝑅)𝑤1𝑘1(𝜇2

𝑅)𝑤2𝑘1𝑒𝑖2𝜋(𝜔𝜇1
𝑅 )𝑤1𝑘1(𝜔𝜇2

𝑅 )𝑤2𝑘2
, 1 − (1 − ℵ1

𝑅)𝑘1𝑤1(1 − ℵ2
𝑅)𝑘2𝑤2𝑒𝑖2𝜋[1−(1−𝜔ℵ1

𝑅 )𝑘1𝑤1](1

− 𝜔ℵ2

𝑅 )𝑘2𝑤2) 

= (∏ (𝜇𝑗
𝑅)

2

𝑗=1

𝑘𝑗𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔𝜇𝑗

𝑅 )2
𝑗=1

𝑘𝑗𝑤𝑗

, (1 − ∏ (1 − ℵ𝑗
𝑅)

2

𝑗=1

𝑘𝑗𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔ℵ𝑗

𝑅 )2
𝑗=1

𝑘𝑗𝑤𝑗]
). 

Suppose Eq (13) is true for 𝑛 = 𝑚, that is, 

CCIFWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑚, 𝑐𝑚 >) = 𝑐1
𝑘1𝑤1 ⊗ 𝑐2

𝑘2𝑤2 ⊗ …⊗ 𝑐𝑚
𝑘𝑚𝑤𝑚 

= (∏ (𝜇𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗×𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗×𝑤𝑗

, (1 − ∏ (1 − ℵ𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗×𝑤𝑗
]
). 

For 𝑛 = 𝑚 + 1, we have 

CCIFWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑚, 𝑐𝑚 >,< 𝑘𝑚+1, 𝑐𝑚+1 >)

= 𝑐1
𝑘1𝑤1 ⊗ 𝑐2

𝑘2𝑤2 ⊗ …⊗ 𝑐𝑚
𝑘𝑚𝑤𝑚 ⊗ 𝑐𝑚+1

𝑘𝑚+1𝑤𝑚+1 

= (∏ (𝜇𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗×𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗×𝑤𝑗

, (1 − ∏ (1 − ℵ𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗×𝑤𝑗]
)

⊗ 𝑐𝑚+1
𝑘𝑚+1𝑤𝑚+1 

= (∏ (𝜇𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗×𝑤𝑗

𝑒
𝑖2𝜋 ∏ (𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗×𝑤𝑗

, (1 − ∏ (1 − ℵ𝑗
𝑅)

𝑚

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗×𝑤𝑗
]
) 

⊗ ((𝜇𝑚+1
𝑅 )𝑤𝑚+1𝑘𝑚+1𝑒𝑖2𝜋(𝜔𝜇𝑚+1

𝑅 )𝑤𝑚+1𝑘𝑚+1
, 1 − (1 − ℵ𝑚+1

𝑅 )𝑘𝑚+1𝑤𝑚+1𝑒𝑖2𝜋[1−(1−𝜔ℵ𝑚+1
𝑅 )𝑘𝑚+1𝑤𝑚+1]) 

= ((∏ (𝜇𝑗
𝑅)

𝑚+1

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[∏ (𝜔𝜇𝑗

𝑅 )𝑚+1
𝑗=1

𝑘𝑗×𝑤𝑗]
, (1 − ∏ (1 − ℵ𝑗

𝑅)
𝑚+1

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔ℵ𝑗

𝑅 )𝑚+1
𝑗=1

𝑘𝑗×𝑤𝑗]
) 
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This shows that Eq (13) is true for 𝑛 = 𝑚 + 1, so, Eq (13) is true for all 𝑛. 

Here, we try to verify the proposed work in Eq (13) with the help of some suitable examples, for 

this, we use CIFN such as: 

𝑐1 = {
(𝑦1, ((0.6,0.7), (0.1,0.2))) , (𝑦2, ((0.61,0.71), (0.11,0.21))) ,

(𝑦3, ((0.62,0.72), (0.12,0.22))) , (𝑦4, ((0.63,0.73), (0.13,0.23))) ,
}, 

with weight vectors 0.4,0.3,0.2,0.1 and confidence levels 0.8,0.9,0.7,0.6, then by using the theory in 

Eq (10), we have 

CCIFWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,< 𝑘3, 𝑐3 >,< 𝑘4, 𝑐4 >) = 

((∏ (𝜇𝑗
𝑅)

4

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[∏ (𝜔𝜇𝑗

𝑅 )4
𝑗=1

𝑘𝑗×𝑤𝑗]
, (1 − ∏ (1 − ℵ𝑗

𝑅)
4

𝑗=1

𝑘𝑗×𝑤𝑗

) 𝑒
𝑖2𝜋[1−∏ (1−𝜔ℵ𝑗

𝑅 )4
𝑗=1

𝑘𝑗×𝑤𝑗]
) 

= ((0.6759,0.7622), (0.0873,0.1693)). 

Then CCIFWA and CCIFWG operators have the following properties: 

(i) (Monotonicity) if 𝜇𝑗
𝑅 ≥ 𝜇 ,

𝑗
𝑅, 𝜔𝜇𝑗

𝑅 ≥ 𝜔′
𝜇𝑗

𝑅
 and ℵ𝑗

𝑅 ≤ ℵ′
𝑗
𝑅

, 𝜔ℵ𝑗

𝑅 ≤ 𝜔′
ℵ𝑗

𝑅
 for all 𝑗, then 

𝐶𝐶𝐼𝐹𝑊𝐴(< 𝑘1, 𝑐1 >, < 𝑘2, 𝑐2 >, … , < 𝑘𝑛, 𝑐𝑛 >) ≥ 𝐶𝐶𝐼𝐹𝑊𝐴(< 𝑘1, 𝑐1
′ >, < 𝑘2, 𝑐2

′ >, … , < 𝑘𝑛 , 𝑐𝑛
′ >), (14) 

𝐶𝐶𝐼𝐹𝑊𝐺(< 𝑘1, 𝑐1 >, < 𝑘2, 𝑐2 >, … , < 𝑘𝑛 , 𝑐𝑛 >) ≥ 𝐶𝐶𝐼𝐹𝑊𝐺(< 𝑘1, 𝑐1
′ >, < 𝑘2, 𝑐2

′ >, … , < 𝑘𝑛 , 𝑐𝑛
′ >), (15) 

(ii) (Idempotency) If 𝑐 = ((𝜇𝑅, 𝜔𝜇
𝑅), (ℵ𝑅 , 𝜔ℵ

𝑅))  be a CIFN, 𝜇𝑗
𝑅 = 𝜇𝑅 , 𝜔𝜇𝑗

𝑅 = 𝜔𝜇
𝑅 , ℵ𝑗

𝑅 =

ℵ𝑅 𝑎𝑛𝑑 𝜔ℵ𝑗

𝑅 = 𝜔ℵ
𝑅 for all j, then 

𝐶𝐶𝐼𝐹𝑊𝐴(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) = 𝑘𝑐,     (16) 

and 

𝐶𝐶𝐼𝐹𝑊𝐺(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) = 𝑐𝑘 .     (17) 

(iii) (Boundedness) Prove that 

𝑚𝑖𝑛
1 ≤ 𝑗 ≤ 1

(𝑘𝑗𝑐𝑗) ≤ 𝐶𝐶𝐼𝐹𝑊𝐴(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) ≤
𝑚𝑎𝑥

1 ≤ 𝑗 ≤ 1(𝑘𝑗𝑐𝑗), (18) 

𝑚𝑖𝑛
1 ≤ 𝑗 ≤ 1

(𝑐𝑗
𝑘𝑗) ≤ 𝐶𝐶𝐼𝐹𝑊𝐺(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) ≤

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 1(𝑐𝑗

𝑘𝑗). (19) 

Definition 6: The CCIFOWA operator is defined as: 

CCIFOWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) =

𝑛
⊕

𝑗 = 1
𝑤𝑗(𝑘𝛿(𝑗)𝑐𝛿(𝑗)) 

= 𝑤1(𝑘𝛿(1)𝑐𝛿(1)) ⊕ 𝑤2(𝑘𝛿(2)𝑐𝛿(2)) ⊕ …⊕ 𝑤𝑛(𝑘𝛿(𝑛)𝑐𝛿(𝑛)).       (20) 

If 

𝑘1 = 𝑘2 =. . . = 𝑘𝑛 = 1, 

then the CCIFOWA operator reduces to CIF ordered weighted averaging (CIFOWA) operator. 
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CIFOWA(𝑐1, 𝑐2, … , 𝑐𝑛) =

𝑛
⊕

𝑗 = 1
𝑤𝑗𝑐𝛿(𝑗) = 𝑤1𝑐𝛿(1) ⊕ 𝑤2𝑐𝛿(2) ⊕ …⊕ 𝑤𝑛𝑐𝛿(𝑛).   (21) 

Definition 7: The CCIFOWG operator is defined as: 

CCIFOWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) =

𝑛
⊗

𝑗 = 1
(𝑐𝛿(𝑗)

𝑘𝛿(𝑗))
𝑤𝑗

 

= (𝑐𝛿(1)
𝑘𝛿(1))

𝑤1
⊗ (𝑐𝛿(2)

𝑘𝛿(2))
𝑤2

⊗ …⊗ (𝑐𝛿(𝑛)
𝑘𝛿(𝑛))

𝑤𝑛
.     (22) 

If 

𝑘1 = 𝑘2 =. . . = 𝑘𝑛 = 1, 

then the CCIFOWG operator reduces to CIF weighted ordered geometric (CIFOWG) operator. 

CIFOWG(𝑐1, 𝑐2, … , 𝑐𝑛) =

𝑛
⊗

𝑗 = 1
𝑐𝛿(𝑗)

𝑤𝑗 = 𝑐𝛿(1)
𝑤1 ⊗ 𝑐𝛿(2)

𝑤2 ⊗. . .⊗ 𝑐𝛿(𝑛)
𝑤𝑛 .   (23) 

Theorem 3: The aggregated value by using the CCIFOWA operator is also a CIFN, such that 

CCIFOWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

=

(

 
(1 − ∏ (1 − 𝜇𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)×𝑤𝑗
) 𝑒

𝑖2𝜋1−∏ (1−𝜔𝜇𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)×𝑤𝑗

,

(∏ (ℵ𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)×𝑤𝑗
) 𝑒

𝑖2𝜋 ∏ (𝜔ℵ𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)×𝑤𝑗

, )

 ,   (24) 

and the aggregated value by using the CCIFOWG operator is also a CIFN, such that  

CCIFOWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

= (
(∏ (𝜇𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)×𝑤𝑗
) 𝑒

𝑖2𝜋 ∏ (𝜔𝜇𝛿(𝑗)
𝑅 )𝑛

𝑗=1
𝑘𝛿(𝑗)×𝑤𝑗

,

(1 − ∏ (1 − ℵ𝛿(𝑗)
𝑅 )𝑛

𝑗=1
𝑘𝛿(𝑗)×𝑤𝑗) 𝑒

𝑖2𝜋(1−∏ (1−𝜔ℵ𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)×𝑤𝑗

,

).   (25) 

4. Einstein aggregation operations for CIF information using confidence levels 

The primary influence of the current analysis is to modify the presented operators by taking 

Einstein t-norm and t-conorm instead of simple algebraic t-norm and t-conorm. Therefore, first, we 

diagnosed certain Einstein operational laws with the help of CIF information and then we exposed the 

theory of CCIFEWA, CCIFEOWA, CCIFEWG, and CCIFEOWG operators and explained their 

valuable properties “idempotency, monotonicity, and boundedness” and results. 

