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1. Introduction

LetA be an algebra. Recall that a linear map δ fromA intoA is called a left (resp, right) centralizer
if δ(xy) = δ(x)y (resp, δ(xy) = xδ(y)) for all x, y ∈ A, and it is called a centralizer if δ is both a left
centralizer and a right centralizer. Also, δ is called a left (resp, right) Jordan centralizer if δ(x2) = δ(x)x
(resp, δ(x2) = xδ(x)) for all x ∈ A. We say that δ is a Jordan centralizer if δ(xy + yx) = xδ(y) + δ(y)x =

yδ(x) + δ(x)y for all x, y ∈ A. Clearly, each (right, left) centralizer is a (right, left) Jordan centralizer.
The converse is not true in general. In [1] Zalar showed that any left (resp, right) Jordan centralizer on
a 2-torsion free semi-prime ring is a left (resp, right) centralizer. We refer the reader to [1,2] for results
concerning centralizers on rings and algebras.

Recall that a linear map δ from A into A is called a derivation if δ(xy) = δ(x)y + xδ(y) for all
x, y ∈ A, and it is called a Jordan semi-triple derivation if δ(xyx) = δ(x)yx + xδ(y)x + xyδ(x) for all
x, y ∈ A. Without linearity, a Jordan semi-triple derivation is called a Jordan semi-triple derivable
map. Du and Zhang in [3] gave a characterization of a Jordan semi-triple derivable map on matrix
algebra over a 2-torsion free commutative ring with unity. The second author and Zhang in [4] gave
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a full characterization of a ∗-Jordan semi-triple derivable map (i.e., a map φ satisfying φ(xy∗x) =

φ(x)y∗x + xφ(y)∗x + xy∗φ(x) if the algebra is a ∗ algebra) on matrix algebra over a 2-torsion free
commutative real ring with unity and on operator algebra B(H). The derivations, centralizers and
Jordan semi-triple derivations of an algebra give interesting insights for studying its algebraic structure.

The quaternion was discovered by Hamilton [5] in 1835. Up to now, quaternions and quaternion
matrices have become increasingly useful for practitioners in theory and application. For example, a
number of research papers related to quaternions appear in mathematical or physical journals,
and quantum mechanics based on quaternion analysis is mainstream in physics. We refer the reader
to [6–12] for further information regarding the important roles of quaternion algebra in other branches
of mathematics. For a detailed account of quaternions, quaternion matrices and their applications, the
reader can consult [13–16].

A generalized quaternion is a generalization of a quaternion, and it can be found in [17]. A
generalized quaternion x is of the form x = x0e0 + x1e1 + x2e2 + x3e3 where x0, x1, x2, x3 ∈ R, and the
quaternionic units e0, e1, e2 and e3 obey the following equations:

e2
1 = −α, e2

2 = −β, e2
3 = −αβ,

e1 · e2 = e3 = −e2 · e1,

e2 · e3 = βe1 = −e3 · e2,

e3 · e1 = αe2 = −e1 · e3,

for some α, β ∈ R. We denote by Hα,β the set of generalized quaternions overRwith the basisB(Hα,β) =

{e0, e1, e2, e3} corresponding to the familiar 1, i, j,k. Note that e0 acts as identity, which means e0 · ei =

ei · e0 for any i, and hence the center of Hα,β is Z(Hα,β) = R · e0 = R.
In [18, 19] the authors study generalized Jordan derivations and generalized Lie derivations of

quaternion ring. Recently, Kizil and Alagöz determine derivations of the algebra Hα,β of generalized
quaternions over R in [20]. Motivated by [20], in this paper, we consider Jordan semi-triple
derivations and Jordan centralizers on generalized quaternion algebras over R, and we prove that
every Jordan semi-triple derivation on generalized quaternion algebras over the field of real numbers
is a derivation. Also, we show that every left (resp, right) Jordan centralizer on generalized quaternion
algebras over the field of real numbers is a left (resp, right) centralizer.

