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1. Introduction

By comparing integer differential equations to fractional differential equations of a constant order,
fractional calculus has been the subject of extensive studies for more than three centuries. The main
and initial difference of fractional calculus is to replace the natural numbers in the order of derivative
by arbitrary real ones. Although such a description of this widely used theory seems very superficial,
it has a high power in describing physical phenomena. While numerous number of studies have been
implemented for analyzing the existence theory in relation to fractional constant-order boundary value
problems (BVPs) [1–15], this theory is rarely investigated for variable-order BVPs in other research
studies [16–20]. Hence, at the same time, the technique we propose in this paper is new and valuable
for such variable order structures. About the investigation of the existence theory for variable order
BVPs, we mention some of them. Jiahui et al. [21] addressed unique solutions in relation to an IVP
of Riemann-Liouville fractional differential equations in the case of variable order. In [22], Bouazza
et al. discussed a new structure of variable-order Riemann-Liouville BVPs, and after that in [23],
Benkerrouche et al. performed an analysis about Ulam-Hyers stable solutions for a Caputo nonlinear
implicit fractional boundary value problem (FBVPs) of variable order. Simultaneously in 2021, Refice
et al. [24] and Hristova et al. [25] focused on some research studies in relation to existence theory
for BVPs of Hadamard FDEs with the help of complicated method of the Kuratowski measure of
noncompactness in the case of variable order. For more information, we mention [26–29]. Of course,
the stability analysis is one of the important aspects of fractional calculus, and some researchers have
extended this area for constant-order systems [30–33], and it can be a motivational factor for other
studies in variable-order systems.

Many real phenomena exist that expect the concept of Hadamard fractional derivative permitting the
useful of physically initial conditions, which contain φ(p), φ′(p), etc. The Caputo–Hadamard fractional
derivative provides these conditions. Under this property, the basic notions of the Caputo–Hadamard
fractional derivative are studided by Almeida [34]. After that, some researchers such as Ben Makhlouf
and Mchiri [35] discussed some other properties of these operators. Moreover, Abuasbeh et al. [36,37],
Khan et al. [38], Niazi et al. [39] and Shafqat et al. [40, 41] similarly investigated the existence and
uniqueness of solution for the fuzzy fractional evolution equations. For other applications, see [42–44].

In particular, Bai et al. [45] studied the existence of solution for the following initial value problem
cDw

p+φ(t) = ψ(t, φ(t), Iw
p+φ(t)), t ∈ Λ := [p,T ],

φ(p) = φp,
(1.1)

where cDw
p+ and Iw

p+ denote the Caputo derivative and Hadamard integral, respectively, ψ : Λ×IR×IR→
IR is a continuous function, φp ∈ IR, and 0 < p < T < ∞.

In this paper, we study the existence of solutions for the following fractional nonlinear differential
equation involving the Caputo-Hadamard fractional derivative of variable order

cDw(t)
p+ φ(t) = ψ(t, φ(t)), t ∈ Λ := [p,T ],

φ(p) = φp,
(1.2)

where 0 < p < T < ∞, φp ∈ IR and 0 < w(t) ≤ 1 is a variable order, ψ : Λ× IR→ IR is a given function
and cDw(t)

p+ denotes the Caputo-Hadamard fractional derivative of order w(t).
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The organization of the rest of this paper is as follows. Some definitions and auxiliary results are
given in Section 2. In Section 3, we try to obtain an equivalent system of constant order IVP by
deriving Hadamard integral equations on some continuous subintervals and partitions. With the help
of piecewise constant functions, we implement the technique of upper-lower solutions for such an
equivalent system and generalize our results to the given Caputo-Hadamard variable order problem.
One example is presented in Section 4, to show the efficiency and validity of the proposed results.
Finally, some conclusion notes are given in Section 5. Note that there is no published work in which
the technique of upper-lower solutions is used on a variable order system. This shows the originality
of our research.