Definition 8: Consider three CIFNs 

𝑐1 = ((𝜇1
𝑅, 𝜔𝜇1

𝑅 ), (ℵ1
𝑅 , 𝜔ℵ1

𝑅 )), 

𝑐2 = ((𝜇2
𝑅 , 𝜔𝜇2

𝑅 ), (ℵ2
𝑅 , 𝜔ℵ2

𝑅 )). 

and 
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c = ((𝜇𝑅 , 𝜔𝜇
𝑅), (ℵ𝑅 , 𝜔ℵ

𝑅)), 

then 

𝑐1 ⊕ 𝑐2 = (
𝜇1

𝑅+𝜇2
𝑅

1+𝜇1
𝑅𝜇2

𝑅 𝑒
𝑖2𝜋(

𝜔𝜇1
𝑅 +𝜔𝜇2

𝑅

1+𝜔𝜇1
𝑅 𝜔𝜇2

𝑅 )
,

ℵ1
𝑅ℵ2

𝑅

1+(1−ℵ1
𝑅)(1−ℵ2

𝑅)
𝑒

𝑖2𝜋(
𝜔1

𝑅𝜔ℵ2
𝑅

1+(1−𝜔ℵ1
𝑅 )(1−𝜔ℵ2

𝑅 )
)

),   (26) 

𝑐1 ⊗ 𝑐2 = (
𝜇1

𝑅𝜇2
𝑅

1+(1−𝜇1
𝑅)(1−𝜇2

𝑅)
𝑒

𝑖2𝜋(
𝜔𝜇1

𝑅 𝜔𝜇2
𝑅

1+(1−𝜔𝜇1
𝑅 )(1−𝜔𝜇2

𝑅 )
)
,

ℵ1
𝑅+ℵ2

𝑅

1+ℵ1
𝑅ℵ2

𝑅 𝑒
𝑖2𝜋(

𝜔1
𝑅+𝜔ℵ2

𝑅

1+𝜔ℵ1
𝑅 𝜔ℵ2

𝑅 )

),   (27) 

𝜏𝑐 = (
(1+𝜇𝑅)𝜏−(1−𝜇𝑅)𝜏

(1+𝜇𝑅)𝜏+(1−𝜇𝑅)𝜏
𝑒

𝑖2𝜋(
(1+𝜔𝜇

𝑅)𝜏−(1−𝜔𝜇
𝑅)𝜏

(1+𝜔𝜇
𝑅)𝜏+(1−𝜔𝜇

𝑅)𝜏
)
,

2ℵ𝑅𝜏

(2−ℵ𝑅)𝜏+ℵ𝑅𝜏 𝑒
𝑖2𝜋(

2𝜔ℵ
𝑅𝜏

(2−𝜔ℵ
𝑅)𝜏+𝜔ℵ

𝑅𝜏)

),   (28) 

𝑐𝜏 = (
2𝜇𝑅𝜏

(2−𝜇𝑅)𝜏+𝜇𝑅𝜏 𝑒
𝑖2𝜋(

2𝜔𝜇
𝑅𝜏

(2−𝜔𝜇
𝑅)𝜏+𝜔𝜇

𝑅𝜏)

′
(1+ℵ𝑅)𝜏−(1−ℵ𝑅)𝜏

(1+ℵ𝑅)𝜏+(1−ℵ𝑅)𝜏
𝑒

𝑖2𝜋(
(1+𝜔ℵ

𝑅)𝜏−(1−𝜔ℵ
𝑅𝜏

(1+𝜔ℵ
𝑅)𝜏+(1−𝜔ℵ

𝑅)𝜏
)

).   (29) 

Definition 9: The CCIFEWA operator is defined as: 

CCIFEWA(< 𝑘1, 𝑐1 >, < 𝑘2, 𝑐2 >, … , < 𝑘𝑛 , 𝑐𝑛 >) =

𝑛
⊕

𝑗 = 1
𝑤𝑗(𝑘𝑗𝑐𝑗) = 𝑤1(𝑘1𝑐1) ⊕ 𝑤2(𝑘2𝑐2) ⊕ … ⊕ 𝑤𝑛(𝑘𝑛𝑐𝑛). (30) 

If 

𝑘1 = 𝑘2 =. . . = 𝑘𝑛 = 1, 

then the CCIFEWA operator reduces to CIF weighted averaging (CIFEWA) operator. 

CIFEWA(𝑐1, 𝑐2, … , 𝑐𝑛) =

𝑛
⊕

𝑗 = 1
𝑤𝑗𝑐𝑗 = 𝑤1𝑐1 ⊕ 𝑤2𝑐2 ⊕ …⊕ 𝑤𝑛𝑐𝑛.    (31) 

Theorem 4: The aggregated value by using the CCIFEWA operator is also a CIFN, such that 

CCIFEWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

=

(

 
 
 
 
 ∏ (1+𝜇𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗×𝑤𝑗
−(1−𝜇𝑗

𝑅)
𝑘𝑗×𝑤𝑗

∏ (1+𝜇𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗×𝑤𝑗
+(1−𝜇𝑗

𝑅)
𝑘𝑗×𝑤𝑗

𝑒

𝑖2𝜋[
∏ (1+𝜔𝜇𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗×𝑤𝑗
−(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗×𝑤𝑗

∏ (1+𝜔𝜇𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗×𝑤𝑗
+(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗×𝑤𝑗

]

,

2∏ (ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗×𝑤𝑗

∏ (2−ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗×𝑤𝑗+∏ (ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗×𝑤𝑗
𝑒

𝑖2𝜋[
2∏ (𝜔ℵ𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗×𝑤𝑗

∏ (2−𝜔ℵ𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗×𝑤𝑗
+∏ (𝜔ℵ𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗×𝑤𝑗
]

,
)

 
 
 
 
 

.   (32) 
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Proof: Let 

CCIFEWA(< 𝑘1, 𝑐1 >, < 𝑘2, 𝑐2 >, … , < 𝑘𝑛 , 𝑐𝑛 >) =

𝑛
⊕

𝑗 = 1
𝑤𝑗(𝑘𝑗𝑐𝑗) = 𝑤1(𝑘1𝑐1) ⊕ 𝑤2(𝑘2𝑐2) ⊕ … ⊕ 𝑤𝑛(𝑘𝑛𝑐𝑛) 

=

(

 
 
 
 
 
 ∏ (1 + 𝜇𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗𝑤𝑗
− (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + 𝜇𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗
+ (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋[
∏ (1+𝜔𝜇𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔𝜇𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗𝑤𝑗
+(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]

,

2∏ (ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗

∏ (2 − ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗
+ ∏ (ℵ𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗𝑤𝑗
𝑒

𝑖2𝜋

[
 
 
 2∏ (𝜔ℵ𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔ℵ𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗𝑤𝑗
+∏ (𝜔ℵ𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗𝑤𝑗

]
 
 
 

,
)

 
 
 
 
 
 

. 

We use the MI to prove Eq (32), such that for 𝑛 = 2, then 

𝑤1(𝑘1𝑐1)

=

(

 
 (1 + 𝜇1

𝑅)𝑤1𝑘1 − (1 − 𝜇1
𝑅)𝑤1𝑘1

(1 + 𝜇1
𝑅)𝑤1𝑘1 + (1 − 𝜇1

𝑅)𝑤1𝑘1
𝑒

𝑖2𝜋(
(1+𝜔𝜇1

𝑅 )
𝑤1𝑘1−(1−𝜔𝜇1

𝑅 )
𝑤1𝑘1

(1+𝜔𝜇1
𝑅 )

𝑤1𝑘1
+(1−𝜔𝜇1

𝑅 )
𝑤1𝑘1

) 2ℵ1
𝑅𝑤1𝑘1

(2 − ℵ1
𝑅)𝑤1𝑘1 + ℵ1

𝑅𝑤1𝑘1
𝑒

𝑖2𝜋(
2𝜔ℵ1

𝑅 𝑤1𝑘1

(2−𝜔ℵ1
𝑅 )𝑤1𝑘1+𝜔ℵ1

𝑅 𝑤1𝑘1
)

)

 
 

, 

𝑤2(𝑘2𝑐2)

=

(

 
 (1 + 𝜇2

𝑅)𝑤2𝑘2 − (1 − 𝜇2
𝑅)𝑤2𝑘2

(1 + 𝜇2
𝑅)𝑤2𝑘2 + (1 − 𝜇2

𝑅)𝑤2𝑘2
𝑒

𝑖2𝜋(
(1+𝜔𝜇2

𝑅 )𝑤2𝑘2−(1−𝜔𝜇2
𝑅 )𝑤2𝑘2

(1+𝜔𝜇2
𝑅 )𝑤2𝑘2+(1−𝜔𝜇2

𝑅 )𝑤2𝑘2
) 2ℵ2

𝑅𝑤2𝑘2

(2 − ℵ2
𝑅)𝑤2𝑘2 + ℵ2

𝑅𝑤2𝑘2
𝑒

𝑖2𝜋(
2𝜔ℵ2

𝑅 𝑤2𝑘2

(2−𝜔ℵ2
𝑅 )𝑤2𝑘2+𝜔ℵ2

𝑅 𝑤2𝑘2
)

)

 
 

. 

then, 

CCIFEWA(< k1, c1 >,< k2, c2 >) = (𝑤1𝑘1)𝑐1 ⊕ (𝑤2𝑘2)𝑐2 

=

(

 
 (1 + 𝜇1

𝑅)𝑤1𝑘1 − (1 − 𝜇1
𝑅)𝑤1𝑘1

(1 + 𝜇1
𝑅)𝑤1𝑘1 + (1 − 𝜇1

𝑅)𝑤1𝑘1
𝑒

𝑖2𝜋(
(1+𝜔𝜇1

𝑅 )
𝑤1𝑘1−(1−𝜔𝜇1

𝑅 )
𝑤1𝑘1

(1+𝜔𝜇1
𝑅 )

𝑤1𝑘1
+(1−𝜔𝜇1

𝑅 )
𝑤1𝑘1

) 2ℵ1
𝑅𝑤1𝑘1

(2 − ℵ1
𝑅)𝑤1𝑘1 + ℵ1

𝑅𝑤1𝑘1
𝑒

𝑖2𝜋(
2𝜔ℵ1

𝑅 𝑤1𝑘1

(2−𝜔ℵ1
𝑅 )

𝑤1𝑘1
+𝜔ℵ1

𝑅 𝑤1𝑘1
)

)

 
 

 

(

 
 (1 + 𝜇2

𝑅)𝑤2𝑘2 − (1 − 𝜇2
𝑅)𝑤2𝑘2

(1 + 𝜇2
𝑅)𝑤2𝑘2 + (1 − 𝜇2

𝑅)𝑤2𝑘2
𝑒

𝑖2𝜋(
(1+𝜔𝜇2

𝑅 )
𝑤2𝑘2−(1−𝜔𝜇2

𝑅 )
𝑤2𝑘2

(1+𝜔𝜇2
𝑅 )

𝑤2𝑘2+(1−𝜔𝜇2
𝑅 )

𝑤2𝑘2
) 2ℵ2

𝑅𝑤2𝑘2

(2 − ℵ2
𝑅)𝑤2𝑘2 + ℵ2

𝑅𝑤2𝑘2
𝑒

𝑖2𝜋(
2𝜔ℵ2

𝑅 𝑤2𝑘2

(2−𝜔ℵ2
𝑅 )