2. Jordan semi-triple derivations on generalized quaternion algebras

In this section, we consider Jordan semi-triple derivations on generalized quaternion algebras over
R. We denote by JDer(Hα,β) the set of Jordan semi-triple derivations on generalized quaternion
algebras over R, and let Der(Hα,β) denote the derivation algebra of Hα,β over R. The following lemma
provides Der(Hα,β) in its matrix form.

Lemma 2.1. The algebra Der(Hα,β) of derivations for Hα,β is generated by the following matrices:

D =


0 0 0 0
0 0 −

β

α
a −βb

0 a d −αc
0 b c d

 ∈ Der(Hα,β),

where a, b, c, d ∈ R such that d = d(β) , 0 if β = 0, and d = 0 otherwise.

AIMS Mathematics Volume 8, Issue 3, 6026–6035.



6028

The algebra ad(Hα,β) of inner derivation for Hα,β is generated by the following matrices:

ad(e1) =


0 0 0 0
0 0 0 0
0 0 0 −2α
0 0 2 0

 , ad(e2) =


0 0 0 0
0 0 0 2β
0 0 0 0
0 −2 0 0

 , ad(e3) =


0 0 0 0
0 0 −2β 0
0 2α 0 0
0 0 0 0

 .
We are now in a position to state the main result of this section.

Theorem 2.2. The linear space JDer(Hα,β) over R is generated by the following matrices:
0 0 0 0
0 0 −

β

α
a −βb

0 a d1 c1

0 b c2 d2

 ,
where a, b, c1, c2, d1, d2 ∈ R such that di = di(β) , 0 (i = 1, 2) if β = 0, di = 0 if β , 0, c1 = −αc2 if
β , 0, and ci = ci(β) , 0 (i = 1, 2) if β = 0.

Proof. Let φ ∈ JDer(Hα,β), since φ admits a matrix representation with respect to the basis B(Hα,β),
which is the 4 × 4 matrix

[
φ
]

= (di j)T whose entries are defined by the following equations:

φ(ei−1) =

4∑
j=1

di je j−1, 1 ≤ i ≤ 4.

Each column of
[
φ
]

is an element of Hα,β. In order to obtain
[
φ
]
, we apply φ to the products eie jei

with 0 ≤ i, j ≤ 3. e0 is a central idempotent and

φ(e0eie0) =φ(e0)eie0 + e0φ(ei)e0 + e0eiφ(e0),∀i = 1, 2, 3,
m

φ(ei) =φ(e0)ei + φ(ei) + eiφ(e0),

which occurs if and only if
φ(e0)ei + eiφ(e0) = 0,∀i = 1, 2, 3.

Hence, φ(e0) = 0 for every φ ∈ JDer(Hα,β). Moreover, we obtain d11 = 0, d12 = 0, d13 = 0, d14 = 0
only by evaluating.

Let us apply φ to the quaternionic units:

0 = − αφ(e0) = φ(e1e0e1) = φ(e1)e0e1 + e1e0φ(e1)
= − 2αd22e0 + 2d21e1,

which implies d21 = 0, d22 = 0. We are now going to check the same procedure for e1e2e1 = αe2,
e1e3e1 = αe3, e2e0e2 = −βe0, e2e3e2 = βe3 and e3e0e3 = −αβe0.

From φ(e1e2e1) = αφ(e2) we obtain d31 = 0, d32 = −
β

α
d23. Similarly, since φ(e1e3e1) = αφ(e3), we

get d41 = 0, d42 = −βd24. Continuing this way, from −βφ(e0) = φ(e2e0e2), we have

0 = − βφ(e0) = φ(e2e0e2) = φ(e2)e0e2 + e2e0φ(e2)

AIMS Mathematics Volume 8, Issue 3, 6026–6035.



6029

= − 2βd33e0 + 2d31e2,

which gives −2βd33 = 0, 2d31 = 0. Hence, d31 = 0 and

d33 =

0, if β , 0
0 , d33, if β = 0

.

