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Abstract: This study examines the flow of an incompressible flow over a linear stretching surface 

with the inclusion of momentum and thermal slip conditions. A scaling set of alterations is applied to 

the governing system for both with and without magnetic field situations. The physical system being 

leftover invariant caused by some associations surrounded by the transformations. Later we find the 

absolute invariants 3rd -order ODEs for the linear momentum equation and two 2nd order ODEs 

consistent with the energy and concentration are obtained. The equations that coincide with the 

boundary circumstances are elucidated mathematically. The physical pertinent parameters as shown 

in graphs and the friction factor, Nusselt number and Salts 1 and 2 Sherwood numbers are shown in 

surface plots. We observed that the momentum slip parameter decelerates the skin friction coefficient 

in the presence of a magnetic field and enhances in the absence of the magnetic field parameter. The 

thermal slip parameter enhances the Nusselt number in both the presence and absence of magnetic 

field parameter. Finally, the thermal and concentration buoyancy ratio parameters are shown to upsurge 
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the friction factor, Nusselt and Salts 1 and 2 Sherwood numbers in both cases of 0and 1M M  . 

Keywords: thermal slip; momentum slip; Lie group transformations; triple diffusive convection; 

buoyancy forces; magnetohydrodynamic. 

Mathematics Subject Classification: 76–10, 76R10 

 

Nomenclature 

andu v    Fluid velocities corresponding in x and y-directions 

a     The rate of stretching sheet 

L     The momentum slip parameter 

V     The thermal slip factor  

      Stream function 

1 2 3 4 5 6, , , , ,r r r r r r   Any constant real arbitrary parameter 

     Similarity variable 

1 2, , ,f       Dependent variables 

1     Momentum slip parameter  

2      Thermal slip parameter 

w      Shear stress 

wq     Heat flux 

1mh and 2mh   Mass flux 

1Le and 2Le   Lewis numbers 

1      Salt 1 concentration 

2      Salt 2 concentration 

1     Thermal buoyancy ratio parameter 

2     Solutal buoyancy ratio parameter 

M     Magnetic field parameter 

T     Temperature of the fluid 

C     Concentration of the fluid 

T     Thermal buoyancy  

1C     Solutal 1 buoyancy 

2C     Solutal 2 buoyancy 

1C  and 2C    Solutal 1and 2 at ambient flow 

      Kinematic viscosity of the fluid 

Pr     Prandtl number 

     Temperature 

g     Gravity 

     Small parameter 

0     Buoyancy assisting flow  

0     Buoyancy opposing flow 
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fC     Local friction factor 

xNu    Local Nusselt number 
1

xSh and 2

xSh   Local Sherwood numbers 

1wC and 2wC   Concentrations 1 and 2 at the wall 

Rex     Reynolds number 

     Thermal diffusivity 

1s
D and 

2sD   Mass 1 and 2 diffusivities 

1. Introduction 

Lie group transformation or scaling group transformation has elements which are arbitrary close 

to the identity transformation, which means that the identity transformation is a transformation that 

changes nothing at all. When two mechanisms contributing to the density diffuse at different rates, 

convective waves can arise in a steadily stratified liquid. Sophus Lie's [1] was developed a differential 

invariant similarity for the Lie-group. His work was almost forgotten because of the growth of group 

theory and differential geometry to study differential equations [2]. Using Jeffrey and cross fluid 

models Bhatti et al. [3] and Sumer et al. [4] analysed importance of momentum with Lie group 

transformation. Numerical simulation of a thermally enhanced electro-magnetohydrodynamic (EMHD) 

flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol, (40%) water, and 

copper oxide nanomaterials was studied by Shah et al. [5] and MHD heat transfer in thermal slip 

using semi-infinite domain and Carreau fluid has been discussed by Rehman et al. [6]. In recent year, 

so many researchers made their studies on Lie group transformation [7–9]. A two-component 

modeling for non-Newtonian nanofluid slips flow and heat transfer over sheet discussed by Rana et al. 

[10]. They observed that the heat transfer is decreases with increase in Brownian motion and 

thermophoresis parameters. Amanulla et al. [11] studied the numerical analysis of 

magnetohydrodynamic Williamson nanofluid over an isothermal sphere in the presence of 

momentum and thermal slip effects. Zhang et al. [12] proposed a new multi-view clustering model 

called Consensus Multi-view Clustering (CMC) model, and it is based on non-negative matrix 

factorization for predicting the multiple stages of Arithmetic design progression. The proposed CMC 

model performs multi-view learning to fully capture data features with limited medical images, 

analyzes similarity relations between different entities, addresses the shortcoming of multi-view fusion 

that requires manual setting parameters, and further acquires a consensus representation containing 

shared features and complementary knowledge of multiple view data. Later, Batool et al. [13] 

performed a numerical analysis of heat and mass transfer in micropolar nanofluids flow through a 

lid-driven cavity by using the finite volume method. They found that a high vortex viscosity 

parameter produces a weak concentration field and has significant behaviour when the Reynolds 

number is significant. Maneengam et al. [14] analyzed the entropy generation in a two-dimensional 