𝑤2𝑘2
+𝜔ℵ2

𝑅 𝑤2𝑘2
)

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1 + 𝜇1
𝑅)𝑤1𝑘1 − (1 − 𝜇1

𝑅)𝑤1𝑘1

(1 + 𝜇1
𝑅)𝑤1𝑘1 + (1 − 𝜇1

𝑅)𝑤1𝑘1
+

(1 + 𝜇2
𝑅)𝑤2𝑘2 − (1 − 𝜇2

𝑅)𝑤2𝑘2

(1 + 𝜇2
𝑅)𝑤2𝑘2 + (1 − 𝜇2

𝑅)𝑤2𝑘2

1 + (
(1 + 𝜇1

𝑅)𝑤1𝑘1 − (1 − 𝜇1
𝑅)𝑤1𝑘1

(1 + 𝜇1
𝑅)𝑤1𝑘1 + (1 − 𝜇1

𝑅)𝑤1𝑘1
) (

(1 + 𝜇2
𝑅)𝑤2𝑘2 − (1 − 𝜇2

𝑅)𝑤2𝑘2

(1 + 𝜇2
𝑅)𝑤2𝑘2 + (1 − 𝜇2

𝑅)𝑤2𝑘2
)

𝑒

𝑖2𝜋

[
 
 
 
 (

(1+𝜔𝜇1
𝑅 )𝑤1𝑘1−(1−𝜔𝜇1

𝑅 )𝑤1𝑘1

(1+𝜔𝜇1
𝑅 )𝑤1𝑘1+(1−𝜔𝜇1

𝑅 )𝑤1𝑘1
)+(

(1+𝜔𝜇2
𝑅 )𝑤2𝑘2−(1−𝜔𝜇2

𝑅 )𝑤2𝑘2

(1+𝜔𝜇2
𝑅 )𝑤2𝑘2+(1−𝜔𝜇2

𝑅 )𝑤2𝑘2
)

1+(
(1+𝜔𝜇1

𝑅 )𝑤1𝑘1−(1−𝜔𝜇1
𝑅 )𝑤1𝑘1

(1+𝜔𝜇1
𝑅 )𝑤1𝑘1+(1−𝜔𝜇1

𝑅 )𝑤1𝑘1
)(

(1+𝜔𝜇2
𝑅 )𝑤2𝑘2−(1−𝜔𝜇2

𝑅 )𝑤2𝑘2

(1+𝜔𝜇2
𝑅 )𝑤2𝑘2+(1−𝜔𝜇2

𝑅 )𝑤2𝑘2
)
]
 
 
 
 

,

2ℵ1
𝑅𝑤1𝑘1

(2 − ℵ1
𝑅)𝑤1𝑘1 + ℵ1

𝑅𝑤1𝑘1

2ℵ2
𝑅𝑤2𝑘2

(2 − ℵ2
𝑅)𝑤2𝑘2 + ℵ2

𝑅𝑤2𝑘2

1 + (1 −
2ℵ1

𝑅𝑤1𝑘1

(2 − ℵ1
𝑅)𝑤1𝑘1 + ℵ1

𝑅𝑤1𝑘1
)(1 −

2ℵ2
𝑅𝑤2𝑘2

(2 − ℵ2
𝑅)𝑤2𝑘2 + ℵ2

𝑅𝑤2𝑘2
)

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 

(
2𝜔ℵ1

𝑅 𝑤1𝑘1

(2−𝜔ℵ1
𝑅 )𝑤1𝑘1+𝜔ℵ1

𝑅 𝑤1𝑘1
)((

2𝜔ℵ2
𝑅 𝑤2𝑘2

(2−𝜔ℵ2
𝑅 )𝑤2𝑘2+𝜔ℵ2

𝑅 𝑤2𝑘2
))

1+(1−
2𝜔ℵ1

𝑅 𝑤1𝑘1

(2−𝜔ℵ1
𝑅 )𝑤1𝑘1+𝜔ℵ1

𝑅 𝑤1𝑘1
)(1−

2𝜔ℵ2
𝑅 𝑤2𝑘2

(2−𝜔ℵ2
𝑅 )𝑤2𝑘2+𝜔ℵ2

𝑅 𝑤2𝑘2
)

]
 
 
 
 
 
 
 

, )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 ∏ (1 + 𝜇𝑗

𝑅)2
𝑗=1

𝑘𝑗𝑤𝑗
− (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + 𝜇𝑗
𝑅)2

𝑗=1

𝑘𝑗𝑤𝑗
+ (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋[
∏ (1+𝜔𝜇𝑗

𝑅 )2
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔𝜇𝑗
𝑅 )2

𝑗=1

𝑘𝑗𝑤𝑗
+(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]

,

2∏ (ℵ𝑗
𝑅)2

𝑗=1
𝑘𝑗𝑤𝑗

∏ (2 − ℵ𝑗
𝑅)2

𝑗=1
𝑘𝑗𝑤𝑗 + ∏ (ℵ𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗𝑤𝑗
𝑒

𝑖2𝜋[
2∏ (𝜔ℵ𝑗

𝑅 )2
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔ℵ𝑗
𝑅 )2

𝑗=1

𝑘𝑗𝑤𝑗+∏ (𝜔ℵ𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗𝑤𝑗
]

,
)

 
 
 
 
 
 

. 

Suppose Eq (32) is true for 𝑛 = 𝑚, that is 

CCIFEWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑚, 𝑐𝑚 >) = 𝑤1(𝑘1𝑐1) ⊕ 𝑤2(𝑘2𝑐2) ⊕ …⊕ 𝑤𝑚(𝑘𝑚𝑐𝑚) 

=

(

 
 
 
 
 
 ∏ (1 + 𝜇𝑗

𝑅)𝑚
𝑗=1

𝑘𝑗𝑤𝑗
− (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + 𝜇𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
+ (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋[
∏ (1+𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔𝜇𝑗
𝑅 )𝑚

𝑗=1

𝑘𝑗𝑤𝑗
+(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]

,

2∏ (ℵ𝑗
𝑅)𝑚

𝑗=1
𝑘𝑗𝑤𝑗

∏ (2 − ℵ𝑗
𝑅)𝑚

𝑗=1
𝑘𝑗𝑤𝑗 + ∏ (ℵ𝑗

𝑅)𝑚
𝑗=1

𝑘𝑗𝑤𝑗
𝑒

𝑖2𝜋[
2∏ (𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔ℵ𝑗
𝑅 )𝑚

𝑗=1

𝑘𝑗𝑤𝑗+∏ (𝜔ℵ𝑗
𝑅 )𝑚

𝑗=1

𝑘𝑗𝑤𝑗
]

,
)

 
 
 
 
 
 

. 

For 𝑛 = 𝑚 + 1, we have 

CCIFEWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑚, 𝑐𝑚 >,< 𝑘𝑚+1, 𝑐𝑚+1 >)

= 𝑤1(𝑘1𝑐1) ⊕ 𝑤2(𝑘2𝑐2) ⊕ …⊕ 𝑤𝑚(𝑘𝑚𝑐𝑚) ⊕ 𝑤𝑚+1(𝑘𝑚+1𝑐𝑚+1) 
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=

(

 
 
 
 
 
 ∏ (1 + 𝜇𝑗

𝑅)𝑚
𝑗=1

𝑘𝑗𝑤𝑗
− (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + 𝜇𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
+ (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋[
∏ (1+𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔𝜇𝑗
𝑅 )𝑚

𝑗=1

𝑘𝑗𝑤𝑗
+(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]

,

2∏ (ℵ𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗

∏ (2 − ℵ𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
+ ∏ (ℵ𝑗

𝑅)𝑚
𝑗=1

𝑘𝑗𝑤𝑗
𝑒

𝑖2𝜋

[
 
 
 2∏ (𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔ℵ𝑗
𝑅 )𝑚

𝑗=1

𝑘𝑗𝑤𝑗
+∏ (𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗

]
 
 
 

,
)

 
 
 
 
 
 

⊕ 𝑤𝑚+1(𝑘𝑚+1𝑐𝑚+1) 

=

(

 
 
 
 
 
 ∏ (1 + 𝜇𝑗

𝑅)𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗
− (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + 𝜇𝑗
𝑅)𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗
+ (1 − 𝜇𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋[
∏ (1+𝜔𝜇𝑗

𝑅 )𝑚+1`
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔𝜇𝑗
𝑅 )𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗
+(1−𝜔𝜇𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]

,

2∏ (ℵ𝑗
𝑅)𝑚+1

𝑗=1
𝑘𝑗𝑤𝑗

∏ (2 − ℵ𝑗
𝑅)𝑚+1

𝑗=1
𝑘𝑗𝑤𝑗 + ∏ (ℵ𝑗

𝑅)𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗
𝑒

𝑖2𝜋[
2∏ (𝜔ℵ𝑗

𝑅 )𝑚+1`
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔ℵ𝑗
𝑅 )𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗+∏ (𝜔ℵ𝑗
𝑅 )𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗
]

,
)

 
 
 
 
 
 

. 

This shows that Eq (32) is true, for 𝑛 = 𝑚 + 1, so, Eq (32) is true for all 𝑛. 

Definition 10: The CCIFEWG operator is defined as: 

CCIFEWG(< 𝑘1, 𝑐1 >, < 𝑘2, 𝑐2 >, … , < 𝑘𝑛 , 𝑐𝑛 >) =

𝑛
⊗

𝑗 = 1
(𝑐𝑗

𝑘𝑗)𝑤𝑗 = (𝑐1
𝑘1)𝑤1 ⊗ (𝑐2

𝑘2)𝑤2 ⊗ … ⊗ (𝑐𝑛
𝑘𝑛)𝑤𝑛 .  (33) 

If 

𝑘1 = 𝑘2 =. . . = 𝑘𝑛 = 1, 

then the CCIFWG operator reduces to CIF weighted geometric (CIFEWG) operator. 

CIFEWG(𝑐1, 𝑐2, … , 𝑐𝑛) =

𝑛
⊗

𝑗 = 1
𝑐𝑗

𝑤𝑗 = 𝑐1
𝑤1 ⊗ 𝑐2

𝑤2 ⊗. . .⊗ 𝑐𝑛
𝑤𝑛 .   (34) 

Theorem 5: The aggregated value by using the CCIFEWG operator is also a CIFN, such that 

CCIFEWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

=

(

 
 
 
 
 2(∏ (𝜇𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗𝑤𝑗
)

(∏ (2−𝜇𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗
)+(∏ (𝜇𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗𝑤𝑗
)
𝑒

𝑖2𝜋[
2∏ (𝜔𝜇𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔𝜇𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗𝑤𝑗+∏ (𝜔𝜇𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗𝑤𝑗
]

,

∏ (1+ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗−(1−ℵ𝑗
𝑅)

𝑘𝑗𝑤𝑗

∏ (1+ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗−(1−ℵ𝑗
𝑅)

𝑘𝑗𝑤𝑗
𝑒

𝑖2𝜋[
∏ (1+𝜔ℵ𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔ℵ𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]

,
)

 
 
 
 
 

.   (35) 
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Proof: Let 

CCIFWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) = (𝑐1
𝑘1)𝑤1 ⊗ (𝑐2

𝑘2)𝑤2 ⊗ …⊗ (𝑐𝑛
𝑘𝑛)𝑤𝑛

=

(

 
 
 
 
 
 2(∏ (𝜇𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗𝑤𝑗
)

(∏ (2 − 𝜇𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗
) + (∏ (𝜇𝑗

𝑅)𝑛
𝑗=1

𝑘𝑗𝑤𝑗
)
𝑒

𝑖2𝜋[
2∏ (𝜔𝜇𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔𝜇𝑗
𝑅 )𝑛

𝑗=1
𝑘𝑗𝑤𝑗+∏ (𝜔𝜇𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗𝑤𝑗
]

,

∏ (1 + ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗
− (1 − ℵ𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + ℵ𝑗
𝑅)𝑛

𝑗=1

𝑘𝑗𝑤𝑗
− (1 − ℵ𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋

[
 
 
 ∏ (1+𝜔ℵ𝑗

𝑅 )𝑛
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔ℵ𝑗
𝑅 )𝑛

𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]
 
 
 

,
)

 
 
 
 
 
 

. 

