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1. Introduction

Let A be an algebra. Recall that a linear map ¢ from (A into A is called a left (resp, right) centralizer
if 6(xy) = o(x)y (resp, 6(xy) = x6(y)) for all x,y € A, and it is called a centralizer if ¢ is both a left
centralizer and a right centralizer. Also, d is called a left (resp, right) Jordan centralizer if 5(x*) = 5(x)x
(resp, 6(x?) = x6(x)) for all x € A. We say that ¢ is a Jordan centralizer if 5(xy + yx) = x6(y) + 8(y)x =
yo(x) + 0(x)y for all x,y € A. Clearly, each (right, left) centralizer is a (right, left) Jordan centralizer.
The converse is not true in general. In [1] Zalar showed that any left (resp, right) Jordan centralizer on
a 2-torsion free semi-prime ring is a left (resp, right) centralizer. We refer the reader to [1,2] for results
concerning centralizers on rings and algebras.

Recall that a linear map ¢ from A into A is called a derivation if 6(xy) = 6(x)y + x6(y) for all
x,y € A, and it is called a Jordan semi-triple derivation if 6(xyx) = 6(x)yx + x6(y)x + xyo(x) for all
x,y € A. Without linearity, a Jordan semi-triple derivation is called a Jordan semi-triple derivable
map. Du and Zhang in [3] gave a characterization of a Jordan semi-triple derivable map on matrix
algebra over a 2-torsion free commutative ring with unity. The second author and Zhang in [4] gave
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a full characterization of a *-Jordan semi-triple derivable map (i.e., a map ¢ satisfying ¢(xy*x) =
d(xX)y* x + xp(y)*x + xy*¢(x) if the algebra is a * algebra) on matrix algebra over a 2-torsion free
commutative real ring with unity and on operator algebra B(H). The derivations, centralizers and
Jordan semi-triple derivations of an algebra give interesting insights for studying its algebraic structure.

The quaternion was discovered by Hamilton [5] in 1835. Up to now, quaternions and quaternion
matrices have become increasingly useful for practitioners in theory and application. For example, a
number of research papers related to quaternions appear in mathematical or physical journals,
and quantum mechanics based on quaternion analysis is mainstream in physics. We refer the reader
to [6—12] for further information regarding the important roles of quaternion algebra in other branches
of mathematics. For a detailed account of quaternions, quaternion matrices and their applications, the
reader can consult [13-16].

A generalized quaternion is a generalization of a quaternion, and it can be found in [17]. A
generalized quaternion x is of the form x = xpep + xj€; + x2e2 + x3e3 where xg, x1, X2, x3 € R, and the
quaternionic units ey, e, e, and e; obey the following equations:

ef = —a,&; = B, &5 = —ap,

€16 =¢€63=—€"¢€y,
er-e3 = fe; = —e3- ey,
€3 = ey = —eq -ée3,

for some a, 5 € R. We denote by H,, g the set of generalized quaternions over R with the basis B(H, z) =
{eo, €1, €2, e3} corresponding to the familiar 1,1, j, K. Note that ¢ acts as identity, which means ¢, - ¢; =
e; - eg for any i, and hence the center of H, 5 1s Z(H,p) = R - ey = R.

In [18, 19] the authors study generalized Jordan derivations and generalized Lie derivations of
quaternion ring. Recently, Kizil and Alagdz determine derivations of the algebra H, s of generalized
quaternions over R in [20]. Motivated by [20], in this paper, we consider Jordan semi-triple
derivations and Jordan centralizers on generalized quaternion algebras over R, and we prove that
every Jordan semi-triple derivation on generalized quaternion algebras over the field of real numbers
is a derivation. Also, we show that every left (resp, right) Jordan centralizer on generalized quaternion
algebras over the field of real numbers is a left (resp, right) centralizer.