2. Auxiliary notions

In this section, we list some of definitions and propositions that are used in the following sections.
The space E := C(Λ := [p,T ], IR) denotes the Banach space of continuous functions φ : Λ → IR,

and by the function space AC(p, q; IR), we determines absolutely continuous IR-valued functions on
[p, q].

Definition 2.1. ( [46, 47]) Let 0 < p < q < ∞ and φ : [p, q] → IR. The Hadamard fractional integral
of order w > 0 of the function φ is defined by

Iw
p+φ(t) =

1
Γ(w)

∫ t

p
(ln

t
s
)w−1φ(s)

s
ds for t ∈ [p, q],

where the well-known Gamma function is denoted by

Γ(w) =

∫ ∞

0
tw−1e−tdt.

Definition 2.2. ( [46,47]) Let 0 < p < q < ∞ and φ : [p, q]→ IR. The Hadamard fractional derivative
of the order w ∈ (0, 1] of the function φ is defined by

Dw
p+φ(t) =

1
Γ(1 − w)

t
d
dt

∫ t

p
(ln

t
s
)−wφ(s)

s
ds for t ∈ [p, q].

Clearly, we have

Iw
p+

(
ln

t
p

)v−1
=

Γ(v)
Γ(v + w)

(
ln

t
p

)v+w−1
, Dw

p+

(
ln

t
p

)v−1
=

Γ(v)
Γ(v − w)

(
ln

t
p

)v−w−1
,

for each t ∈ [p, q].
We now state some important characteristics for Hadamard fractional integral and derivative

operators. The proofs of them can be found in [47].

Lemma 2.3. ( [47]). Let w > 0 and v > 0.

(i) For φ ∈ Lr(p, q; IR), if 1 ≤ r < ∞, then we have

Iv
p+ Iw

p+φ(t) = Iw+v
p+ φ(t) for t ∈ [p, q].
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(ii) For φ ∈ Lr(p, q; IR), if 1 ≤ r < ∞ and w > v, then we have

Dv
p+ Iw

p+φ(t) = Iw−v
p+ φ(t) for t ∈ [p, q].

Definition 2.4. ( [46, 47]). Let 0 < p < q < ∞ and φ : [p, q] → IR. The Caputo-Hadamard fractional
derivative of order w ∈ (0, 1] of the function φ is defined by

cDw
p+φ(t) = Dw

p+[φ(t) − φ(p)] for t ∈ [p, q].

Remark 2.5. It should be obvious that the Caputo-Hadamard fractional derivative, i.e., Definition 2.4,
is equivalent to the following expression that if φ ∈ AC(p, q; IR), then

cDw
p+φ(t) =

1
Γ(1 − w)

∫ t

p
(ln

t
s
)−wφ

′

(s)ds, for t ∈ [p, q].

Definition 2.6. [48] The left variable-order Caputo-Hadamard fractional derivative of the functional
order w(t) is defined by

cDw(t)
p+ φ(t) =

tw
′

(t)
Γ(2 − w(t))

∫ t

p
(ln

t
s
)1−w(t)φ

′

(s)
[ 1
1 − w(t)

− ln
(

ln
t
s

)]
ds

+
1

Γ(1 − w(t))

∫ t

p
(ln

t
s
)−w(t)φ

′

(s)ds.

Remark 2.7. If w(t) ≡ w, (w is constant), then Definition 2.6 is transformed into the Caputo-Hadamard
derivative given in [46] as

cDw
p+φ(t) =

1
Γ(1 − w)

∫ t

p
(ln

t
s
)−wφ

′

(s)ds.

The component characteristics for the Caputo-Hadamard fractional operators are listed below, and
this section is concluded by mentioning them.

Lemma 2.8. ( [47]) Let n = [w] + 1 be the case for w > 0.

(i) If φ ∈ C(p, q; IR), then
cDw

p+(Iw
p+φ(t)) = φ(t) for t ∈ [p, q].