We use MI to prove Eq (35), we have for n=2, then 

𝑐1
𝑤1𝑘1 =

(

 
 
 
 

2(𝜇1
𝑅)𝑤1𝑘1

(2 − 𝜇1
𝑅)𝑤1𝑘1 + (𝜇1

𝑅)𝑤1𝑘1
𝑒

𝑖2𝜋(
2(𝜔𝜇1

𝑅 )
𝑤1𝑘1

(2−𝜔𝜇1
𝑅 )

𝑤1𝑘1
+(𝜔𝜇1

𝑅 )
𝑤1𝑘1

)

(1 + ℵ1
𝑅)𝑤1𝑘1 − (1 − ℵ1

𝑅)𝑤1𝑘1

(1 + ℵ1
𝑅)𝑤1𝑘1 + (1 − ℵ1

𝑅)𝑤1𝑘1
𝑒

𝑖2𝜋(
(1+𝜔ℵ1

𝑅 )𝑤1𝑘1−(1−𝜔ℵ1
𝑅 )𝑤1𝑘1

(1+𝜔ℵ1
𝑅 )𝑤1𝑘1+(1−𝜔ℵ1

𝑅 )𝑤1𝑘1
)

)

 
 
 
 

, 

𝑐2
𝑤2𝑘2 =

(

 
 
 
 

2(𝜇2
𝑅)𝑤2𝑘2

(2 − 𝜇2
𝑅)𝑤2𝑘2 + (𝜇2

𝑅)𝑤2𝑘2
𝑒

𝑖2𝜋(
2(𝜔𝜇2

𝑅 )
𝑤2𝑘2

(2−𝜔𝜇2
𝑅 )

𝑤2𝑘2+(𝜔𝜇2
𝑅 )

𝑤2𝑘2
)

(1 + ℵ2
𝑅)𝑤2𝑘2 − (1 − ℵ2

𝑅)𝑤2𝑘2

(1 + ℵ2
𝑅)𝑤2𝑘2 + (1 − ℵ2

𝑅)𝑤2𝑘2
𝑒

𝑖2𝜋(
(1+𝜔ℵ2

𝑅 )𝑤2𝑘2−(1−𝜔ℵ2
𝑅 )𝑤2𝑘2

(1+𝜔ℵ2
𝑅 )𝑤2𝑘2+(1−𝜔ℵ2

𝑅 )𝑤2𝑘2
)

)

 
 
 
 

. 

then, 

CCIFWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >) = 𝑐1
𝑘1𝑤1 ⊗ 𝑐2

𝑘2𝑤2

=

(

 
 
 
 

2(𝜇1
𝑅)𝑤1𝑘1

(2 − 𝜇1
𝑅)𝑤1𝑘1 + (𝜇1

𝑅)𝑤1𝑘1
𝑒

𝑖2𝜋(
2(𝜔𝜇1

𝑅 )
𝑤1𝑘1

(2−𝜔𝜇1
𝑅 )

𝑤1𝑘1
+(𝜔𝜇1

𝑅 )
𝑤1𝑘1

)

,

(1 + ℵ1
𝑅)𝑤1𝑘1 − (1 − ℵ1

𝑅)𝑤1𝑘1

(1 + ℵ1
𝑅)𝑤1𝑘1 + (1 − ℵ1

𝑅)𝑤1𝑘1
𝑒

𝑖2𝜋(
(1+𝜔ℵ1

𝑅 )𝑤1𝑘1−(1−𝜔ℵ1
𝑅 )𝑤1𝑘1

(1+𝜔ℵ1
𝑅 )𝑤1𝑘1+(1−𝜔ℵ1

𝑅 )𝑤1𝑘1
)

,
)

 
 
 
 

⊗

(

 
 
 
 

2(𝜇2
𝑅)𝑤2𝑘2

(2 − 𝜇2
𝑅)𝑤2𝑘2 + (𝜇2

𝑅)𝑤2𝑘2
𝑒

𝑖2𝜋(
2(𝜔𝜇2

𝑅 )
𝑤2𝑘2

(2−𝜔𝜇2
𝑅 )

𝑤2𝑘2+(𝜔𝜇2
𝑅 )

𝑤2𝑘2
)

,

(1 + ℵ2
𝑅)𝑤2𝑘2 − (1 − ℵ2

𝑅)𝑤2𝑘2

(1 + ℵ2
𝑅)𝑤2𝑘2 + (1 − ℵ2

𝑅)𝑤2𝑘2
𝑒

𝑖2𝜋(
(1+𝜔ℵ2

𝑅 )𝑤2𝑘2−(1−𝜔ℵ2
𝑅 )𝑤2𝑘2

(1+𝜔ℵ2
𝑅 )𝑤2𝑘2+(1−𝜔ℵ2

𝑅 )𝑤2𝑘2
)

,
)

 
 
 
 

 



6052 

AIMS Mathematics  Volume 8, Issue 3, 6036–6063. 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(
2(𝜇1

𝑅)𝑤1𝑘1

(2 − 𝜇1
𝑅)𝑤1𝑘1 + (𝜇1

𝑅)𝑤1𝑘1
) (

2(𝜇2
𝑅)𝑤2𝑘2

(2 − 𝜇2
𝑅)𝑤2𝑘2 + (𝜇2

𝑅)𝑤2𝑘2
)

1 + (1 −
2(𝜇1

𝑅)𝑤1𝑘1

(2 − 𝜇1
𝑅)𝑤1𝑘1 + (𝜇1

𝑅)𝑤1𝑘1
) (1 −

2(𝜇2
𝑅)𝑤2𝑘2

(2 − 𝜇2
𝑅)𝑤2𝑘2 + (𝜇2

𝑅)𝑤2𝑘2
)

𝑒

𝑖2𝜋

[
 
 
 
 
 
 

(
2(𝜔𝜇1

𝑅 )
𝑤1𝑘1

(2−𝜔𝜇1
𝑅 )

𝑤1𝑘1
+(𝜔𝜇1

𝑅 )
𝑤1𝑘1

)(
2(𝜔𝜇2

𝑅 )
𝑤2𝑘2

(2−𝜔𝜇2
𝑅 )

𝑤2𝑘2
+(𝜔𝜇2

𝑅 )
𝑤2𝑘2

)

1+(1−
2(𝜔𝜇1

𝑅 )
𝑤1𝑘1

(2−𝜔𝜇1
𝑅 )

𝑤1𝑘1
+(𝜔𝜇1

𝑅 )
𝑤1𝑘1

)(1−
2(𝜔𝜇2

𝑅 )
𝑤2𝑘2

(2−𝜔𝜇2
𝑅 )

𝑤2𝑘2+(𝜔𝜇2
𝑅 )

𝑤2𝑘2
)

]
 
 
 
 
 
 

,

(1 + ℵ1
𝑅)𝑤1𝑘1 − (1 − ℵ1

𝑅)𝑤1𝑘1

(1 + ℵ1
𝑅)𝑤1𝑘1 + (1 − ℵ1

𝑅)𝑤1𝑘1
+

(1 + ℵ2
𝑅)𝑤2𝑘2 − (1 − ℵ2

𝑅)𝑤2𝑘2

(1 + ℵ2
𝑅)𝑤2𝑘2 + (1 − ℵ2

𝑅)𝑤2𝑘2

1 + (
(1 + ℵ1

𝑅)𝑤1𝑘1 − (1 − ℵ1
𝑅)𝑤1𝑘1

(1 + ℵ1
𝑅)𝑤1𝑘1 + (1 − ℵ1

𝑅)𝑤1𝑘1
) (

(1 + ℵ2
𝑅)𝑤2𝑘2 − (1 − ℵ2

𝑅)𝑤2𝑘2

(1 + ℵ2
𝑅)𝑤2𝑘2 + (1 − ℵ2

𝑅)𝑤2𝑘2
)

𝑒

𝑖2𝜋

[
 
 
 
 
 (

(1+𝜔ℵ1
𝑅 )𝑤1𝑘1−(1−𝜔ℵ1

𝑅 )𝑤1𝑘1

(1+𝜔ℵ1
𝑅 )𝑤1𝑘1+(1−𝜔ℵ1

𝑅 )𝑤1𝑘1
)+(

(1+𝜔ℵ2
𝑅 )𝑤2𝑘2−(1−𝜔ℵ2

𝑅 )𝑤2𝑘2

(1+𝜔ℵ2
𝑅 )𝑤2𝑘2+(1−𝜔ℵ2

𝑅 )𝑤2𝑘2
)

1+(
(1+𝜔ℵ1

𝑅 )𝑤1𝑘1−(1−𝜔ℵ1
𝑅 )𝑤1𝑘1

(1+𝜔ℵ1
𝑅 )𝑤1𝑘1+(1−𝜔ℵ1

𝑅 )𝑤1𝑘1
)(

(1+𝜔ℵ2
𝑅 )𝑤2𝑘2−(1−𝜔ℵ2

𝑅 )𝑤2𝑘2

(1+𝜔ℵ2
𝑅 )𝑤2𝑘2+(1−𝜔ℵ2

𝑅 )𝑤2𝑘2
)
]
 
 
 
 
 

, )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 2∏ (𝜇𝑗

𝑅)2
𝑗=1

𝑘𝑗𝑤𝑗

(∏ (2 − 𝜇𝑗
𝑅)2

𝑗=1

𝑘𝑗𝑤𝑗
) + (∏ (𝜇𝑗

𝑅)2
𝑗=1

𝑘𝑗𝑤𝑗
)
𝑒

𝑖2𝜋[
2∏ (𝜔𝜇𝑗

𝑅 )2
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔𝜇𝑗
𝑅 )2

𝑗=1
𝑘𝑗𝑤𝑗+∏ (𝜔𝜇𝑗

𝑅 )2
𝑗=1

𝑘𝑗𝑤𝑗
]

,

∏ (1 + ℵ𝑗
𝑅)2

𝑗=1
𝑘𝑗𝑤𝑗 − (1 − ℵ𝑗

𝑅)𝑘𝑗𝑤𝑗

∏ (1 + ℵ𝑗
𝑅)2

𝑗=1
𝑘𝑗𝑤𝑗 − (1 − ℵ𝑗

𝑅)𝑘𝑗𝑤𝑗
𝑒

𝑖2𝜋[
∏ (1+𝜔ℵ𝑗

𝑅 )2
𝑗=1

𝑘𝑗𝑤𝑗−(1−𝜔ℵ𝑗
𝑅 )

𝑘𝑗𝑤𝑗

∏ (1+𝜔ℵ𝑗
𝑅 )2

𝑗=1

𝑘𝑗𝑤𝑗−(1−𝜔ℵ𝑗
𝑅 )

𝑘𝑗𝑤𝑗
]

,
)

 
 
 
 
 
 

 

Suppose Eq (35) is true for 𝑛 = 𝑚, that is, 

CCIFEWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑚, 𝑐𝑚 >) = 𝑐1
𝑘1𝑤1 ⊗ 𝑐2

𝑘2𝑤2 ⊗ …⊗ 𝑐𝑚
𝑘𝑚𝑤𝑚

=

(

 
 
 
 
 
 2∏ (𝜇𝑗

𝑅)𝑚
𝑗=1

𝑘𝑗𝑤𝑗

(∏ (2 − 𝜇𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
) + (∏ (𝜇𝑗

𝑅)𝑚
𝑗=1

𝑘𝑗𝑤𝑗
)
𝑒

𝑖2𝜋[
2∏ (𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔𝜇𝑗
𝑅 )𝑚

𝑗=1
𝑘𝑗𝑤𝑗+∏ (𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗
]

,

∏ (1 + ℵ𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
− (1 − ℵ𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + ℵ𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
− (1 − ℵ𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋

[
 
 
 ∏ (1+𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔ℵ𝑗
𝑅 )𝑚

𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]
 
 
 

,
)

 
 
 
 
 
 

. 