Also, from φ(e2e3e2) = βφ(e3), we have −2αβd34 − 2βd43 = 0, that is, if β = 0, d34 and d43 are any real
numbers, if β , 0, d43 = −αd34. Since φ(e3e0e3) = −αβφ(e0), from which we obtain d41 = 0, and

d44 =

0, if β , 0
0 , d44, if β = 0

,

combining all these together, we obtain

d11 = d21 = d31 = d41 = d12 = d13 = d14 = d22 = 0,

βd33 = 0, βd44 = 0, d32 = −
β

α
d23, d42 = −βd24, β(αd34 + d43) = 0.

Let d23 = a, d24 = b, d34 = c2, d43 = c1, d33 = d1 and d44 = d2. Thus, we obtain φ in its matrix form. �

The following corollary is a direct consequence of Theorem 2.2.

Corollary 2.3. If we pick α , 0 and β , 0, then Jordan semi-triple derivations on generalized
quaternion algebras over R are derivations, that is,

φ =


0 0 0 0
0 0 −

β

α
a −βb

0 a 0 −αc
0 b c 0

 ,
where a, b, c ∈ R.

3. Centralizers on generalized quaternion algebras

In this section, we investigate centralizers on generalized quaternion algebras over R. The following
lemma provides an algebra isomorphism from a generalized quaternion algebra to a subalgebra of
the 4 × 4 matrix algebra.

Lemma 3.1. The generalized quaternion algebra Hα,β is isomorphic to

G =



x0 −αx1 −βx2 −αβx3

x1 x0 −βx3 βx2

x2 αx3 x0 −αx1

x3 −x2 x1 x0

 | x0, x1, x2, x3 ∈ R

 .
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Proof. For x = x0e0 + x1e1 + x2e2 + x3e3 ∈ Hα,β, let σ : Hα,β −→ G, x 7→


x0 −αx1 −βx2 −αβx3

x1 x0 −βx3 βx2

x2 αx3 x0 −αx1

x3 −x2 x1 x0

.
Obviously, σ is bijective, and σ preserves addition and scalar multiplication. Since

σ(e0) = E, σ(e1) =

[
I 0
0 I

]
, σ(e2) =

[
0 −βJ
J 0

]
, σ(e3) =

[
0 −βK
K 0

]
,

where I =

[
0 −α

1 0

]
, J =

[
1 0
0 −1

]
,K =

[
0 α

1 0

]
, E is the 4 × 4 identity matrix. One can verify that

σ(e1)2 = −ασ(e0), σ(e2)2 = −βσ(e0), σ(e3)2 = −αβσ(e0),
σ(e1) · σ(e2) = σ(e3) = −σ(e2) · σ(e1),
σ(e2) · σ(e3) = βσ(e1) = −σ(e3) · σ(e2),
σ(e3) · σ(e1) = ασ(e2) = −σ(e1) · σ(e3).

This shows that σ preserves basis of Hα,β. Let P,Q ∈ Hα,β, since σ is a linear map and preserves
basis of Hα,β, from which we obtain σ(PQ) = σ(P)σ(Q). Thus, σ preserves the multiplication of all
elements of Hα,β. Therefore, σ is an isomorphism, and the conclusion is established. �

Similarly, we have the following Lemma.

Lemma 3.2. The generalized quaternion algebra Hα,β is anti-isomorphic to

G∗ =



x0 −αx1 −βx2 −αβx3

x1 x0 βx3 −βx2

x2 −αx3 x0 αx1

x3 x2 −x1 x0

 | x0, x1, x2, x3 ∈ R

 .