Lid-Driven porous container in the presence of obstacles of different shapes and under the influences 

of buoyancy and Lorentz forces. They concluded that the triangular shape of the baffle is the best in 

terms of thermal activity and also they observed that increasing the number of lower-wall waves 

reduces thermal activity. Bhutta et al. [15] experimentally investigated the development of novel 

hybrid two-dimensional and three-dimensional graphene oxide diamond microcomposite polyimide 

films to ameliorate electrical and thermal conduction. They found that the hybrid fillers with high 
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thermal and low electrical conductivities were responsible for synergistic improvements in the 

experimental results.Rasool et al. [16] performed a numerical investigation of 

electromagnetohydrodynamic nanofluid flows over a convectively heated Riga pattern positioned 

horizontally in a Darcy-Forchheimer porous medium. They observed that Darcy-Forchheimer's and 

Lorentz’s forces strengthen the resulting frictional factor at the Riga surface. Rasool et al. [17] 

reported on the Darcy-Forchheimer flow of water conveying multi-walled carbon nanoparticles 

through a vertical Cleveland z-staggered cavity subject to entropy generation. They found that the 

velocity of incompressible Darcy-Forchheimer flow at the middle vertical Cleveland Z-staggered 

cavity declines with a higher Reynolds number. 

The phenomena of heat and mass transport associated with entropy production describe the triple 

diffusion process, which can be found in metallurgy, oceanography, and geophysics. When more than 

one salt is used in a combined heat and mass transfer, the salts interact and cause coupling effects. In 

recent years tremendous research activity has been dedicated to developing various fluid models by 

using the triple diffusive effect: for examples with numerous geometries and multiple body forces, the 

reader is referred to Arif et al. [18], Patil et al. [19], Nawaz et al. [20] and Manjappa et al. [21]. Such 

techniques used to investigate momentum, thermal and various effects have been discussed by Patil 

et al. [22]; also the roughness of a surface with the nanofluid is studied by Patil et al. [23]. 

The numerical studies incorporated for thermal and momentum slips by Xiong et al. [24] and 

Beg et al. [25]. Su et al. [26] investigated that increasing flow and convective heat transmission were 

explored numerically inside circular and parallel-plates micro channels. The slip flow of conductive 

viscoelastic flow past a permeable radiated shrinking or stretching surface with mass transpiration 

has been illustrated by Sneha et al. [27]. The significance of nanoparticle shape and 

thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating 

heated disk has been discussed by Sabu et al. [28]. Numerous researchers Koriko et al. [29], Eleni 

Seid et al. [30], Turkyilmazoglu [31], Felipe et al. [32], Majeed et al. [33] and Zeeshan et al. [34] are 

carried out for different fluid model with various surfaces to analyse the influence of momentum and 

thermal slips.  

No research work has been done using Lie group transformation analysis to analyze the 

significance of triple diffusive convective flow by considering thermal and momentum slips, as per 

the authors' knowledge of the literature in most practical uses; however, the components of mass and 

heat are inextricably linked. The heat and mass diffusion components, on the other hand, are 

invariably coupled in most real-world applications. Triple diffusion of a fluid has practical 

applications in many bioengineering and medical sciences. For instance, aqueous suspensions of 

DNA contain more than two independently diffusing constituents with dissimilar diffusivities and 

medical drug manufacturing methods etc. However, triple diffusion in the presence of an applied 

magnetic field has significant applications in metallurgy, solar physics, geophysics, cosmic fluid 

dynamics, polymer industry, in the motion of the earth’s core. This fact prompts us to investigate the 

combined impact of mass diffusion heat on magnetohydrodynamic free-convective flow in the 

boundary layer. As far as we can tell, the findings of this work appear to be perfectly consistent with 

previous research and, due to their simplicity, easily transferable to relevant applications.  

2. Mathematical model and formulation 

We perform the analysis of the steady triple diffusive hydromagnetic flow of heat and mass 
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transmission of a viscous, electrically conducting fluid. The flow is supposed to be in the x-direction 

and y-axis perpendicular to it. A uniform magnetic field of strength B is offered perpendicular to the 

flow direction. It is also considered that all fluid possessions are fixed excluding the impact of the 

density deviation with temperature and concentration. The surface is retained at a fixed temperature 

Tw, which is greater than the constant. 

For this study, we have considered a triple diffusive free convective MHD incompressible flow 

with momentum and thermal slip conditions for a fluid model with the help of Lie group 

transformation analysis. Also, suppose that the flow generation is estimated for a linear widening 

surface. Additionally, the flow is restricted to the region 0y   and equivalent with the plane 0y  . 