2. Jordan semi-triple derivations on generalized quaternion algebras

In this section, we consider Jordan semi-triple derivations on generalized quaternion algebras over
R. We denote by JDer(H,p) the set of Jordan semi-triple derivations on generalized quaternion
algebras over R, and let Der(H, g) denote the derivation algebra of H, s over R. The following lemma
provides Der(H, g) in its matrix form.

Lemma 2.1. The algebra Der(H, ) of derivations for H, s is generated by the following matrices:

00 O 0
00 -La —pb

D= 0 a d -ac € Der(Hap),
0 b ¢ d

where a, b, c,d € R such that d = d(B) # 0 if 8 = 0, and d = 0 otherwise.
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The algebra ad(H, g) of inner derivation for H, s is generated by the following matrices:

000 0 00 0 0 00 0 0
looo o 0 0 2 o 0o -2 0

ade) =1y o o a9 =19 o o o[y 20 0 o
002 0 0 -2 0 0 00 0 0

We are now in a position to state the main result of this section.

Theorem 2.2. The linear space JDer(H, g) over R is generated by the following matrices:

00 O 0
00 -£a —pb
0 a d] C1 ’
0 b C d2

where a,b,c1,¢2,di,d>» € Rsuch thatd; = di(B) # 0 (i = 1,2)if B=0,d; = 0if 8 # 0, ¢; = —ac if
B#0,andc;=ci(B) #0(i=1,2)if f=0.

Proof. Let ¢ € JDer(H,p), since ¢ admits a matrix representation with respect to the basis B(H,g),
which is the 4 x 4 matrix [¢] = (d;;)" whose entries are defined by the following equations:

4
Plei1) = Zdijej—l, 1<i<4.

=

Each column of [¢] is an element of H,z. In order to obtain [¢], we apply ¢ to the products e;eje;
with 0 < i, j < 3. ¢y is a central idempotent and

P(epeieo) =P(ep)eiey + eod(eieo + epeid(en), ¥i = 1,2,3,
)
¢(e;) =d(eg)e; + ¢le;) + eip(ep),
which occurs if and only if
¢(60)ei + €i¢(€0) = O, Vi = 1, 2, 3.

Hence, ¢(eg) = 0 for every ¢ € JDer(H,z). Moreover, we obtain dy; = 0,d\, = 0,di3 = 0,di4 = 0
only by evaluating.
Let us apply ¢ to the quaternionic units:

0=- a¢(€0) = ¢(€1€0€1) = ¢(€1)€0€1 + 6]€0¢(€1)
= - za/dzze() + 2d21€1,

which implies d; = 0,d» = 0. We are now going to check the same procedure for eje,e; = aey,
ejeze; = aes, e,epe; = —fey, ere3e; = Pes and ezepe; = —afey.

From ¢(ejeze1) = ap(e,) we obtain d3; = 0, ds = —'gdzg. Similarly, since ¢(ejeze;) = ag(es), we
get dy; =0, dyp = —Bd>4. Continuing this way, from —B¢(ey) = ¢(erepe,), we have

0 = - Bd(ey) = d(ereper) = pler)eper + erepd(er)
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= —2Bd3zeq + 2d3; e,

which giVGS —2,36133 = 0, 2d31 =0. Hence, d31 =0and

0, ifg+#0
d33 = . .
0+ d33, lfﬁ =0
Also, from ¢(eyeze;) = Bp(es), we have —2ad34 — 2Bdy4s = 0, that is, if § = 0, d34 and d,3 are any real
numbers, if 8 # 0, dy3 = —ads4. Since ¢(ezepes) = —afd(ey), from which we obtain dy; = 0, and
0, ifB#0
dag = . ,
0+ d44, lfﬁ =0

combining all these together, we obtain
diy=dy =d3y =dyy =dpp=diz=diu=dn =0,
Bdyz =0, Pdyu =0, dy= —gdz.% dy = —Bdr, Pladss +dy) = 0.
Letdy; = a, dry = b, dsq = ¢3,dy3 = c1,d33 = dy and dyy = d,. Thus, we obtain ¢ in its matrix form. O

The following corollary is a direct consequence of Theorem 2.2.