(ii) If φ ∈ AC(p, q; IR), then

Iw
p+(cDw

p+φ(t)) = φ(t) − φ(p) for t ∈ [p, q].

3. Main results

Let’s state the underlying assumptions. It will be the basic step in proving the results of this section.

(H1) For n ∈ IN, the finite sequence of points {Tk}
n
k=0 such that p = T0 < Tk < Tn = T, k = 1, . . . , n− 1

is given. Denote Λk := (Tk−1,Tk], k = 1, 2, . . . , n. Consequently, P =
⋃n

k=1 Λk is a partition of Λ.
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The symbol Em = C(Λm, IR),m = 1, 2, . . . , n denotes the Banach space of continuous functions
φ : Λm → IR endowed with ‖φ‖Em = supt∈Λm

|φ(t)|.

Suppose that w(t) : Λ → (0, 1] is defined by w(t) =

n∑
m=1

wmIm(t), where 0 < wm ≤ 1 are constants

and Im is the indicator of Λm be a piecewise constant function with respect to P, where

Im(t) =


1, f or t ∈ Λm,

0, elsewhere.

The left Caputo-Hadamard derivative for the function φ ∈ C(Λ, IR) with variable order w(t), given
by Definition 2.6, might then be stated as the sum of the left Caputo-Hadamard derivatives of the
constant orders wk, k = 1, 2, . . . , n, i.e.,

Dw(t)
p+ φ(t) =

tw
′

(t)
Γ(2 − w(t))

∫ t

p
(ln

t
s
)1−w(t)φ

′

(s)
[ 1
1 − w(t)

− ln
(

ln
t
s

)]
ds

+
1

Γ(1 − w(t))

∫ t

p
(ln

t
s
)−w(t)φ

′

(s)ds

=
1

Γ(1 − w(t))

( m−1∑
k=1

∫ Tk

Tk−1

(ln
t
s
)−wkφ

′

(s)ds +

∫ t

Tm−1

(ln
t
s
)−wmφ

′

(s)ds
)
.

For each t ∈ Λm, where m = 1, 2, . . . , n, the Caputo-Hadamard derivative for the system of
CHFDEVO (1.2) can be stated in the following form

1
Γ(1 − w(t))

( m−1∑
k=1

∫ Tk

Tk−1

(ln
t
s
)−wkφ

′

(s)ds +

∫ t

Tm−1

(ln
t
s
)−wmφ

′

(s)ds
)

= ψ(t, φ(t)). (3.1)

To solve the integral equation (3.1), let the function φ̃ ∈ C(Λm, IR) be such that φ̃(t) ≡ 0 on t ∈ [p,Tm−1].
Then (3.1) is transformed into

Dwm
T +

m−1
φ̃(t) = ψ(t, φ̃(t)), t ∈ Λm.

For obtained Caputo-Hadamard constant order fractional differential equations, we consider the
following auxiliary Caputo-Hadamard fractional differential equations (CHFDE) of constant order

cDwm
T +

m−1
φm(t) = ψ(t, φm(t)), t ∈ Λm,

φm(Tm−1) = φTm−1
,

(3.2)

for each m = 1, 2, . . . , n.
The main basic theorem can be stated now.

Theorem 3.1. Assume that ψ : Λm × IR → IR is a continuous function. The solution to the integral
equation (i.e., φm ∈ C(Tm−1,Tm; IR)) given by

φm(t) = φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1ψ(s, φm(s))

s
ds for t ∈ Λm, (3.3)

solves the auxiliary CHFDE of constant order (3.2).
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Proof. Assume that φm ∈ C(Tm−1,Tm; IR) is a solution of (3.3). Naturally, we take φ(Tm−1) = φTm−1
and

t → Iwm
T +

m−1
φm(t) ∈ C(Tm−1,Tm; IR). The definition of the Hadamard integral Iwm

T +
m−1

and the continuity of ψ
guarantee that t → ψ(t, φm(t)) is continuous as well and

Iwm
T +

m−1
ψ(t, φm(t))|t=Tm−1 = 0.