Under the pre-defined assumptions mentioned above, the governing system of continuity, 

energy, momentum and concentration are expressed as follows: 

0
u v

x y

 
 

 
 ,           (1) 

     
1 2

2 2

1 22 T C C

u u u B
u v v g T T g C C g C C u

x y y


  


  

   
         

    
, (2) 

2

2

T T T
u v

x y y


  
 

  
,         (3) 

1

2

1 1 1

2S

C C C
u v D

x y y

  
 

  
,         (4) 

1

2

2 2 2

2S

C C C
u v D

x y y

  
 

  
,        (5) 

Given the following boundary conditions:   

1 1 1 2 2

1 1 2 2

, 0, , , at 0

, , , as

w w w

u T
u ax L v T T D C C C C

y y

u u T T C C C C



   

 
       

 

    

,   (6) 

Now, we need to transform the above Eqs (1) to (6) into non-dimensional form. To perform this, the 

following similarity dimensionless transformations are considered. 

1 1 2 2
1 2

1 1 2 2

, , ,
/ /

, ,
w w w

u v x y
u v x y

av av v a v a

T T C C C C

T T C C C C
    

  

   

  
  

  

,       (7) 

We substitute the above non-dimensional quantities of (7) in Eqs (1) to (5) along with the 

boundary conditions of Eq (6) and then complete the simplification results by using the following 



5955 

AIMS Mathematics  Volume 8, Issue 3, 5950–5979. 

non-dimensional differential equations :   

0
u v

x y

 
 

 
,          (8) 

2 2

1 1 2 22

u u u B
u v u

x y y a


  



  
     

  
,    (9) 

1

2

1 1 1

2

SD
u v

x y v y

    
 

  
,        (10) 

1

2

1 1 1

2

SD
u v

x y y

  



  
 

  
,        (11) 

2

2

2 2 2

2

SD
u v

x y v y

    
 

  
,        (12) 

with the following boundary conditions : 

1 1 2

1 2

, 0, 1 , 1, 1at 0

0, 0, 0, 0 as

a u a
u x L v D

v y v y

u


   

   

 
       

 

    

,   (13) 

where 1 21 2

1 1, ,
C CT

g C g Cg T

a av a av a av

 


 
     . 

3. Scaling transformations 

First, the stream function  is taken as mentioned below before applying scaling 

transformations.  

andu u
y x

  
  
 

        (14) 

We introduce the stream functions (14) to (8)–(12) together with the boundary conditions of 

(13). Obviously, Eq (8) is satisfied by them. And the remaining equations will be converted in terms 

of the stream function  as below period: 

2 2 3 2

1 1 2 22 3

B

x x y x y y a y

      
  



     
     

      
,    (15) 

2

2y x x y v y

         
 

    
,       (16) 
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1

2

1 1 1

2

SD

y x x y v y

      
 

    
,       (17) 

2

2

2 2 2

2

SD

y x x y v y

      
 

    
,      (18) 

with the following boundary conditions: 

2

1 1 22

1 2

, 0, 1 , 1, 1at 0

0, 0, 0, 0as

a a
x L D

y v y x v y

y

   
   


   

   
       

   


    



,   (19) 

Also,
   2 3 1 3 4

*
*

*
1, 0, 0

r r r r re e e
y

  


 
  


             (20) 

Consider   as a small parameter of the scaling transformation. Then, the transformation F  (a 

specified set of Lie group analysis) is taken as mentioned below period: 

31 2

5 64

* * *

* * *

1 1 2 2

: , ,

, ,

rr r

r rr

F x xe y ye e

e e e

 

 

 

     

  

  
,        (21) 

Where, 1 2 3 4 5 6, , , , andr r r r r r are any real arbitrary constant parameters The point conversion defined 

through (21) transmuted the co-ordinates  1 2, , , ,x y     into  * * * * *

1 2, , , ,x y    . With the help of 

Lie group analysis mentioned through (15), Eqs (15)–(18) are transformed as  

     1 2 3 5 2 3 2 3 4

* 2 * * 2 * 3 * 2 *
3

* * * * *2 *3 *

r r r r r r r r rB
e e e e

y x y x y y a y

         
 



          
    

       
  (22) 

   1 2 3 5 2 4

* 2 * * * 2 *
2

* * * * * *2

r r r r r ra
e e

y x y x y v y

             
  

      
     (23) 

   11 2 3 5 2 5

* * 2 ** *
21 1 1

* * * * *2

Sr r r r r r
D

e e
y x x y v y

           
  

     
     (24) 

   21 2 3 6 2 6

* * 2 ** *
22 2 2

* * * * *2

Sr r r r r r
D

e e
y x x y v y

           
  

     
.     (25) 

If the exponent of the above converted equations fulfills the below linear equations, then the set of 

Eqs (22)–(25) will remain invariant under the folowing transformation 
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1 2 3 2 3 2 3 4 5 62 2 3r r r r r r r r r r         ,      (26) 

1 2 3 4 2 42r r r r r r     ,          (27) 

1 2 3 5 2 52r r r r r r     ,         (28) 

1 2 3 6 2 62r r r r r r              (29) 

By solving the above linear equations (26)–(29) simultaneously, we find  

1 1 2 3 1 4 5 6, 0, , 0, 0, 0r r r r r r r r      .      (30) 

Replacing the above values of (30) into the scaling transformations given in (21), we get 

1 1* * * * * *

1 1 2 2: , , , , ,
r r

F x xe y y e
              .    (31) 

The Taylor series expansions are 

* * * * * *

1 1 1 2 2, 0, , 0, 0, 0x x x r y y r                   . 