For 𝑛 = 𝑚 + 1, we have 
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CCIFEWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑚, 𝑐𝑚 >,< 𝑘𝑚+1, 𝑐𝑚+1 >)

= 𝑐1
𝑘1𝑤1 ⊗ 𝑐2

𝑘2𝑤2 ⊗ …⊗ 𝑐𝑚
𝑘𝑚𝑤𝑚 ⊗ 𝑐𝑚+1

𝑘𝑚+1𝑤𝑚+1

=

(

 
 
 
 
 
 2∏ (𝜇𝑗

𝑅)𝑚
𝑗=1

𝑘𝑗𝑤𝑗

(∏ (2 − 𝜇𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
) + (∏ (𝜇𝑗

𝑅)𝑚
𝑗=1

𝑘𝑗𝑤𝑗
)
𝑒

𝑖2𝜋[
2∏ (𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔𝜇𝑗
𝑅 )𝑚

𝑗=1
𝑘𝑗𝑤𝑗+∏ (𝜔𝜇𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗
]

,

∏ (1 + ℵ𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
− (1 − ℵ𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + ℵ𝑗
𝑅)𝑚

𝑗=1

𝑘𝑗𝑤𝑗
− (1 − ℵ𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋

[
 
 
 ∏ (1+𝜔ℵ𝑗

𝑅 )𝑚
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔ℵ𝑗
𝑅 )𝑚

𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]
 
 
 

,
)

 
 
 
 
 
 

⊗ 𝑐𝑚+1
𝑘𝑚+1𝑤𝑚+1

=

(

 
 
 
 
 
 2∏ (𝜇𝑗

𝑅)𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2 − 𝜇𝑗
𝑅)𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗
+ ∏ (𝜇𝑗

𝑅)𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗
𝑒

𝑖2𝜋[
2∏ (𝜔𝜇𝑗

𝑅 )𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗

∏ (2−𝜔𝜇𝑗
𝑅 )𝑚+1

𝑗=1
𝑘𝑗𝑤𝑗+∏ (𝜔𝜇𝑗

𝑅 )𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗
]

,

∏ (1 + ℵ𝑗
𝑅)𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗
− (1 − ℵ𝑗

𝑅)
𝑘𝑗𝑤𝑗

∏ (1 + ℵ𝑗
𝑅)𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗
− (1 − ℵ𝑗

𝑅)
𝑘𝑗𝑤𝑗

𝑒

𝑖2𝜋

[
 
 
 ∏ (1+𝜔ℵ𝑗

𝑅 )𝑚+1
𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

∏ (1+𝜔ℵ𝑗
𝑅 )𝑚+1

𝑗=1

𝑘𝑗𝑤𝑗
−(1−𝜔ℵ𝑗

𝑅 )
𝑘𝑗𝑤𝑗

]
 
 
 

,
)

 
 
 
 
 
 

. 

This shows that Eq (35) is true for 𝑛 = 𝑚 + 1, so, Eq (35) is true for all 𝑛. 

Definition 11: The CCIFEOWA operator is defined as: 

CCIFEOWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

=

𝑛
⊕

𝑗 = 1
𝑤𝑗(𝑘𝛿(𝑗)𝑐𝛿(𝑗)) = 𝑤1(𝑘𝛿(1)𝑐𝛿(1)) ⊕ 𝑤2(𝑘𝛿(2)𝑐𝛿(2)) ⊕ …⊕ 𝑤𝑛(𝑘𝛿(𝑛)𝑐𝛿(𝑛)). (36) 

If 

𝑘1 = 𝑘2 =. . . = 𝑘𝑛 = 1, 

then the CCIFEOWA operator reduces to CIF ordered weighted averaging (CIFEOWA) operator. 

CIFEOWA(𝑐1, 𝑐2 , … , 𝑐𝑛) =

𝑛
⊕

𝑗 = 1
𝑤𝑗𝑐𝛿(𝑗) = 𝑤1𝑐𝛿(1) ⊕ 𝑤2𝑐𝛿(2) ⊕ …⊕ 𝑤𝑛𝑐𝛿(𝑛).  (37) 

Definition 12: The CCIFEOWG operator is defined as: 

CCIFEWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

=

𝑛
⊗

𝑗 = 1
(𝑐𝛿(𝑗)

𝑘𝛿(𝑗))𝑤𝑗 = (𝑐𝛿(1)
𝑘𝛿(1))𝑤1 ⊗ (𝑐𝛿(2)

𝑘𝛿(2))𝑤2 ⊗ …⊗ (𝑐𝛿(𝑛)
𝑘𝛿(𝑛))𝑤𝑛 .  (38) 

If 

𝑘1 = 𝑘2 =. . . = 𝑘𝑛 = 1, 

then the CCIFEOWG operator reduces to CIF weighted ordered geometric (CIFEOWG) operator. 
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CIFEWG(𝑐1, 𝑐2, … , 𝑐𝑛) =

𝑛
⊗

𝑗 = 1
𝑐𝛿(𝑗)

𝑤𝑗 = 𝑐𝛿(1)
𝑤1 ⊗ 𝑐𝛿(2)

𝑤2 ⊗. . .⊗ 𝑐𝛿(𝑛)
𝑤𝑛 .   (39) 

Theorem 6: The aggregated value by using the CCIFEOWA operator is also a CIFN, such that 

CCIFEOWA(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

=

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 ∏ (1+𝜇𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
−(1−𝜇𝛿(𝑗)

𝑅 )
𝑘𝛿(𝑗)𝑤𝑗

∏ (1+𝜇𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
+(1−𝜇𝛿(𝑗)

𝑅 )
𝑘𝛿(𝑗)𝑤𝑗

𝑒

𝑖2𝜋[
∏ (1+𝜔𝜇𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
−(1−𝜔𝜇𝛿(𝑗)

𝑅 )
𝑘𝛿(𝑗)𝑤𝑗

∏ (1+𝜔𝜇𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
+(1−𝜔𝜇𝛿(𝑗)

𝑅 )
𝑘𝛿(𝑗)𝑤𝑗

]

]
 
 
 
 
 

,

[
 
 
 
 
 2∏ (ℵ𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗

∏ (2−ℵ𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
+∏ (ℵ𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗

𝑒

𝑖2𝜋

[
 
 
 
 2∏ (𝜔ℵ𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗

∏ (2−𝜔ℵ𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
+∏ (𝜔ℵ𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗

]
 
 
 
 

]
 
 
 
 
 

,

)

 
 
 
 
 
 
 
 
 
 

.      (40) 

and their aggregated value by using the CCIFEOWG operator is also a CIFN, such that 

CCIFEOWG(< 𝑘1, 𝑐1 >,< 𝑘2, 𝑐2 >,… ,< 𝑘𝑛, 𝑐𝑛 >) 

=

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 2(∏ (𝜇𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
)

(∏ (2−𝜇𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
)+(∏ (𝜇𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
)

𝑒

𝑖2𝜋[
2∏ (𝜔𝜇𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗

∏ (2−𝜔𝜇𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗+∏ (𝜔𝜇𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
]

]
 
 
 
 
 

,

[
 
 
 
 
 ∏ (1+ℵ𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
−(1−ℵ𝛿(𝑗)

𝑅 )
𝑘𝛿(𝑗)𝑤𝑗

∏ (1+ℵ𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
−(1−ℵ𝛿(𝑗)

𝑅 )
𝑘𝛿(𝑗)𝑤𝑗

𝑒

𝑖2𝜋[
∏ (1+𝜔ℵ𝛿(𝑗)

𝑅 )𝑛
𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
−(1−𝜔ℵ𝛿(𝑗)

𝑅 )
𝑘𝛿(𝑗)𝑤𝑗

∏ (1+𝜔ℵ𝛿(𝑗)
𝑅 )𝑛

𝑗=1

𝑘𝛿(𝑗)𝑤𝑗
−(1−𝜔ℵ𝛿(𝑗)

𝑅 )
𝑘𝛿(𝑗)𝑤𝑗

]

]
 
 
 
 
 

,

)

 
 
 
 
 
 
 
 
 

.      (41) 

5. Multi-attribute decision-making methods 

In this section, we introduce a group decision-making procedure to solve group decision-making 

problems with confidence levels under a complex intuitionistic fuzzy environment. Suppose Ã =
{ã1, ã2, ã3, . . . , ã𝑛}  be a set of n alternatives, Ç = {ç1, ç2, ç3, . . . , ç𝑚}  be a set of n criterion with 

weight vectors w = (𝑤1, 𝑤2, . . . , 𝑤𝑚)𝑡  such that 𝑤𝑗  ∈  [0,1] and ∑ 𝑤𝑗
𝑚
𝑗=1 = 1 , and Ë = {ë1, ë2,

ë3, . . . , ë𝑝} with weight vectors w = (𝑤1, 𝑤2, . . . , 𝑤𝑝)
𝑡 such that 𝑤𝑟 ∈ [0,1] and ∑ 𝑤𝑟

𝑝
𝑟=1 = 1. Then 

the main process of decision-making is explained below: 

Step 1: Suppose ß(𝑟) = (𝛽𝑙𝑗
(𝑟))

𝑛×𝑚
 is a complex intuitionistic fuzzy decision matrix, and 𝛽𝑙𝑗

(𝑟) =

(((𝜇𝑅)𝑙𝑗
(𝑟)

, (𝜔𝜇
𝑅)𝑙𝑗

(𝑟)
) , ((ℵ𝑅)𝑙𝑗

(𝑟)
, (𝜔ℵ

𝑅)𝑙𝑗
(𝑟)

)) is an attribute value provided by the decision-maker 

ë𝑟, which is a CIFN. Also 𝑘𝑟 where 𝑘𝑟 ∈ [0,1] is a confidence level given by decision-makers which 

shows the degrees to that they are familiar with the research topic. 
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Step 2: Using the CCIFWA operator: 

𝛽𝑙𝑗 = 𝐶CIFWA(𝛽𝑙𝑗
(1)

, 𝛽𝑙𝑗
(2)

, … , 𝛽𝑙𝑗
(𝑝)

)

=

(

  
 

(1 − ∏ (1 − (𝜇𝑅)𝑙𝑗
(𝑟)

)
𝑚

𝑗=1

𝑘𝑟×𝑤𝑟

) 𝑒
𝑖2𝜋(1−∏ (1−(𝜔𝜇

𝑅)
𝑙𝑗

(𝑟)
)𝑚

𝑗=1

𝑘𝑟×𝑤𝑟
)
,

∏ ((ℵ𝑅)𝑙𝑗
(𝑟)

)
𝑚

𝑗=1

𝑘𝑟×𝑤𝑟

𝑒
𝑖2𝜋 ∏ ((𝜔ℵ

𝑅)𝑙𝑗
(𝑟)

)𝑚
𝑗=1

𝑘𝑟×𝑤𝑟

,
)

  
 

. 