Since t → Iwm
T +

m−1
ψ(t, φm(t)) is continuous, we can conclude that φm is differentiable for a.e. t ∈ (Tm−1,Tm),

(see (3.3)), i.e., φm ∈ AC(Tm−1,Tm; IR). From Lemma 2.8, we have
cDwm

T +
m−1

Iwm
T +

m−1
ψ(t, φm(t)) = ψ(t, φm(t)) for t ∈ Λm.

On the other hand, Remark 2.5 gives

cDwm
T +

m−1
[φm(t) − φTm−1

] =
1

Γ(1 − wm)

∫ t

Tm−1

(ln
t
s
)−wm[φm(s) − φTm−1

]
′

ds

=
1

Γ(1 − wm)

∫ t

Tm−1

(ln
t
s
)−wmφ

′

m(s)ds

= cDwm
T +

m−1
φm(t),

for each t ∈ Λm. By all above, we conclude that φm ∈ C(Tm−1,Tm; IR) is a solution of the auxiliary
CHFDE of constant order (3.2). �

Definition 3.2. Let (φm, φm) ∈ C(Tm−1,Tm; IR) × C(Tm−1,Tm; IR). A pair of functions (φm, φm) is called
an upper-lower solutions of the auxiliary CHFDE of constant order (3.2), respectively, if

φm(t) ≤ φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1

ψ(s, φm(s))

s
ds for all t ∈ Λm,

and

φm(t) ≥ φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1ψ(s, φm(s))

s
ds for all t ∈ Λm.

Assume that the upper-lower solution to the the auxiliary CHFDE of constant order (3.2) is
(φm, φm). In the following, we define an acceptable set of solutions for the auxiliary CHFDE of
constant order (3.2) which is controlled by two upper-lower solutions (φm, φm) as follows

S (φm, φm) :=
{
φm ∈ C(Tm−1,Tm; IR) : φm(t) ≤ φm(t) ≤ φm(t), t ∈ Λm and φm is a solution of (3.2)

}
.

Theorem 3.3. Let ψ ∈ C(Λm × IR; IR) and (φm, φm) ∈ C(Tm−1,Tm; IR) × C(Tm−1,Tm; IR). The auxiliary
CHFDE of constant order (3.2) has the pair of upper-lower solutions with φm(t) ≤ φm(t) and t ∈ Λm.
If φm → ψ(t, φm) is nondecreasing, that is

ψ(t, φ1) ≤ ψ(t, φ2) for φ1 ≤ φ2,

then, there are minimum and maximum solutions φM,m, φL,m ∈ S (φm, φm) in S (φm, φm); i.e., for each

φm ∈ S (φm, φm),

φL,m(t) ≤ φm(t) ≤ φM,m(t) for t ∈ Λm.
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Proof. We provide two sequences {ϑn,m} and {βn,m} as
ϑ0,m = φm,

ϑn+1,m(t) = φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1ψ(s, ϑn,m(s))

s
ds, t ∈ Λm and n = 0, 1, ...,

(3.4)

and 
β0,m = φm,

βn+1,m(t) = φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1ψ(s, βn,m(s))

s
ds, t ∈ Λm and n = 0, 1, ....

(3.5)

The proof is now divided into three steps.

Step1. Sequences {ϑn,m} and {βn,m} satisfy the following relation:

φm(t) = ϑ0,m(t) ≤ ϑ1,m(t) ≤ ϑ2,m(t) ≤ ... ≤ ϑn,m(t) ≤ ... ≤ βn,m(t) ≤ ... ≤ β1,m(t) ≤ β0,m(t) = φm(t) (3.6)

for each t ∈ Λm.