Corollary 2.3. If we pick @« # 0 and g # 0, then Jordan semi-triple derivations on generalized
quaternion algebras over R are derivations, that is,

00 O 0
|00 -2a —pb
¢ = 0 a 0 -—acl’

0 b ¢ 0

where a, b, c € R.
3. Centralizers on generalized quaternion algebras
In this section, we investigate centralizers on generalized quaternion algebras over R. The following

lemma provides an algebra isomorphism from a generalized quaternion algebra to a subalgebra of
the 4 X 4 matrix algebra.

Lemma 3.1. The generalized quaternion algebra H, s is isomorphic to

Xo —ax; —fx; —afx;

X1 X —Pxz B

G = | X0, X1, %2, %3 € R¢.
X2 axs X0 —aX;
X3 —X) X1 X0
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Xo —ax; —fxy —afx;

X1 X0 —PX3 X2

Proof. For x = xpep + x1e1 + x26y + x3e3 € Hyp, let o : Hyp — G, x & P P .
X2 axs X0 —aX;
X3 =X X1 X0

Obviously, o is bijective, and o preserves addition and scalar multiplication. Since

ety S, Bl ]

where [ = [(1) —Oa] ,J = [(1) _01] ,K = [(1) g], E is the 4 X 4 identity matrix. One can verify that

o(e1)’ = —ao(ey), o(e2)* = —Bo(ey), o(es)* = —afo(ep),
o(er) - o(ez) = o(e3) = —o(ez) - o(ey),
o(ey) - o(e3) = Bo(ey) = —o(e3) - o(er),

o(e3) - o(e)) = ao(er) = —o(ey) - o(e3).

This shows that o preserves basis of H,z. Let P,Q € H,g, since o is a linear map and preserves
basis of H, s, from which we obtain o-(PQ) = o(P)c(Q). Thus, o preserves the multiplication of all
elements of H, g. Therefore, o is an isomorphism, and the conclusion is established. m]

Similarly, we have the following Lemma.

Lemma 3.2. The generalized quaternion algebra H, s is anti-isomorphic to

Xo —ax; —fx, —afx;

X1 X0 X3 —pPX2

G = P P | X0, X1, X2, X3 € R}
X2 —aX3 X0 ax
X3 X2 —X1 Xo0

Xo —ax; —fx, —afx;

Proof. For x = xpep + xje; + xpe3 + x3e3 € Hyp, letyy : Hyg — G*, x > R Bxs  =Bx .
Xy —Q@x3 X0 axy
X3 X2 —X1 X0
Obviously, ¢ is bijective, and ¢ preserves addition and scalar multiplication. Since
B -1 0 0 —BJ |0 BK
Y(eo) = E, lﬂ(el)—[o I],l/’(ez)—[J ],l//(%)—[l( 0],
1 _
where [ = [_01 g] J = [O (1)] K = [(1) Oa/]’ E is the 4 X 4 identity matrix. Similar to the proof of
Lemma 3.1, one can verify that y preserves basis of H, s and preserves the reversed multiplication of
all elements of H, . Therefore, i is an anti-isomorphism, and the conclusion is established. O

The main result of this section is stated as follows.

Theorem 3.3. Every left centralizer on H,z over R is an algebra isomorphism, and every right
centralizer on H, 3 over R is an algebra anti-isomorphism.
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Proof. Let w be a left centralizer on H, 3 over R, since w admits a matrix representation with respect
to the basis B(H, ), which is the 4 X 4 matrix [w] = (d; j)T whose entries are defined by the following
equations:

4
(U(e,'_l) = Zdijej_l, 1<i<4.
=1
Each column of [w] is an element of H,z. In order to obtain [w], we apply w to the products e;e;
with 0 < i, j < 3. Since
dyreg + dye; + dye; + dyez = w(ey) = w(epe)
= w(ep)e; = (dy1eg + dpzey + dizes + dises)e