Or the CCIFWG operator: 

𝛽𝑙𝑗 = 𝐶CIFWG(𝛽𝑙𝑗
(1)

, 𝛽𝑙𝑗
(2)

, … , 𝛽𝑙𝑗
(𝑝)

)

=

(

  
 

∏ ((𝜇𝑅)𝑙𝑗
(𝑟)

)
𝑚

𝑗=1

𝑘𝑟×𝑤𝑟

𝑒
𝑖2𝜋(∏ ((𝜔𝜇

𝑅)
𝑙𝑗

(𝑟)
)𝑚

𝑗=1

𝑘𝑟×𝑤𝑟
)
,

(1 − ∏ (1 − (ℵ𝑅)𝑙𝑗
(𝑟)

)
𝑚

𝑗=1

𝑘𝑟×𝑤𝑟

) 𝑒
𝑖2𝜋[1 −∏ (−(𝜔ℵ

𝑅)𝑙𝑗
(𝑟)

)𝑚
𝑗=1

𝑘𝑟×𝑤𝑟
]
,
)

  
 

. 

To aggregate all complex intuitionistic fuzzy matrices ß(𝑟) = (𝛽𝑙𝑗
(𝑟))

𝑛×𝑚
, (𝑟 =

1,2,3, . . . , 𝑝) into the single complex intuitionistic fuzzy matrix ß =  (𝛽𝑙𝑗)𝑛×𝑚
, 1 ≤ l ≤ n and 1 ≤

j ≤ m. 
Step 3: Aggregate the complex intuitionistic fuzzy numbers 𝛽𝑙𝑗 for each alternative ã𝑙 by CCIFWA 

(or CCIFWG) operator: 

𝛽𝑙 = IFWA(𝛽𝑙1, 𝛽𝑙2, … , 𝛽𝑙𝑚) =

(

 
 

(1 − ∏ (1 − (𝜇𝑅)𝑙𝑗)
𝑚

𝑗=1

𝑤𝑗

) 𝑒
𝑖2𝜋(1−∏ (1−(𝜔𝜇

𝑅)
𝑙𝑗

)𝑚
𝑗=1

𝑤𝑗
)
,

∏ ((ℵ𝑅)𝑙𝑗)
𝑚

𝑗=1

𝑤𝑗

𝑒𝑖2𝜋 ∏ ((𝜔ℵ
𝑅)𝑙𝑗)

𝑚
𝑗=1

𝑤𝑗

,
)

 
 

, 

𝛽𝑙 = IFWG(𝛽𝑙1, 𝛽𝑙2, … , 𝛽𝑙𝑚) =

(

 
 

∏ ((𝜇𝑅)𝑙𝑗)
𝑚

𝑗=1

𝑤𝑗

𝑒
𝑖2𝜋(∏ ((𝜔𝜇

𝑅)
𝑙𝑗

)𝑚
𝑗=1

𝑤𝑗
)
,

(1 − ∏ (1 − (ℵ𝑅)𝑙𝑗)
𝑚

𝑗=1

𝑤𝑗

) 𝑒𝑖2𝜋[1−∏ (1−(𝜔ℵ
𝑅)𝑙𝑗)

𝑚
𝑗=1

𝑤𝑗],
)

 
 

. 

Step 4: Find the score values. 

Step 5: Rank all the values. 

5.1. Illustrated example 

To ease the tension of congestion in huge medical clinics, four patients, signified by xi (i=1,2,3, 

4), who are conceivably tainted with lung sicknesses, should be analyzed, what's more, appropriated 

into various degrees of emergency clinics in progressive clinical treatment framework. The four 

patients are analyzed from the accompanying four side effects (credits) of the lung infections: ã1: 

important bodily functions, including pulse and pulse; ã2: internal heat level; ã3: the recurrence of 

the hack; and ã4: the recurrence of hemoptysis. Assume that the specialist gives the rating values for 

the four patients concerning the side effects by utilizing confidence CIFNs, and the choice grid is 

displayed in Tables 1–4. 
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Table 1. Complex intuitionistic fuzzy decision matrix. 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 

𝒙𝟏 
〈0.6, (

(0.5,0.4),
(0.3,0.3)

)〉 〈0.6, (
(0.51, 0.41),
(0.31,0.31)

)〉 〈0.6, (
(0.52,0.42),
(0.32,0.32)

)〉 〈0.6, (
(0.53,0.43),
(0.33,0.33)

)〉 〈0.6, (
(0.54,0.44),
(0.34,0.34)

)〉 

𝒙𝟐 
〈0.6, (

(0.4,0.3),
(0.2,0.2)

)〉 〈0.6, (
(0.41,0.31),
(0.21,0.21)

)〉 〈0.6, (
(0.42,0.32),
(0.22,0.22)

)〉 〈0.6, (
(0.43,0.33),
(0.23,0.23)

)〉 〈0.6, (
(0.44,0.34),
(0.24,0.24)

)〉 

𝒙𝟑 
〈0.6, (

(0.3,0.2),
(0.1,0.1)

)〉 〈0.6, (
(0.31,0.21),
(0.11,0.11)

)〉 〈0.6, (
(0.32,0.22),
(0.12,0.12)

)〉 〈0.6, (
(0.33,0.23),
(0.13,0.13)

)〉 〈0.6, (
(0.34,0.24),
(0.14,0.14)

)〉 

𝒙𝟒 
〈0.6, (

(0.5,0.4),
(0.2,0.3)

)〉 〈0.6, (
(0.51,0.41),
(0.11,0.31)

)〉 〈0.6, (
(0.52,0.42),
(0.12,0.32)

)〉 〈0.6, (
(0.53,0.43),
(0.13,0.33)

)〉 〈0.6, (
(0.54,0.44),
(0.14,0.34)

)〉 

𝒙𝟓 
〈0.6, (

(0.2,0.2),
(0.2,0.1)

)〉 〈0.6, (
(0.21,0.21),
(0.21,0.11)

)〉 〈0.6, (
(0.22,0.22),
(0.22,0.12)

)〉 〈0.6, (
(0.23,0.23),
(0.23,0.13)

)〉 〈0.6, (
(0.24,0.24),
(0.24,0.14)

)〉 

Table 2. Complex intuitionistic fuzzy decision matrix. 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 

𝒙𝟏 
〈0.59, (

(0.49,0.39),
(0.29,0.29)

)〉 〈0.59, (
(0.5, 0.4),
(0.3,0.3)

)〉 〈0.59, (
(0.51,0.41),
(0.31,0.31)

)〉 〈0.59, (
(0.52,0.42),
(0.32,0.32)

)〉 〈0.59, (
(0.53,0.43),
(0.33,0.33)

)〉 

𝒙𝟐 
〈0.59, (

(0.39,0.29),
(0.19,0.19)

)〉 〈0.59, (
(0.4,0.3),
(0.2,0.2)

)〉 〈0.59, (
(0.41,0.31),
(0.21,0.21)

)〉 〈0.59, (
(0.42,0.32),
(0.22,0.22)

)〉 〈0.59, (
(0.43,0.33),
(0.23,0.23)

)〉 

𝒙𝟑 
〈0.59, (

(0.29,0.19),
(0.09,0.09)

)〉 〈0.59, (
(0.3,0.2),
(0.1,0.1)

)〉 〈0.59, (
(0.31,0.21),
(0.11,0.11)

)〉 〈0.59, (
(0.32,0.22),
(0.12,0.12)

)〉 〈0.59, (
(0.33,0.23),
(0.13,0.13)

)〉 

𝒙𝟒 
〈0.59, (

(0.49,0.39),
(0.09,0.29)

)〉 〈0.59, (
(0.5,0.4),
(0.1,0.3)

)〉 〈0.59, (
(0.51,0.41),
(0.11,0.31)

)〉 〈0.59, (
(0.52,0.42),
(0.12,0.32)

)〉 〈0.59, (
(0.53,0.43),
(0.13,0.33)

)〉 

𝒙𝟓 
〈0.59, (

(0.19,0.19),
(0.19,0.09)

)〉 〈0.59, (
(0.2,0.2),
(0.2,0.1)

)〉 〈0.59, (
(0.21,0.21),
(0.21,0.11)

)〉 〈0.59, (
(0.22,0.22),
(0.22,0.12)

)〉 〈0.59, (
(0.23,0.23),
(0.23,0.13)

)〉 

Table 3. Complex intuitionistic fuzzy decision matrix. 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 

𝒙𝟏 
〈0.55, (

(0.45,0.35),
(0.25,0.25)

)〉 〈0.55, (
(0.46, 0.36),
(0.26,0.26)

)〉 〈0.55, (
(0.47,0.37),
(0.27,0.27)

)〉 〈0.55, (
(0.48,0.38),
(0.28,0.28)

)〉 〈0.55, (
(0.49,0.39),
(0.29,0.29)

)〉 

𝒙𝟐 
〈0.55, (

(0.35,0.25),
(0.15,0.15)

)〉 〈0.55, (
(0.36,0.26),
(0.16,0.16)

)〉 〈0.55, (
(0.37,0.27),
(0.17,0.17)

)〉 〈0.55, (
(0.38,0.28),
(0.18,0.18

)〉 〈0.55, (
(0.39,0.29),
(0.19,0.19)

)〉 

𝒙𝟑 
〈0.55, (

(0.25,0.15),
(0.05,0.05)

)〉 〈0.55, (
(0.26,0.16),
(0.06,0.06)

)〉 〈0.55, (
(0.27,0.17),
(0.07,0.07)

)〉 〈0.55, (
(0.28,0.18),
(0.08,0.08)

)〉 〈0.55, (
(0.29,0.19),
(0.09,0.09)

)〉 

𝒙𝟒 
〈0.55, (

(0.45,0.35),
(0.05,0.25)

)〉 〈0.55, (
(0.46,0.36),
(0.06,0.26)

)〉 〈0.55, (
(0.47,0.37),
(0.07,0.27)

)〉 〈0.55, (
(0.48,0.38),
(0.08,0.28)

)〉 〈0.55, (
(0.49,0.39),
(0.09,0.29)

)〉 

𝒙𝟓 
〈0.55, (

(0.15,0.15),
(0.15,0.05)

)〉 〈0.55, (
(0.16,0.16),
(0.16,0.06)

)〉 〈0.55, (
(0.17,0.17),
(0.17,0.07)

)〉 〈0.55, (
(0.18,018),
(0.18,0.08)

)〉 〈0.55, (
(0.19,0.19),
(0.19,0.09)

)〉 
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Table 4. Complex intuitionistic fuzzy decision matrix. 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 

𝒙𝟏 
〈0.5, (

(0.4,0.3),
(0.2,0.2)

)〉 〈0.5, (
(0.41, 0.31),
(0.21,0.21)