We will first demonstrate that the sequence {ϑn,m} is nondecreasing and

ϑn,m(t) ≤ β0,m(t), t ∈ Λm for all n ∈ IN.

Therefore, by a recurrence relation, we prove

ϑn−1,m(t) ≤ ϑn,m(t), ∀t ∈ Λm. (3.7)

By the definition of ϑ0,m(t), we have ϑ0,m(t) ≤ ϑ1,m(t) for each t ∈ Λm. We suppose that (3.7) is true for
n and we prove for n + 1 : ϑn,m(t) ≤ ϑn+1,m(t), ∀t ∈ Λm.

We have

ϑn,m(t) = φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1ψ(s, ϑn−1,m(s))

s
ds.

ϑn+1,m(t) = φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1ψ(s, ϑn,m(s))

s
ds.

Using the monotonicity of ψ, we obtain

ϑn,m(t) ≤ ϑn+1,m(t).

As ϑn,m(t) is noncreasing, by the definition of β0,m(t), we have

ϑn,m(t) ≤ ϑn+1,m(t) ≤ β0,m(t).

Further, we will show that

ϑn,m(t) ≤ βn,m(t) for t ∈ Λm and n ∈ IN.
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Since n = 0, it is evident that φm(t) = ϑ0,m(t) ≤ β0,m(t) = φm(t) for each t ∈ Λm. Now, we make an
inductive assumption

ϑn,m(t) ≤ βn,m(t), t ∈ Λm.

Accordingly, given that ψ is monotonic with respect to the second variable, it is simple to conclude that

ϑn+1,m(t) ≤ βn+1,m(t), t ∈ Λm.

Also, we have that the sequence {βn,m} is nonincreasing.

Step2. Both sequences {ϑn,m} and {βn,m} are relatively compact in C(Tm−1,Tm; IR).
Because ψ is continuous and (φm, φm) ∈ C(Tm−1,Tm; IR), from Step 1, we find out that {ϑn,m} and

{βn,m} belong to C(Tm−1,Tm; IR) as well. It follows from (3.6) that {ϑn,m} and {βn,m} are uniformlly
bounded. On the other hand, for any t1, t2 ∈ Λm, without loss of generality, let t1 ≤ t2. We have

|ϑn+1,m(t1) − ϑn+1,m(t2)| =
1

Γ(wm)

∣∣∣∣ ∫ t2

Tm−1

(ln
t2

s
)wm−1ψ(s, ϑn,m(s))

s
ds

−

∫ t1

Tm−1

(ln
t1

s
)wm−1ψ(s, ϑn,m(s))

s
ds

∣∣∣∣
=

1
Γ(wm)

∣∣∣∣ ∫ t1

Tm−1

[
(ln

t2

s
)wm−1 − (ln

t1

s
)wm−1

]ψ(s, ϑn,m(s))
s

ds

+

∫ t2

t1
(ln

t2

s
)wm−1ψ(s, ϑn,m(s))

s
ds

∣∣∣∣
≤

M
Γ(wm)

∣∣∣∣ ∫ t1

Tm−1

1
s

[
(ln

t2

s
)wm−1 − (ln

t1

s
)wm−1

]
ds +

∫ t2

t1

1
s

(ln
t2

s
)wm−1ds

∣∣∣∣
=

M
Γ(wm)

∣∣∣∣ − 1
wm

[(
ln

t2

s

)wm]t1

Tm−1
+

1
wm

[(
ln

t1

s

)wm]t1

Tm−1
−

1
wm

[(
ln

t2

s

)wm]t2

t1

∣∣∣∣
=

M
Γ(wm)

∣∣∣∣ 1
wm

((
ln

t2

Tm−1

)wm
−

(
ln

t2

t1

)wm))
+

( 1
wm

(
−

(
ln

t1

Tm−1

)wm
+

(
ln

t1

t1

)wm))
+

( 1
wm

((
ln

t2

t1

)wm
−

(
ln

t2

t2

)wm)∣∣∣∣
=

M
Γ(wm)