Proof. For x = x0e0 + x1e1 + x2e2 + x3e3 ∈ Hα,β, let ψ : Hα,β −→ G∗, x 7→


x0 −αx1 −βx2 −αβx3

x1 x0 βx3 −βx2

x2 −αx3 x0 αx1

x3 x2 −x1 x0

.
Obviously, ψ is bijective, and ψ preserves addition and scalar multiplication. Since

ψ(e0) = E, ψ(e1) =

[
−I 0
0 I

]
, ψ(e2) =

[
0 −βJ
J 0

]
, ψ(e3) =

[
0 βK
K 0

]
,

where I =

[
0 α

−1 0

]
, J =

[
1 0
0 1

]
,K =

[
0 −α

1 0

]
, E is the 4 × 4 identity matrix. Similar to the proof of

Lemma 3.1, one can verify that ψ preserves basis of Hα,β and preserves the reversed multiplication of
all elements of Hα,β. Therefore, ψ is an anti-isomorphism, and the conclusion is established. �

The main result of this section is stated as follows.

Theorem 3.3. Every left centralizer on Hα,β over R is an algebra isomorphism, and every right
centralizer on Hα,β over R is an algebra anti-isomorphism.
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Proof. Let ω be a left centralizer on Hα,β over R, since ω admits a matrix representation with respect
to the basis B(Hα,β), which is the 4 × 4 matrix [ω] = (di j)T whose entries are defined by the following
equations:

ω(ei−1) =

4∑
j=1

di je j−1, 1 ≤ i ≤ 4.

Each column of [ω] is an element of Hα,β. In order to obtain [ω], we apply ω to the products eie j

with 0 ≤ i, j ≤ 3. Since

d21e0 + d22e1 + d23e2 + d24e3 = ω(e1) = ω(e0e1)
= ω(e0)e1 = (d11e0 + d12e1 + d13e2 + d14e3)e1

= −αd12e0 + d11e1 + αd14e2 − d13e3,

we have d21 = −αd12, d22 = d11, d23 = αd14, d24 = −d13. Since

d41e0 + d42e1 + d43e2 + d44e3 = ω(e3) = ω(e1e2)
= ω(e1)e2 = (d21e0 + d22e1 + d23e2 + d24e3)e2

= −βd23e0 − βd24e1 + d21e2 + d22e3,

we have d41 = −βd23, d42 = −βd24, d43 = d21, d44 = d22.
We are now going to check the same procedure for e2e1 = −e3. We get

−αd32e0 + d31e1 + αd34e2 − d33e3 = −d41e0 − d42e1 − d43e2 − d44e3,

which implies d41 = αd32, d42 = −d31, d43 = −αd34, d44 = d33. Let d11 = a, d12 = b, d13 = c, d14 = d,
and combining all these together, we obtain

d22 = d33 = d44 = a,

d21 = −αb, d34 = b, d43 = −αb,

d31 = −βc, d24 = −c, d42 = βc,

d23 = αd, d32 = −βd, d41 = −αβd.

Thus, we obtain the matrix [ω] as the following:
a −αb −βc −αβd
b a −βd βc
c αd a −αb
d −c b a

 (a, b, c, d ∈ R).

Moreover, by Lemma 3.1 we know that [ω] is the same as G. Hence, ω is an algebra isomorphism.
Similarly, let δ be a right centralizer on Hα,β over R, and we obtain the matrix form of δ as the

following: 
a −αb −βc −αβd
b a βd −βc
c −αd a αb
d c −b a

 (a, b, c, d ∈ R).

By Lemma 3.2 we know that [δ] is the same as G∗. Hence, δ is an algebra anti-isomorphism. �

AIMS Mathematics Volume 8, Issue 3, 6026–6035.



6032

Remark For q ∈ Hα,β, define right multiplication operator q(r) : Hα,β → Hα,β, x 7→ xq. Next, we can
verify that q(r) is a right centralizer. Let H(r) = {q(r), q ∈ Hα,β}. For q(r)

1 , q
(r)
2 ∈ H(r) and x ∈ Hα,β, we

define
(q(r)

1 + q(r)
2 )(x) = q(r)

1 (x) + q(r)
2 (x),

(q(r)
1 q(r)

2 )(x) = q(r)
1 (q(r)

2 (x)) = (q(r)
1 ◦ q(r)

2 )(x).