A simple algebraic expression for the above transformations given by (31) with the help of 

Taylor series expansion leads to a mono-parametric group of transformations in the form of the 

characteristic equation given below period 

1 2

1 10 0 0 0

d ddx dy d d

dr r

  


     .        (32) 

From (32), we can easily obtain new similarity transformations as 

       1 1 2 2, , , ,y xf                ,      (33) 

where,   is the similarity variable and 1 2, , ,f    are the dependent variables. Now, we substitute 

the above quantities specified in (33) into PDEs (16) to (18) then, by applying the boundary 

conditions mentioned in (19), we attain the set of ordinary differential equations as 

2

1 1 2 2 0f ff f           ,      (34) 

Pr 0    ,           (35) 

1 1 1 0Le f    ,           (36) 
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2 2 2 0Le f    .          (37) 

Together with the boundary situations; 

1 2 1 2

1 2

0, 1 , 1 , 1, 1at 0

0, 0, 0, 0 as

f f f

f

      

   

         

    
      (38) 

Here, 1

a
L

v
   is the momentum slip parameter and 2 1

a
D

v
   is the thermal slip parameter. 

with the following predefined parameters: 

1 2

1 2

2
1 2

1 2 1 2, , , ,Pr , ,
C CT

S S

g C g Cg TB v v v
M Le Le

a D Da av a av a av

 


 

 
         . 

The physical measures requiring engineering attention are the local friction factor; local Nusselt 

number and Sherwood number which are defined as follows: 

         
1 2

2

1 1 2 2

, , , ,w w w m m
f x x x x

w w sm w sm w

xq xq xh xh
C Nu Nu Sh Sh

k T T k T T D C C D C Cax



    

    
   

, 

where, 1 2, , &w w m mq h h symbolize the shear stress, heat and mass flux change, respectively: 

1 2
1 2, , ,w w m sm m sm

C Cu T
q k h D h D

y y y y
 

         
              

          
. 

The dimensionless friction factor, Nusselt number and Sherwood number are defined as 

       1/2 1 2
1 21/2 1/2 1/2

Re 0 , 0 , 0 , 0
Re Re Re

x x x
f x

x x x

Nu Sh Sh
C f            , 

Where, Rex

a
x

vl
 . 

4. Results and discussions 

The collected results show the impact of non-dimensional regulating parameters such as 

1 2 1 2 1 2, , , , ,Le Le     on and        1 2, , ,f        (See Figures 1–16). In the simulations, the 

pertinent parameter values were

1 2 1 2 1 2Pr 0.72, 0.5, 1, 1, 0.5, 0.5, 0.2, 0.2Le Le             . These variables were kept 

constant throughout the inquiry, with the exception of the various values given in the associated 

figures. The results are compared with already divulged results and presents excellent correlation 

with the Ferdows et al. [35] results. 
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Table 1. Corroboration of  ' 0 for distinct values of Pr with 1 2 1 2 0M Nc Nc Le Le      . 

Pr  Ferdows et al. [35] Present Results 

1 0.9547 0.9546 

2 1.4715 1.4711 

3 1.8691 1.8672 

The variation in salt 1 and 2 concentration distributions 1  and 2  as a result of varying the 

regular Lewis numbers 1Le and 2Le  in the presence and absence of the magnetic field parameter 

are shown in Figures 1–4. It was designed to observe the impact of Lewis numbers on salt 1 and 2 

concentrations. Decreases in the solutal concentration profiles 1 2and  is occurred due to the Lewis 

number. Physical explanation of such decline in the variations of 1 2and  can be justified on the fact 

that 1 2andLe Le capture the reverse relation with species diffusion, that is when 1 2andLe Le are 

maximum, species diffusion is lower, which leads to the decrement of the resulting solutal 

concentrations. 

The thermal buoyancy ratio parameter 1 reduces        1 2, , ,f        for both the 

presence and absence of a magnetic field. The concentration buoyancy ratio parameter 2 enhances 

   in the presence of a magnetic field but slowly decelerates it in the absence of a magnetic field 

case (Figure 10). The effect of thermal the buoyancy ratio parameter 1 is depicted in Figure 5. 

From this, we observed that with the increase of the velocity and temperature, Salt 1 and 2 

concentration distributions decreased because molecular forces dominated the thermal buoyancy 

forces. Therefore, the velocity in the momentum boundary layer depreciates in the flow region when 

the buoyancy forces act in the opposite direction. 