∣∣∣∣ 1
wm

((
ln

t2

Tm−1

)wm
−

(
ln

t1

Tm−1

)wm)∣∣∣∣
=

M
Γ(wm + 1)

∣∣∣∣(ln t2

Tm−1

)wm
−

(
ln

t1

Tm−1

)wm
∣∣∣∣

→ 0, as t1 → t2,

where M > 0 is a constant independent of n, t1, and t2. It gives this fact that {ϑn,m} is equicontinuous in
C(Tm−1,Tm; IR).
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We conclude that {ϑn,m} is relatively compact in C(Tm−1,Tm; IR) based on the Arzela-Ascoli
Theorem. Similar to this, we find that {βn,m} is also relatively compact in C(Λm; IR).

Step3. In S(φm, φm), there are minimum and maximum solutions.

The sequences {ϑn,m} and {βn,m} are monotone and relatively compact in C(Tm−1,Tm; IR), as shown
in Steps 1 and 2. Evidently, continuous functions ϑm and βm exist with ϑn,m(t) ≤ ϑm(t) ≤ βm(t) ≤ βn,m(t)
for all t ∈ Λm and n ∈ IN, such that {ϑn,m} and {βn,m} converge uniformly to ϑm and βm, respectively,
in C(Tm−1,Tm; IR). Therefore, the solutions to the auxiliary CHFDE of constant order (3.2) are ϑm and
βm; i.e.,

ϑm(t) = φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1ψ(s, ϑm(s))

s
ds,

βm(t) = φTm−1
+

1
Γ(wm)

∫ t

Tm−1

(ln
t
s
)wm−1ψ(s, βm(s))

s
ds,

for each t ∈ Λm. Therefore,

φm(t) ≤ ϑm(t) ≤ βm(t) ≤ φm(t) f or t ∈ Λm.

Finally, we will prove that ϑm and βm are the minimum and maximum solutions in S (φm, φm). If

φm ∈ S (φm, φm), then

φm(t) ≤ φm(t) ≤ φm(t), t ∈ Λm.

Remembering that the second and third arguments do not cause ψ to decrease, we introduce

φm(t) ≤ ϑn,m(t) ≤ φm(t) ≤ βn,m(t) ≤ φm(t) for t ∈ Λm and n ∈ IN.

As n→ ∞ in the above inequality, it implies that

φm(t) ≤ ϑm(t) ≤ φm(t) ≤ βm(t) ≤ φm(t) for t ∈ Λm.

This concludes the proof of theorem by considering φL,m = ϑm and φM,m = βm, respectively, which are
the minimum and maximum solutions in S (φm, φm). �

Theorem 3.4. Assume that the hypotheses of Theorem 3.3 to be satisfied. The auxiliary CHFDE of
constant order (3.2) has at least one solution in C(Λm; IR).

Proof. According to Theorem 3.3, we get S (φm, φm) , ∅, implying that the solution set associated

with the auxiliary CHFDE of constant order (3.2) is not empty in C(Tm−1,Tm; IR). By proving that the
auxiliary CHFDE of constant order (3.2) has at least one solution in C(Tm−1,Tm; IR), this completes the
proof of theorem. �

We shall now investigate the existence result for the Caputo-Hadamard fractional nonlinear
differential equation of variable order (CHFDEVO) (1.2).

Theorem 3.5. Let all m ∈ {1, 2, . . . , n} satisfy the condition (H1). Then, there is at least one solution
for the given nonlinear IVP of CHFDEVO (1.2) in E.
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Proof. Based on the above proofs, we know that the nonlinear IVP of constant order Caputo-Hadamard
fractional differential equation (3.2) has at least one solution φ̃m ∈ Em, m ∈ {1, 2, . . . , n}. This is in
accordance with Theorems 3.3 and 3.4.