Let Φ : Hα,β → H(r), q 7→ q(r). For q1, q2 ∈ Hα,β, we have Φ(q1q2) = Φ(q2)Φ(q1). If we regard Hα,β as a
vector space M of dimension 4 over R, and let Aut(M) be anti-automorphism ring of M, then we have
H(r) ⊆ Aut(M).

4. Jordan centralizers on generalized quaternion algebras

In this last section, we study Jordan centralizers on generalized quaternion algebras over R, and we
show that every left (resp, right) Jordan centralizer is a left (resp, right) centralizer on Hα,β over R.

Theorem 4.1. Every left Jordan centralizer on Hα,β over R is a left centralizer, and every right Jordan
centralizer on Hα,β over R is a right centralizer.

Proof. Let τ be a left Jordan centralizer on Hα,β over R, since τ admits a matrix representation with
respect to the basis B(Hα,β), which is the 4 × 4 matrix [τ] = (di j)T whose entries are defined by the
following equations:

τ(ei−1) =

4∑
j=1

di je j−1, 1 ≤ i ≤ 4.

Each column of [τ] is an element of Hα,β. In order to obtain [τ], we apply ω to the products eie j

with 0 ≤ i, j ≤ 3. From

−αd11e0 − αd12e1 − αd13e2 − αd14e3 = −ατ(e0) = τ(e2
1)

= τ(e1)e1 = (d21e0 + d22e1 + d23e2 + d24e3)e1

= −αd22e0 + d21e1 + αd24e2 − d23e3,

we have d21 = −αd12, d22 = d11, d23 = αd14, d24 = −d13. Since

−βd11e0 − βd12e1 − βd13e2 − βd14e3 = −βτ(e0) = τ(e2
2)

= τ(e2)e2 = (d31e0 + d32e1 + d33e2 + d34e3)e2

= −βd33e0 − βd34e1 + d31e2 + d32e3,

we have d31 = −βd13, d32 = −βd14, d33 = d11, d34 = d12.
We are now going to check the same procedure for e2

3 = −αβe0. We get

−αβd11e0 − αβd12e1 − αβd13e2 − αβd14e3 = −αβd44e0 + βd43e1 − αd42e2 + d41e3,

which implies d41 = −αβd14, d42 = βd13, βd43 = −αβd12, d44 = d11. Let d11 = a, d12 = b, d13 = c,
d14 = d, and combining all these together, we obtain

d22 = d33 = d44 = a,

AIMS Mathematics Volume 8, Issue 3, 6026–6035.
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d21 = −αb, d34 = b, d43 = −αb,

d31 = −βc, d24 = −c, d42 = βc,

d23 = αd, d32 = −βd, d41 = −αβd.

Thus, we obtain [τ] as the following:
a −αb −βc −αβd
b a −βd βc
c αd a −αb
d −c b a

 (a, b, c, d ∈ R).

Let ρ be a Jordan right centralizer on Hα,β over R, and similarly, one has [ρ] as the following:
a −αb −βc −αβd
b a βd −βc
c −αd a αb
d c −b a

 (a, b, c, d ∈ R).

By Theorem 3.3, τ is a left centralizer, and ρ is a right centralizer. �

5. Conclusions

In this paper, we first obtain the matrix representation of the Jordan semi-triple derivation on
generalized quaternion algebras over the field of real numbers and have given the matrix
representation of the derivation on generalized quaternion algebras over the real number field in [20].
Thus, we obtain the condition that a Jordan semi-triple derivation on generalized quaternion algebras
over the field of real numbers is a derivation. Second, we show that the left centralizer on the
generalized quaternion algebra over the real number field is an algebra isomorphism, and the right
centralizer is an algebra anti isomorphism. We further obtain the equivalent relationship between the
left (resp, right) Jordan centralizer and the left (resp, right) centralizer on generalized quaternion
algebras over the field of real numbers. In future work, we will further study other mappings on
generalized quaternion algebra and their relationships.
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