The momentum and concentration boundary layer thicknesses decreased the values of 2 in 

both cases (see Figures 9, 11 and 12).  

Figures 13–15 show the influence of the momentum slip parameter 1 on the velocity, 

temperature and Salt 1 concentration distributions. It is clear that the velocity is a decreasing function 

of the slip parameter. Physically, when slip occurs, the fluid velocity near the surface is no longer 

equal to the surface velocity, that is, a velocity slip exists with such an increase in a slip velocity. 

Furthermore, increasing the value of slip will decrease the flow velocity because, under the slip 

condition, the pulling of the surface can be only partly transmitted to the fluid. The same phenomena 

can be observed in the temperature and Salt 1 concentration fields. Figure 16 demonstrates the effect 

of the thermal slip parameter 2 on temperature. As the thermal slip parameter increases, less heat is 

transformed from the surface to the fluid and consequently the temperature decreases.  
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Figure 1． Salt 1 concentration on 1Le . 

 

Figure 2. Salt 2 concentration on 1Le . 
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Figure 3. Salt 2 concentration on 2Le . 

 

Figure 4. Salt 1 concentration on 2Le . 
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Figure 5. Velocity on 1 . 

 

Figure 6. Temperature on 1 . 
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Figure 7. Salt 1 concentartion on 1 . 

 

Figure 8. Salt 2 concentration on 1 . 
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Figure 9. Temperature on 2 . 

 

Figure 10. Velocity on 2 . 
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Figure 11. Salt 1 concentration on 2 . 

 

Figure 12. Salt 2 concentration on 2 . 
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Figure 13. Velocity on 1 . 

 

Figure 14. Temperature on 1 . 
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Figure 15. Salt 2 concentration on 1 . 

 

Figure 16. Temperature on 2 . 
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Figure 17 represents the surface plot of the momentum slip parameter 1  given the skin 

friction coefficient  0f  , Nusselt number  0 and Sherwood number  0 in the absence of the 

magnetic field parameter 0M  and presence of the magnetic field parameter 1M  . Figure 17 

shows that the rate of friction factor is −4.256939 in the absence of a magnetic field and −1.454855 

in the presence a of magnetic field case. From this we observed that the friction factor coefficient 

continuously decreases. The opposite phenomena can be observed in the cases of the Nusselt and 

Sherwood numbers for both the 0M  and 1M   cases (Figures 18–20). Figure 21 represents the 

thermal slip parameter 2 on      0 , 0 , 0f    for both absence and presence of magnetic field 

parameter cases. Figures 21 and 22 show that 2 elevates the rate of heat transfer but decelerates the 

skin friction coefficient for both cases.  

The concentration buoyancy ratio parameter 2 escalates the Salt 1 Sherwood number (Figure 

23) and thermal buoyancy ratio parameter 1 also enhances the friction factor coefficient (Figure 24) 

for the 0and 1M M   cases. Figure 25 shows that the Lewis number 1Le reduces the Nusselt 

number in the 0M  case and increases the Nusselt number in the case of 1M  the same 

phenomena can be observed in Figure 27 Salt 2 Sherwood number. But the skin friction coefficient 

increases for both cases of magnetic field parameter settings, as shown in Figure 26. Finally, from 

Figures 28 and 31 we observed that 2Le reduces the skin friction coefficient but upsurges the Salt 2 

Sherwood number; meanwhile 2Le in the absence of a magnetic field and increase in the presence of 

a magnetic field for the Nusselt number Salt 1 concentration, as shown in Figures 29 and 30. 

 

Figure 17. Surface plot of skin friction coefficient on 1 . 
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Figure 18. Surface plot of Nusselt number on 1 . 

 

Figure 19. Surface plot of Salt 1 Sherwood number on 1 . 
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Figure 20. Surface plot of Salt 2 Sherwood number on 1 . 

 

Figure 21. Surface plot of Nusselt number on 1 . 
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Figure 22. Surface plot of Skin friction on 2 . 

 

Figure 23. Surface plot of Salt 1 Sherwood number on 2 . 
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Figure 24. Surface plot of skin friction coefficient on 1 . 

 

Figure 25. Surface plot of Nusselt number on 1Le . 
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Figure 26. Surface plot of Salt 1 Sherwood number on 1Le .

 

Figure 27. Surface plot of Salt 2 Sherwood number on 1Le . 
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Figure 28. Surface plot of skin friction coefficient on 2Le . 

 

Figure 29. Surface plot of Nusselt number on 2Le . 
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Figure 30. Surface plot of Salt 1 Sherwood number on 2Le . 

 

Figure 31. Surface plot of Salt 2 Sherwood number on 2Le . 
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5. Concluding remarks 

A theoretical study has been conducted for laminar incompressible triple diffusive boundary 

layer flow in the presence and absence of a hydromagnetic fluid. Momentum and thermal slip effects 

have been incorporated into model. The transformed boundary layer equations for heat and 

momentum conservation have been solved by using Lie group transformation analysis. The present 

investigation has shown the following: 

1. The momentum slip parameter 1 improve the Nusselt number and Salt 1 and 2 Sherwood 

number in the presence and absence of a magnetic field. 