= —adpeg + dye) + adye; — dzes,
we have dz] = —Cldlz, d22 = d]], d23 = Qd14, d24 = —d13. Since

dyreg + dper +dyiey + dyes = w(ez) = w(erer)
= w(ej)ey = (dy1eg + dpey + dyes + daes)e;
= —fdy3ey — Pdarse) + drie; + dyes,

we have dy = —Bda3, diyy = —Bday, duz = day, day = dn.
We are now going to check the same procedure for e;e; = —e3. We get

—adsyey + dzje + adysey — dyzes = —dyeg — dypey — dgzer — dyses,

which 1mphes d41 = CL’d32, d42 = —d31, d43 = —Cld34, d44 = d33. Let d]] =da, d12 = b, d13 =cC, d14 = d,
and combining all these together, we obtain

dy =d33 = dys = a,
dryy = —ab, dyys=b, diyz=-ab,

dy; = —fc, dyu=-c, dyp=pc,
dy =ad, dyp=-pd, dy =—apd.

Thus, we obtain the matrix [w] as the following:

a —ab —-Bc —afd
b a -pd P

c ad a —ab
d -c b a

Moreover, by Lemma 3.1 we know that [w] is the same as G. Hence, w is an algebra isomorphism.
Similarly, let 6 be a right centralizer on H,g over R, and we obtain the matrix form of ¢ as the
following:

(a,b,c,d € R).

a —ab —Bc —apfd
b a pd —fc

¢ —od a ob (a,b,c,d € R).
d ¢ -b a
By Lemma 3.2 we know that [¢] is the same as G*. Hence, ¢ is an algebra anti-isomorphism. O
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Remark For ¢ € H, 4, define right multiplication operator ¢ : H,3 — H, g, x — xq. Next, we can
rn @)

verify that ¢ is a right centralizer. Let H” = {g,q € Hog). For ¢",¢y € H" and x € Hyp, we
define
" + ¢ (x) = ¢"(x) + ¢ (),
(44500 = 4765’ (0) = (4 © ") ().
Let®: Hy — H"”,q > ¢*. For g, q> € Hyp, we have ®(¢1¢) = D(q2)®(qy). If we regard Hy s as a
vector space M of dimension 4 over R, and let Aut(M) be anti-automorphism ring of M, then we have
H®" C Aut(M).

4. Jordan centralizers on generalized quaternion algebras

In this last section, we study Jordan centralizers on generalized quaternion algebras over R, and we
show that every left (resp, right) Jordan centralizer is a left (resp, right) centralizer on H, s over R.

Theorem 4.1. Every left Jordan centralizer on H, 3 over R is a left centralizer, and every right Jordan
centralizer on H, g over R is a right centralizer.

Proof. Let 7 be a left Jordan centralizer on H, g over R, since 7 admits a matrix representation with
respect to the basis B(H, ), which is the 4 X 4 matrix [7] = (d, j)T whose entries are defined by the

following equations:
4

T(ei—l) = Zd,-jej_l, 1<i<4
=1
Each column of [7] is an element of H,z. In order to obtain [7], we apply w to the products e;e;
with 0 < i, j < 3. From

2
—ad1160 - ad1261 - Q’d13€2 - Qd14€3 = —Q’T(e()) = T(el)
=1(ey)e; = (dreg + dypey + drzey + dyes)e;

= —adyey + dyie + adyse, — dyzes,
we have dz] = —adlg, dzz = d]], d23 = ad14, d24 = —d]3. Since

—Bdy1eo — Bdizey — Bdizes — Bdises = —Br(eo) = T(e3)
= 1(ey)er = (dsiep + dye; + dyzey + dases)e;
= —fdszey — Pdsse; + dzie; + dnes,

we have d3; = —fd,3, d3y = —fdy4, d3z = diy, d3y = dys.
We are now going to check the same procedure for e% = —afey. We get

—afd, ey — afd,e) — afdize; — afdises = —afduey + Bdize; — adyes + dyes,

which implies dy; = —aBd4, dya = Bdi3, Bdsz = —afdyy, day = dyy. Letdy = a,dpp = b, di3 = ¢,
di4 = d, and combining all these together, we obtain

dy =dy3 =dy = a,
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dyy = —ab, dyy=b, diyz=-ab,
dy1 = —fc, dyu=-c, dyp=pc,
d23 = a/d, d32 = —ﬁd, d41 = —aﬁd.