)〉 〈0.5, (
(0.42,0.32),
(0.22,0.22)

)〉 〈0.5, (
(0.43,0.33),
(0.23,0.23)

)〉 〈0.5, (
(0.44,0.34),
(0.24,0.24)

)〉 

𝒙𝟐 
〈0.5, (

(0.3,0.2),
(0.1,0.1)

)〉 〈0.5, (
(0.31,0.21),
(0.11,0.11)

)〉 〈0.5, (
(0.32,0.22),
(0.12,0.12)

)〉 〈0.5, (
(0.33,0.23),
(0.13,0.13

)〉 〈0.5, (
(0.34,0.24),
(0.14,0.14)

)〉 

𝒙𝟑 
〈0.5, (

(0.2,0.1),
(0.0,0.0)

)〉 〈0.5, (
(0.21,0.11),
(0.01,0.01)

)〉 〈0.5, (
(0.22,0.12),
(0.02,0.02)

)〉 〈0.5, (
(0.23,0.13),
(0.03,0.03)

)〉 〈0.5, (
(0.24,0.14),
(0.04,0.04)

)〉 

𝒙𝟒 
〈0.5, (

(0.4,0.3),
(0.0,0.2)

)〉 〈0.5, (
(0.41,0.31),
(0.01,0.21)

)〉 〈0.5, (
(0.42,0.32),
(0.02,0.22)

)〉 〈0.5, (
(0.43,0.33),
(0.03,0.23)

)〉 〈0.5, (
(0.44,0.34),
(0.04,0.24)

)〉 

𝒙𝟓 
〈0.5, (

(0.1,0.1),
(0.1,0.0)

)〉 〈0.5, (
(0.11,0.11),
(0.11,0.01)

)〉 〈0.5, (
(0.12,0.12),
(0.12,0.02)

)〉 〈0.5, (
(0.13,013),
(0.13,0.03)

)〉 〈0.5, (
(0.14,0.14),
(0.14,0.04)

)〉 

Then the main process of decision-making is explained below: 

Step 1: Suppose ß(𝑟) = (𝛽𝑙𝑗
(𝑟))

𝑛×𝑚
 is a complex intuitionistic fuzzy decision matrix, and 𝛽𝑙𝑗

(𝑟) =

(((𝜇𝑅)𝑙𝑗
(𝑟)

, (𝜔𝜇
𝑅)𝑙𝑗

(𝑟)
) , ((ℵ𝑅)𝑙𝑗

(𝑟)
, (𝜔ℵ

𝑅)𝑙𝑗
(𝑟)

)) is an attribute value provided by the decision-maker 

ë𝑟, which is a CIFN. Also 𝑘𝑟 where 𝑘𝑟 ∈[0,1] is a confidence level given by decision-makers which 

shows the degrees to that they are familiar with the research topic. 

Step 2: Using the CCIFWA operator, see Tables 5 and 6. 

Table 5. Complex intuitionistic fuzzy decision matrix (Using CCIFWA). 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 

𝒙𝟏 
(
(0.413, 0.2407),
(0.5467,0.4766)

) (
(0.3216, 0.2478),
(0.5545,0.4866)

) (
(0.3293, 0.2549),
(0.5621,0.4963)

) (
(0.3371, 0.2621),
(0.5696,0.506)

) (
(0.345, 0.2693),
(0.577,0.5155)

) 

𝒙𝟐 
(
(0.2407, 0.1722),
(0.4581,0.3664)

) (
(0.2478, 0.1789),
(0.4683,0.3786)

) (
(0.2549, 0.1856),
(0.478,0.3904)

) (
(0.2621, 0.1923),
(0.4875,0.402)

) (
(0.2693, 0.1991),
(0.4966,0.4133

) 

𝒙𝟑 
(
(0.1722, 0.1077),

(0,0)
) (

(0.1789, 0.114),
(0.327,0.2283)

) (
(0.1856, 0.1204),
(0.3505,0.2597)

) (
(0.1923, 0.1267),
(0.3689,0.2667)

) (
(0.1991, 0.1331),
(0.3484,0.284

) 

𝒙𝟒 
(
(0.314, 0.2407),

(0,0.4766)
) (

(0.3216, 0.2478),
(0.1119,0.4866)

) (
(0.3293, 0.2549),
(0.3583,0.4963)

) (
(0.3371, 0.2621),
(0.3776,0.506)

) (
(0.345, 0.2693),
(0.2394,0.5155)

) 

𝒙𝟓 
(
(0.1077, 0.1077),

(0.4472, 0)
) (

(0.114, 0.114),
(0.457,0.2283)

) (
(0.1204, 0.1204),
(0.4664,0.2497)

) (
(0.1267, 0.1267),
(0.4756,0.2667)

) (
(0.13331, 0.1331),

(0.4844,0.284)
) 
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Table 6. Complex intuitionistic fuzzy decision matrix (Using CCIFWG). 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 

𝒙𝟏 
(
(0.5699, 0.5366),
(0.2541,0.8166)

) (
(0.5786, 0.5786),
(0.2478,0.8211)

) (
(0.5872, 0.5872),
(0.2549,0.8144)

) (
(0.5957, 0.5957),
(0.2621,0.8077)

) (
(0.6041, 0.6041),
(0.2693,0.8009)

) 

𝒙𝟐 
(
(0.4766, 0.4766),
(0.1722,0.8923)

) (
(0.4866, 0.4866),
(0.1789,0.886)

) (
(0.4963, 0.4963),
(0.1856,0.8796)

) (
(0.506, 0.506),

(0.1923,0.8733)
) (

(0.5155, 0.5155),
(0.1991,0.8669

) 

𝒙𝟑 
(
(0.6529, 0.3664),
(0.1077,0.9535)

) (
(0.6608, 0.3786),
(0.114,0.9475)

) (
(0.6686, 0.3904),
(0.1204,0.9415)

) (
(0.6763, 0.402),
(0.1267,0.9354)

) (
(0.684, 0.4133),
(0.1331,0.9294

) 

𝒙𝟒 
(
(0.3664, 0.5699),
(0.2407,0.9535)

) (
(0.3786, 0.5786),
(0.2478,0.9475)

) (
(0.3904, 0.5872),
(0.2549,0.9415)

) (
(0.402, 0.5957),
(0.2621,0.9354)

) (
(0.4133, 0.6041),
(0.2693,0.9294)

) 

𝒙𝟓 
(
(0.3664, 0.3664),
(0.1077, 0.8923)

) (
(0.3786, 0.3876),

(0.114,0.886)
) (

(0.3904, 0.3904),
(0.1204,0.8796)

) (
(0.402, 0.402),

(0.1267,0.8733)
) (

(0.4133, 0.4133),
(0.1331,0.8669)

) 

To aggregate all complex intuitionistic fuzzy matrices ß(𝑟) = (𝛽𝑙𝑗
(𝑟))

𝑛×𝑚
, (𝑟 =

1,2,3, . . . , 𝑝) into the single complex intuitionistic fuzzy matrix ß =  (𝛽𝑙𝑗)𝑛×𝑚
, 1 ≤ l ≤ n and 1 ≤

j ≤ m. 
Step 3: Aggregate the complex intuitionistic fuzzy numbers 𝛽𝑙𝑗 for each alternative ã𝑙 by CCIFWA 

operator: 

𝛽1 = ((0.3893,0.255), (0,0.496)), 

𝛽2 = ((0.255,0.1857), (0.496,0.3898)), 

𝛽3 = ((0.1857,0.1204), (0.3898,0)), 

𝛽4 = ((0.3295,0.255), (0.587,0)), 

𝛽5 = ((0.1204,0.1204), (0.3898,0.3898)). 

For CCIFWG operator: 

𝛽′
1

= ((0.587,0.58), (0.2575,0.1873)), 

𝛽′
2

= ((0.496,0.496), (0.1854,0.1201)), 

𝛽′
3

= ((0.6685,0.3898), (0.1201,0.0579)), 

𝛽′
4

= ((0.3898,0.587), (0.2547,0.0579)), 

𝛽′
5

= ((0.3898,0.3898), (0.1201,0.1201)). 

Step 4: Find the score values for the CCIFWA operator 

𝑆1 = 0.0741, 

𝑆2 = 0.2225, 

𝑆3 = 0.0418, 

𝑆4 = 0.0012, 

𝑆5 = 0.2693. 
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For CCIFWG operator 

𝑆1
′ = 0.3611, 

𝑆2
′ = 0.3433, 

𝑆3
′ = 0.4401, 

𝑆4
′ = 0.3321, 

𝑆5
′ = 0.2697. 

Step 5: Rank all the values, for the CCIFWA operator 

𝑆5 ≥ 𝑆2 ≥ 𝑆1 ≥ 𝑆3 ≥ 𝑆4. 

So, 

𝑥5 ≥ 𝑥2 ≥ 𝑥1 ≥ 𝑥3 ≥ 𝑥4. 

Based on the CCIFWG Steps are: 

𝑆3
′ ≥ 𝑆1

′ ≥ 𝑆2 
′ ≥ 𝑆4

′ ≥ 𝑆5
′. 

So, 

𝑥3 ≥ 𝑥1 ≥ 𝑥2 ≥ 𝑥4 ≥ 𝑥5. 

Hence, both operators are given different values, the best optimal is available in the above ranking 

results. 

5.2. Comparative analysis 

Here, we compare the evaluated operators with certain existing operators to show the capability 

and worth of the diagnosed approaches. For this, we consider some well-known operators which are 

developed by different authors, called aggregation operators based on IFSs [18], novel aggregation 

operators based on CIFSs [25], robust averaging/geometric aggregation operators for CIFSs [26], and 

generalized geometric aggregation operators for CIFSs [27]. A brief evaluation is explained below. 

Criterion 1: The theory of aggregation operators based on IFS was diagnosed by Alcantud et al. [18] 

and contained a huge number of restrictions because these operators developed based on IFS which 

ignored the phase term and due to this reason, they lose a lot of information. Instead of these operators, 

the diagnosed operators are more beneficial because they are diagnosed based on CIFS in the presence 

of confidence degree which is very accurately evaluated the considered information. Therefore, the 

information available in Tables 1–4 is not evaluated by operators constructed based on IFSs [18]. 

Criterion 2: The theory of aggregation operators based on CIFS was diagnosed by Garg and Rani [25] 

and contained a huge number of restrictions because these operators developed based on CIFS which 

ignored the confidence degree and due to this reason, they lose a lot of information. Instead of these 

operators, the diagnosed operators are more beneficial because they are diagnosed based on CIFS in 

the presence of confidence degree which is very accurately evaluated the considered information. 

Therefore, the information available in Tables 1–4 is not evaluated by operators constructed based on 

CIFSs [25]. 
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Criterion 3: The theory of Robust averaging\geometric aggregation operators based on CIFS was 

diagnosed by Garg and Rani [26] and contained a huge number of restrictions because these operators 

developed based on CIFS which is ignored the confidence degree and due to this reason, they lose a 

lot of information. Instead of these operators, the diagnosed operators are more beneficial because they 

are diagnosed based on CIFS in the presence of confidence degree which is very accurately evaluated 

the considered information. Therefore, the information available in Tables 1–4 is not evaluated by 

operators constructed based on CIFSs [26]. 