2. The thermal slip parameter increases, less heat is transformed from the surface to the fluid 

and consequently the temperature decreases. 

3. The momentum slip parameter reduces the skin friction coefficient for 0M  , but increases in 

the case of 1M  . 

4. The Lewis number 1Le enhances the Salt 1 Sherwood number for 0and 1M M  . The 

opposite behavior can be observed for the Salt 2 Sherwood number. 

5. The thermal slip parameter 2 enhances the Nusselt number in both the presence and absence 

of the magnetic field parameter.  

6. The thermal and concentration buoyancy ratio parameters are upsurge the friction factor, 

Nusselt number and Salts 1 and 2 Sherwood numbers in both cases of magnetic field the 

parameter 0and 1M M  . 

7. With the increase of the velocity and temperature, Salt 1 and 2 concentration distributions 

decreased because molecular forces dominate the thermal buoyancy forces. 

Conflict of interest 

The authors declare that they have no competing interests. 

References 

1. S. Lie, Sophus 1884 Differential Invariants Paper (Translation by M. Acherman, Comments by 

R. Hermann), Math. Sci. Press, Brookline, Mass., 1976. 

2. L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982. 

https://doi.org/10.1016/B978-0-12-531680-4.50012-5 

3. M. M. Bhatti, S. Jun, C. M. Khalique, A. Shahid, L. Fasheng, M. S. Mohamed, Lie group analysis 

and robust computational approach to examine mass transport process using Jeffrey fluid model, 

Appl. Math. Comput., 421 (2022), 126936. https://doi.org/10.1016/j.amc.2022.126936 

4. H. sümer, Y. aksoy, Similarity Solutions of a non-Newtonian Fluid’s Momentum and Thermal 

Boundary Layers: Cross Fluid Model, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik 

Bilimleri Dergisi, 22 (2022), 222–239. https://doi:10.35414/akufemubid.1028006 

5. N. A. Shah, A. Wakif, E. R. El-Zahar, S. Ahmad, S. J Yook, Numerical simulation of a thermally 

enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene 

glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO), Case Stud. Therm. Eng., 

35 (2022), 102046. https://doi.org/10.1016/j.csite.2022.102046 

 

https://doi.org/10.1016/B978-0-12-531680-4.50012-5
https://doi.org/10.1016/j.amc.2022.126936
https://doi:10.35414/akufemubid.1028006
https://doi.org/10.1016/j.csite.2022.102046


5977 

AIMS Mathematics  Volume 8, Issue 3, 5950–5979. 

6. K. U. Rehman, W. Shatanawi, K. Abodayeh, T. A. M. Shatnawi, A group theoretic analysis of 

mutual interactions of heat and mass transfer in a thermally slip Semi-Infinite domain, Appl. Sci., 

12 (2022). https://doi.org/10.3390/app12042000 

7. V. Nagendramma, P. Durgaprasad, N. Sivakumar, B. M. Rao, C. S. Raju, N. A. Shah, et al., 

Dynamics of triple diffusive free convective MHD fluid flow: Lie group transformation, 

Mathematics, 10 (2022), 2456. https://doi.org/10.3390/math10142456 

8. M. J. Babu, Y. S. Rao, A. S. Kumar, C. S. K. Raju, S. A. Shehzad, T. Ambreen, et al., Squeezed 

flow of polyethylene glycol and water based hybrid nanofluid over a magnetized sensor surface: 

A statistical approach, Int. Commun. Heat Mass Transf., 135 (2022), 106136. 

https://doi.org/10.1016/j.icheatmasstransfer.2022.106136. 

9. C. S. K. Raju, N. A. Ahammad, K. Sajjan, N. A. Shah, S. J. Yook, M. D. Kumar, Nonlinear 

movements of axisymmetric ternary hybrid nanofluids in a thermally radiated expanding or 

contracting permeable Darcy Walls with different shapes and densities: Simple linear regression, Int. 

Comm. Heat Mass, 135 (2022), 106110. https://doi.org/10.1016/j.icheatmasstransfer.2022.106110  

10. P. Rana, M. J. Uddin, Y. Gupta, A. I. M. Ismail, Two-component modeling for non-Newtonian 

nanofluid slip flow and heat transfer over sheet: Lie group approach, Appl. Math. Mech., 37 

(2016), 1325–1340. https://doi.org/10.1007/s10483-016-2140-9 

11. C. H. Amanulla, N. Nagendra, M. S. N. Reddy, Numerical study of thermal and momentum slip 

effects on MHD Williamson nanofluid from an isothermal sphere, J. Nanofluids, 6 (2017), 

1111–1126. https://doi.org/10.1166/jon.2017.1405 

12. X. Zhang, Y. Yang, T. Li, Y. Zhang, H. Wang, H. Fujita, CMC: A consensus multi-view 

clustering model for predicting Alzheimer’s disease progression, Comput. Meth. Prog. Bio., 199 