Thus, we obtain [7] as the following:

a —ab —-fc —afd
b a -Bd Pc
¢ ad . " ob (a,b,c,d € R).

d -c b a

Let p be a Jordan right centralizer on H, g over R, and similarly, one has [p] as the following:

a —ab —Bc —-afd
b a pd -
¢ —ad a ab (a,b,c,d € R).
d ¢ -b a
By Theorem 3.3, 7 is a left centralizer, and p is a right centralizer. O

5. Conclusions

In this paper, we first obtain the matrix representation of the Jordan semi-triple derivation on
generalized quaternion algebras over the field of real numbers and have given the matrix
representation of the derivation on generalized quaternion algebras over the real number field in [20].
Thus, we obtain the condition that a Jordan semi-triple derivation on generalized quaternion algebras
over the field of real numbers is a derivation. Second, we show that the left centralizer on the
generalized quaternion algebra over the real number field is an algebra isomorphism, and the right
centralizer is an algebra anti isomorphism. We further obtain the equivalent relationship between the
left (resp, right) Jordan centralizer and the left (resp, right) centralizer on generalized quaternion
algebras over the field of real numbers. In future work, we will further study other mappings on
generalized quaternion algebra and their relationships.

Acknowledgments
The authors thank the referee for his constructive suggestion and careful reading of the manuscript.
Conlflict of interest

We declare that we have no conflicts of interest.

References

1. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 32 (1991), 609-614.

AIMS Mathematics Volume 8, Issue 3, 6026-6035.



6034

10.

11

12.

13.

14.

15.

16.

17.

J. Vukman, I. Kosi-Ulbl, Centralisers on rings and algebras, B. Aust. Math. Soc., 71 (2005), 225—
234. https://doi.org/10.1017/S000497270003820X

W. Du, J. Zhang, Jordan semi-triple derivable maps of matrix algebras, Acta. Math. Sinica., 51
(2008), 571-578. https://doi.org/10.3321/j.issn:0583-1431.2008.01.016

L. Chen L, J. Zhang, *-Jordan semi-triple derivable mappings, Indian J. Pure Appl. Math., 51
(2020), 825-837. https://doi.org/10.1007/s13226-020-0434-4

W. R. Hamilton, Theory of conjugate functions, or algebraic couples; with a preliminary and
elementary essay on algebra as the science of pure time, Trans. R. Irish Acad., 17 (1835), 293—
422.

Z. Kurt, O. N. Gerek, A. Bilge, K. Ozkan, A graph-based recommendation algorithm on quaternion
algebra, SN Comput. Sci., 3 (2022), 299. https://doi.org/10.1007/s42979-022-01171-4

A. M. Grigoryan, S. S. Agaian, Commutative quaternion algebra and DSP fundamental
properties: Quaternion convolution and Fourier transform, Signal Process., 196 (2022), 108533.
https://doi.org/10.1016/j.sigpro.2022.108533

J. Voight, The arithmetic of quaternion algebras, 2014.

A. Bouhlal, N. Safouane, A. Achak, R. Daher, Wavelet transform of Dini Lipschitz functions on
the quaternion algebra, Adv. Appl. Clifford Algebras, 31 (2021), 8. https://doi.org/10.1007/s00006-
020-01112-5

S. Malev, The images of noncommutative polynomials evaluated on the quaternion algebra, J.
Algebra Appl., 20 (2021), 2150074. https://doi.org/10.1142/S0219498821500742