Criterion 4: The theory of generalized geometric aggregation operators based on CIFS was diagnosed 

by Garg and Rani [27] and contained a huge number of restrictions because these operators developed 

based on CIFS which ignored the confidence degree and due to this reason, they lose a lot of 

information. Instead of these operators, the diagnosed operators are more beneficial because they are 

diagnosed based on CIFS in the presence of confidence degree which is very accurately evaluated the 

considered information. Therefore, the information available in Tables 1–4 is not evaluated by 

operators constructed based on CIFSs [27]. 

Therefore, the diagnosed operators based on CIFS with confidence levels are massive and 

powerful due to their mathematical constructions. Hence, in the future, we will utilize it in many areas 

like engineering science, computer science, and networking systems. 

6. Conclusions 

Under the availability of the CIFS, algebraic, Einstein t-norm, and t-conorm, we determined the 

following ideas: 

(i) We derived the theory of CCIFWA, CCIFOWA, CCIFWG, and CCIFOWG operators under the 

consideration of CIFSs. 

(ii) We described the properties of the presented operators such as idempotency, monotonicity, and 

boundedness. 

(iii)We discovered the theory of CCIFEWA, CCIFEOWA, CCIFEWG, and CCIFEOWG operators 

under the consideration of CIFSs. 

(iv) We described the properties of the presented operators such as idempotency, monotonicity, and 

boundedness. 

(v) We demonstrated a valuable and dominant theory of MADM under the presence of invented 

operators. 

(vi) We compared the derived work with various existing works to show the stability and worth of the 

presented approach with the help of some suitable examples. 

6.1 Limitation of the proposed work 

The main theory of CIFS has very famous and valuable to manage unreliable and vague 

information in real-life problems, but in various cases, the theory of CIFS has failed, for instance, by 

using these types of information which cannot satisfy the condition of CIFS, then we assumed that the 

theory of CIFS has been neglected, for this, we needed to evaluate the theory of complex Pythagorean 

fuzzy sets, complex q-rung orthopair fuzzy sets, and their modification is to enhance the worth of the 

derived work. 
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6.2 Future work 

In the future, we aim to utilize the theory of Einstein and algebraic aggregation operators in the 

environment of complex Pythagorean fuzzy set and their modification and try to employ their 

application in the field of distance measures [29], TOPSIS method [30], game theory, neural network, 

artificial intelligence, machine learning, decision-making, clustering analysis, and pattern recognition. 

Acknowledgments 

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University 

for supporting this work under grand code: 22UQU4310396DSR40. 

Conflict of interest 

About the publication of this manuscript the authors declare that they have no conflicts of interest. 

References 

1. L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-

9958(65)90241-X 

2. F. Fatimah, D. Rosadi, R. B. Hakim, J. C. R. Alcantud, N-soft sets and their decision-making 

algorithms, Soft Comput., 22 (2018), 3829–3842. https://doi.org/10.1007/s00500-017-2838-6 

3. M. Akram, A. Adeel, J. C. R. Alcantud, Group decision-making methods based on hesitant N-soft 

sets, Expert Syst. Appl., 115 (2019), 95–105. https://doi.org/10.1016/j.eswa.2018.07.060 

4. M. Akram, G. Ali, J. C. R. Alcantud, F. Fatimah, Parameter reductions in N‐soft sets and their 

applications in decision‐making, Expert Syst., 38 (2021), 12601. 

https://doi.org/10.1111/exsy.12601 

5. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. 

https://doi.org/10.1016/S0165-0114(86)80034-3 

6. S. Liu, W. Yu, F. T. Chan, B. Niu, A variable weight‐based hybrid approach for multi‐attribute 

group decision making under interval‐valued intuitionistic fuzzy sets, Int. J. Intell. Syst., 36 (2021), 

1015–1052. https://doi.org/10.1002/int.22329 

7. N. X. Thao, Some new entropies and divergence measures of intuitionistic fuzzy sets based on 

Archimedean t-conorm and application in supplier selection, Soft Comput., 25 (2021), 5791–5805. 

https://doi.org/10.1007/s00500-021-05575-x 

8. B. Gohain, P. Dutta, S. Gogoi, R. Chutia, Construction and generation of distance and similarity 

measures for intuitionistic fuzzy sets and various applications, Int. J. Intell. Syst., 36 (2021), 7805–

7838. http://doi.org/10.1002/int.22608 

9. H. Garg, D. Rani, Novel similarity measure based on the transformed right-angled triangles 

between intuitionistic fuzzy sets and its applications, Cognit. Comput., 13 (2021), 447–465. 

https://doi.org/10.1007/s12559-020-09809-2 

10. K. Hayat, Z. Tariq, E. Lughofer, M. F. Aslam, New aggregation operators on group-based 

generalized intuitionistic fuzzy soft sets, Soft Comput., 25 (2021), 13353–13364. 

https://doi.org/10.1007/s00500-021-06181-7 

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/s00500-017-2838-6
https://doi.org/10.1016/j.eswa.2018.07.060
https://doi.org/10.1111/exsy.12601
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1002/int.22329
https://doi.org/10.1007/s00500-021-05575-x
https://doi.org/10.1002/int.22608
https://doi.org/10.1007/s12559-020-09809-2
https://doi.org/10.1007/s00500-021-06181-7


6062 

AIMS Mathematics  Volume 8, Issue 3, 6036–6063. 

11. F. Ecer, D. Pamucar, MARCOS technique under intuitionistic fuzzy environment for determining 

the COVID-19 pandemic performance of insurance companies in terms of healthcare services, 

Appl. Soft Comput., 104 (2021), 107199. https://doi.org/10.1016/j.asoc.2021.107199 

12. X. Wu, Y. Song, Y. Wang, Distance-based knowledge measure for intuitionistic fuzzy sets with its 

application in decision making, Entropy, 23 (2021), 1119. https://doi.org/10.3390/e23091119 

13. E. P. Augustine, Novel correlation coefficient for intuitionistic fuzzy sets and its application to 

multi-criteria decision-making problems, Int. J. Fuzzy Syst. Appl., 10 (2021), 39–58. 

https://doi.org/10.4018/IJFSA.2021040103 

14. J. Yang, Y. Yao, A three-way decision based construction of shadowed sets from Atanassov 

intuitionistic fuzzy sets, Inf. Sci., 577 (2021), 1–21. https://doi.org/10.1016/j.ins.2021.06.065 

15. T. Mahmood, W. Ali, Z. Ali, R. Chinram, Power aggregation operators and similarity measures 

based on improved intuitionistic hesitant fuzzy sets and their applications to multiple attribute 

decision making, Comput. Model. Eng. Sci., 126 (2021), 1165–1187. 

https://doi.org/10.32604/cmes.2021.014393 

16. L. Ocampo, R. A. Tanaid, A. M. Tiu, E. Selerio Jr, E. Yamagishi, Classifying the degree of 

exposure of customers to COVID-19 in the restaurant industry: a novel intuitionistic fuzzy set 

extension of the TOPSIS-sort, Appl. Soft Comput., 113 (2021), 107906. https://doi.org/10. 

1016/j.asoc.2021.107906 

17. L. Dymova, K. Kaczmarek, P. Sevastjanov, L. Sułkowski, K. Przybyszewski, An approach to 

generalization of the intuitionistic fuzzy TOPSIS method in the framework of evidence theory, J. 

Artif. Intell. Soft Comput. Res., 11 (2021), 27–48. https://doi.org/10.2478/jaiscr-20210010 

18. J. C. R. Alcantud, A. Z. Khameneh, A. Kilicman, Aggregation of infinite chains of intuitionistic 

fuzzy sets and their application to choices with temporal intuitionistic fuzzy information, Inf. Sci., 

514 (2020), 106–117. https://doi.org/10.1016/j.ins.2019.12.008 

19. D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 

(2002), 171–186. https://doi.org/10.1109/91.995119 

20. P. Liu, Z. Ali, T. Mahmood, The distance measures and cross-entropy based on complex fuzzy 

sets and their application in decision making, J. Intell. Fuzzy Syst., 39 (2020), 3351–3374. 

https://doi.org/10.3233/JIFS-191718 

21. Y. Al-Qudah, N. Hassan, Operations on complex multi-fuzzy sets, J. Intell. Fuzzy Syst., 33 (2017), 

1527–1540. https://doi.org/10.3233/JIFS-162428 

22. A. U. M. Alkouri, A. R. Salleh, Linguistic variable, hedges and several distances on complex 

fuzzy sets, J. Intell. Fuzzy Syst., 26 (2014), 2527–2535. https:/doi.org/10.3233/IFS-130923 

23. C. Li, T. W. Chiang, Function approximation with complex neuro-fuzzy system using complex 

fuzzy sets–a new approach, New Gener. Comput., 29 (2011), 261–276. 

https://doi.org/10.1007/s00354-011-0302-1 

24. A. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464–

470. https://doi.org/10.1063/1.4757515 

25. H. Garg, D. Rani, Novel aggregation operators and ranking method for complex intuitionistic 

fuzzy sets and their applications to decision-making process, Artif. Intell. Rev., 53 (2020), 3595–

3620. https://doi.org/10.1007/s10462-019-09772-x 

26. H. Garg, D. Rani, Robust averaging-geometric aggregation operators for complex intuitionistic 

fuzzy sets and their applications to MCDM process, Arabian J. Sci. Eng., 45 (2020), 2017–2033. 

https://doi.org/10.1007/s13369-019-03925-4 

https://doi.org/10.1016/j.asoc.2021.107199
https://doi.org/10.3390/e23091119
https://doi.org/10.4018/IJFSA.2021040103
https://doi.org/10.1016/j.ins.2021.06.065
https://doi.org/10.32604/cmes.2021.014393
https://doi.org/10.%201016/j.asoc.2021.107906
https://doi.org/10.%201016/j.asoc.2021.107906
http://doi.org/10.2478/jaiscr-2021-0010
https://doi.org/10.1016/j.ins.2019.12.008
https://doi.org/10.1109/91.995119
https://doi.org/10.3233/JIFS-191718
https://doi.org/10.3233/JIFS-162428
https://doi.org/10.3233/IFS-130923
https://doi.org/10.1007/s00354-011-0302-1
https://doi.org/10.1063/1.4757515
https://doi.org/10.1007/s10462-019-09772-x
https://doi.org/10.1007/s13369-019-03925-4


6063 

AIMS Mathematics  Volume 8, Issue 3, 6036–6063. 

27. H. Garg, D. Rani, Generalized geometric aggregation operators based on t-norm operations for 

complex intuitionistic fuzzy sets and their application to decision-making, Cognit. Comput., 12 

(2020), 679–698. https://doi.org/10.1007/s12559-019-09678-4 

28. Z. Ali, T. Mahmood, M. Aslam, R. Chisnram, Another view of complex intuitionistic fuzzy soft 

sets based on prioritized aggregation operators and their applications to multiattribute decision 

making, Mathematics, 9 (2021), 1922. https://doi.org/10.3390/math9161922 

29. H. Garg, D. Rani, Novel distance measures for intuitionistic fuzzy sets based on various triangle 

centers of isosceles triangular fuzzy numbers and their applications, Expert Syst. Appl., 191 (2022), 

116228. https://doi.org/10.1016/j.eswa.2021.116228 

30. Z. Ali, T. Mahmood, M. S. Yang, TOPSIS method based on complex spherical fuzzy sets with 

Bonferroni mean operators, Mathematics, 8 (2020), 1739. https://doi.org/10.3390/math8101739 

© 2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1007/s12559-019-09678-4
https://doi.org/10.3390/math9161922
https://doi.org/10.1016/j.eswa.2021.116228
https://doi.org/10.3390/math8101739