(2021), 105895. https://doi.org/10.1016/j.cmpb.2020.105895 

13. S. Batool, G. Rasool, N. Alshammari, I. Khan, H. Kaneez, N. Hamadneh, Numerical analysis of 

heat and mass transfer in micropolar nanofluids flow through lid driven cavity: Finite volume 

approach, Case Stud. Therm. Eng., 37 (2022), 102233. https://doi.org/10.1016/j.csite.2022.102233 

14. A. Maneengam, H. Laidoudi, A. Abderrahmane, G. Rasool, K. Guedri, W. Weera, et al., Entropy 

generation in 2D Lid-Driven porous container with the presence of obstacles of different shapes 

and under the influences of Buoyancy and Lorentz Forces, Nanomaterials, 12 (2022), 2206. 

https://doi.org/10.3390/nano12132206 

15. M. S. Bhutta, T. Xuebang, S. Akram, C. Yidong, X. Ren, M. Fasehullah, et al., Development of 

novel hybrid 2D-3D graphene oxide diamond micro composite polyimide films to ameliorate 

electrical & thermal conduction, J. Ind. Eng. Chem., 114 (2022), 108–114. 

https://doi.org/10.1016/j.jiec.2022.06.036 

16. G. Rasool, N. A. Shah, E. R. El-Zahar, A. Wakif, Numerical investigation of EMHD nanofluid 

flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer 

porous medium: Application of passive control strategy and generalized transfer laws, Waves 

and Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2074571.  

17. G. Rasool, A. M. Saeed, I. L. Animasaun, A. Abderrahmane, K. Guedri, et al., 

Darcy-Forchheimer flow of water conveying multi-walled carbon nanoparticles through a 

vertical Cleveland Z-Staggered Cavity Subject to entropy generation, Micromachines, 13 (2022), 

744. https://doi.org/10.3390/mi13050744 

 

 

https://doi.org/10.3390/app12042000
https://doi.org/10.3390/math10142456
https://doi.org/10.1016/j.icheatmasstransfer.2022.106136
https://doi.org/10.1016/j.icheatmasstransfer.2022.106110
https://doi.org/10.1007/s10483-016-2140-9
https://doi.org/10.1166/jon.2017.1405
https://doi.org/10.1016/j.cmpb.2020.105895
https://doi.org/10.1016/j.csite.2022.102233
https://doi.org/10.3390/nano12132206
https://doi.org/10.1016/j.jiec.2022.06.036
https://www.tandfonline.com/author/Rasool%2C+Ghulam
https://www.tandfonline.com/author/Shah%2C+Nehad+Ali
https://www.tandfonline.com/author/El-Zahar%2C+Essam+R
https://www.tandfonline.com/author/Wakif%2C+Abderrahim
https://doi.org/10.1080/17455030.2022.2074571.
https://doi.org/10.3390/mi13050744


5978 

AIMS Mathematics  Volume 8, Issue 3, 5950–5979. 

18. U. Arif, M. A. Memon, R. S. Saif, A. S. EI-Shafay, M. Nawaz, T. Muhammed, Triple diffusion 

with heat transfer under different effects on magnetized hyperbolic tangent nanofluid flow, J. P. 

Mech. Eng., 3 (2022), https://doi.org/10.1177/09544089221079139. 

19. P. M. Patil, S. Benawadi, B. Shanker, Influence of mixed convection nanofluid flow over a 

rotating sphere in the presence of diffusion of liquid hydrogen and ammonia, Math. Comp. 

Simulat., 194 (2022), 764–781. https://doi.org/10.10.1016/j.matcom.2021.12.022 

20. M. Nawaz, M. Awais, Triple diffusion of species in fluid regime using tangent hyperbolic rheology, 

J. Therm. Anal. Calorim., 146 (2021), 775–785, https://doi.org/10.1007/s10973-020-10026-0. 

21. A. Manjappa, G. B. Jayanna, P. B. Chandrappa, Triple diffusive flow of Casson nanofluid with 

buoyancy forces and nonlinear thermal radiation over a horizontal plate, Heat Transfer, 47 

(2018), 957–973. https://doi.org/10.1002/htj.21360 

22. P. M. Patil, A. Shashikant, E. Momoniat, C. Harley, Numerical simulation of unsteady triple 

diffusive mixed convection in NaCl-water and Sucrose-water solutions, Int. J. Heat Mass 

Transf., 126 (2018), 147–155. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.166 

23. P. M. Patil, A. Shashikant, P. S. Hiremath, Influence of liquid hydrogen and nitrogen on MHD 

triple diffusive mixed convection nanoliquid flow in presence of surface roughness, Int. J. 