. T. Csahodk, P. Kutas, M. Montessinos, G. Zabradi, Explicit isomorphisms of quaternion algebras

over quadratic global fields, Res. Number Theory, 8 (2022), 77. https://doi.org/10.1007/s40993-
022-00380-3

H. Boylan, N. P. Skoruppa, H. Zhou, Counting zeros in quaternion algebras using Jacobi forms,
Trans. Amer. Math. Soc., 371 (2019), 6487—6509. https://doi.org/10.1090/tran/7575

L. Rodman, Topics in quaternion linear algebra, In: Topics in quaternion linear algebra, Princeton:
Princeton University Press, 2014. https://doi.org/10.23943/princeton/9780691161853.001.0001

Z. Jia, M. K. Ng, G. J. Song, Robust quaternion matrix completion with applications to image
inpainting, Numer. Linear Algebra Appl., 26 (2019), €2245. https://doi.org/10.1002/nla.2245

Z. H. He, M. Wang, X. Liu, On the general solutions to some systems of quaternion matrix
equations, RACSAM, 114 (2020), 95. https://doi.org/10.1007/s13398-020-00826-2

L. S. Liu, Q. W. Wang, J. F. Chen, Y. Z. Xie, An exact solution to a quaternion matrix equation
with an application, Symmetry, 14 (2022), 375. https://doi.org/10.3390/sym 14020375

A. B. Mamagani, M. Jafari, On properties of generalized quaternion algebra, J. Nov. Appl. Sci., 2
(2013), 683-689.

AIMS Mathematics Volume 8, Issue 3, 6026-6035.


http://dx.doi.org/https://doi.org/10.1017/S000497270003820X
http://dx.doi.org/https://doi.org/10.3321/j.issn:0583-1431.2008.01.016
http://dx.doi.org/https://doi.org/10.1007/s13226-020-0434-4
http://dx.doi.org/https://doi.org/10.1007/s42979-022-01171-4
http://dx.doi.org/https://doi.org/10.1016/j.sigpro.2022.108533
http://dx.doi.org/https://doi.org/10.1007/s00006-020-01112-5
http://dx.doi.org/https://doi.org/10.1007/s00006-020-01112-5
http://dx.doi.org/https://doi.org/10.1142/S0219498821500742
http://dx.doi.org/https://doi.org/10.1007/s40993-022-00380-3
http://dx.doi.org/https://doi.org/10.1007/s40993-022-00380-3
http://dx.doi.org/https://doi.org/10.1090/tran/7575
http://dx.doi.org/https://doi.org/10.23943/princeton/9780691161853.001.0001
http://dx.doi.org/https://doi.org/10.1002/nla.2245
http://dx.doi.org/https://doi.org/10.1007/s13398-020-00826-2
http://dx.doi.org/https://doi.org/10.3390/sym14020375

6035

18. H. Ghahramani, M. N. Ghosseiriand, L. H. Zadeh, Generalized derivations and generalized
Jordan derivations of quaternion rings, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 305-308.
https://doi.org/10.1007/s40995-020-01046-4

19. H. Ghahramani, M. N. Ghosseiriand, L. H. Zadeh, On the Lie derivations and
generalized Lie derivations of quaternion rings, Commun. Algebra, 47 (2019), 1215-1221.
https://doi.org/10.1080/00927872.2018.1501577

20. E. Kizil E, Y. Alagoz, Derivations of generalized quaternion algebra, Turk. J. Math., 43 (2019),
2649-2657. https://doi.org/10.3906/mat-1905-86

EE ©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

% AIMS Press terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 3, 6026-6035.


http://dx.doi.org/https://doi.org/10.1007/s40995-020-01046-4
http://dx.doi.org/https://doi.org/10.1080/00927872.2018.1501577
http://dx.doi.org/https://doi.org/10.3906/mat-1905-86
http://creativecommons.org/licenses/by/4.0

	Introduction
	Jordan semi-triple derivations on generalized quaternion algebras
	Centralizers on generalized quaternion algebras
	Jordan centralizers on generalized quaternion algebras
	Conclusions