Hydrog. Energ., 43 (2018), 20101–20117. https://doi.org/10.1016/j.ijhydene.2018.09.033 

24. P. Y. Xiong, M. Nazeer, F. Hussain, M. I. Khan, A. Saleem, S. Qayyum, et al., Two-phase flow 

of couple stress fluid thermally effected slip boundary conditions: Numerical analysis with 

variable liquids properties, Alex. Eng. J., 61 (2022), 3821–3830. 

https://doi.org/10.1016/j.aej.2021.09.012.  

25. O. A. Bég, T. Bég, W. A. Khan, M. J. Uddin, Multiple slip effects on nanofluid dissipative flow 

in a converging/diverging channel: A numerical study, Heat Transfer, 51 (2022), 1040–1061. 

https://doi.org/10.1002/htj.22341.  

26. L. Su, B. He, G. Wang, R. Xiao, W. Yu, Simultaneously developing flow and heat transfer in 

circular and parallel-plates microchannels with velocity slip and temperature jump, International 

J. Therm. Sci., 177 (2022), 107590. https://doi.org/10.1016/j.ijthermalsci.2022.107590  

27. K. N. Sneha, U. S. Mahabaleshwar, Y. Sheikhnejad, Heat and Mass Transfer of Walters’ Liquid 

B Flow Over A Porous Stretching/Shrinking Plate with Mass Transpiration and Slip, Transport 

in Porous Media, (2022). https://doi.org/10.1007/s11242-022-01758-8  

28. A. Sabu, A. Wakif, S. Areekara, A. Mathew, N. A. Shah, Significance of nanoparticles’ shape 

and thermo-hydrodynamic slip constraints on mhd alumina-water nanoliquid flows over a 

rotating heated disk: The passive control approach, Int. Commun. Heat Mass Transf., 129 (2021), 

105711. https://doi.org/10.1016/j.icheatmasstransfer.2021.105711 

29. O. K. Koriko, K. S. Adegbie, N. A. Shah, I. L. Animasaun, M. A. Olotu, Numerical solutions of 

the partial differential equations for investigating the significance of partial slip due to lateral 

velocity and viscous dissipation: The case of blood-gold Carreau nanofluid and dusty fluid, 

Numer. Meth. Part. D. E., (2021), 1–29. https://doi.org/ 10.1002/num.22754 

30. E. Seid, E. Hailen, T. Walelign, Multiple slip, Soret and Dufour effects in fluid flow near a 

vertical stretching sheet in the presence of magnetic nanoparticles, Int. J. Therm., 13 (2022), 

100136. https://doi.org/10.1016/j.ijft.2022.100136 

31. M. Turkyilmazoglu, Velocity Slip and Entropy Generation Phenomena in Thermal Transport 

Through Metallic Porous Channel, J. Non-Equil. Thermody., 45 (2020). 

https://doi.org/10.1515/jnet-2019-0097 

https://doi.org/10.1177/09544089221079139.
https://doi.org/10.10.1016/j.matcom.2021.12.022
https://doi.org/10.1007/s10973-020-10026-0
https://doi.org/10.1002/htj.21360
https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.166
https://doi.org/10.1016/j.ijhydene.2018.09.033
https://doi.org/10.1016/j.aej.2021.09.012
https://doi.org/10.1002/htj.22341
https://doi.org/10.1016/j.ijthermalsci.2022.107590
https://doi.org/10.1007/s11242-022-01758-8
https://doi.org/10.1016/j.icheatmasstransfer.2021.105711
https://doi.org/%2010.1002/num.22754
https://doi.org/10.1016/j.ijft.2022.100136
https://doi.org/10.1515/jnet-2019-0097


5979 

AIMS Mathematics  Volume 8, Issue 3, 5950–5979. 

32. F. L. Paiva, A. R. Secchi, V. Calado, J. Maia, S. Khani, Slip and momentum transfer 

mechanisms mediated by Janus rods at polymer interfaces, Soft Matter, 16 (2020), 6662–6672. 

https://doi.org/10.1039/D0SM00858C 

33. A. Majeed, F. M. Noori, A. Zeeshan, T. Mahmood, S. U. Rehman, I. Khan, Analysis of 

activation energy in magnetohydrodynamic flow with chemical reaction and second order 

momentum slip model, Case Stud. Therm. Eng., 12 (2018), 765–773. 

https://doi.org/10.1016/j.csite.2018.10.007 

34. A. Majeed, A. Zeeshan, F. M. Noori, Numerical study of Darcy-Forchheimer model with 

activation energy subject to chemically reactive species and momentum slip of order two, AIP 

Adv., 9 (2019), 045035. https://doi.org/10.1063/1.5095546 

35. M. Ferdows, M. J. Uddin, A. A. Afify, Scaling group transformation for MHD boundary layer 

free convective heat and mass transfer flow past a convectively heated nonlinear radiating 

stretching sheet, Int. J. Heat Mass Transf., 56 (2013), 181–187.  

© 2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1039/D0SM00858C
https://doi.org/10.1016/j.csite.2018.10.007
https://doi.org/10.1063/1.5095546