We define the solution function for each m ∈ {1, 2, . . . , n} as

φm =


0, t ∈ [p,Tm−1],

φ̃m, t ∈ Λm.

(3.8)

Thus, φm ∈ C(Tm−1,Tm; IR) solves the Hadamard integral equation (3.1) for each t ∈ Λm, which means
that φm(p) = 0, φm(Tm) = φ̃m(Tm) = 0. Then, the function

φ(t) =



φ1(t), t ∈ Λ1,

φ2(t) =


0, t ∈ Λ1,

φ̃2, t ∈ Λ2,

.

.

.

φn(t) =


0, t ∈ [p,Tn−1],

φ̃n, t ∈ Λn.

is a solution of the given nonlinear IVP of CHFDEVO (1.2) in E. �

4. Numerical example

Let Λ := [1, e2], T0 = 1, T1 = e, T2 = e2. Consider the following nonlinear variable order IVP of
CHFDE 

cDw(t)
1+ φ(t) = 1

π
(
√

ln t + (ln t)4) + φ(t), t ∈ Λ,

φ(1) = 0,
(4.1)

where

w(t) =


1
2 , t ∈ Λ1 := [1, e],

2
3 , t ∈ Λ2 :=]e, e2].

(4.2)

Denote
ψ(t, φ) =

1
π

(
√

ln t + (ln t)4) + φ(t), (t, φ) ∈ [1, e2] × R.

Using (4.2) and (3.2), we consider two auxiliary constant order IVPs of CHFDEs as
cD

1
2
1+φ(t) =

1
π

(
√

ln t + (ln t)4) + φ(t), t ∈ Λ1,

φ(1) = 0,

(4.3)
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and 
cD

2
3
e+φ(t) =

1
π

(
√

ln t + (ln t)4) + φ(t), t ∈ Λ2,

φ(e) = 1.

(4.4)

For m = 1: By Theorem 3.1, the auxiliary IVP of constant order CHFDE (4.3) has at least one
solution φ̃1 ∈ E1 as

φ1(t) = I
1
2
1+

(1
π

(
√

ln t + (ln t)4) + φ1(t)
)

for t ∈ Λ1. (4.5)

In fact, as one can see, (φ1(t), φ1(t)) = (0, ln t + (ln t)5) denotes the upper-lower bounds of the solution
to (4.5). We can calculate the sequences {ϑn,1} and {βn,1} by


ϑ0,1 = φ1

ϑn+1,1(t) = I
1
2
1+
ψ(t, ϑn,1(t)), n = 0, 1, ...,

and 
β0,1 = φ1

βn+1,1(t) = I
1
2
1+
ψ(t, βn,1(t)), n = 0, 1, ...,

for each t ∈ Λ1. We can now use Theorem 3.3 to determine that ϑn,1 → ϑ1 ∈ E1 and βn,1 → β1 ∈ E1 as

n→ ∞. In the meanwhile, we may obtain t ∈ Λ1 for β1(t) = ϑ1(t) =
π(ln t)2

3
.

We use Maple to calculate the sequences {ϑn,2} and {βn,2} for each n which are defined as integrals
with different initial values. Then, we take the values of these sequences at each instant t and plot them
with Matlab. In Table 1, we present the error (which is the sup of the absolute value of the defference)
between the sequences {ϑn,1}, {βn,1} and the exact solution for n = 5, 10, 15, 20. In Figure 1, we plot the
sequences {ϑn,1}, {βn,1} and the exact solution for n = 0, 1, 2, 10, 30.

Table 1. Error analysis for m = 1.

n = 5 n = 10 n = 15 n = 20

sup
t∈[1,e]

|ϑn,1(t) − ϑ1(t)| 4.7692 × 10−2 6.3900 × 10−4 4 × 10−6 10−15

sup
t∈[1,e]

|βn,1 − β1| 4.6818 × 10−2 7.8299 × 10e−4 5 × 10−6 9 × 10−8
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Figure 1. A plot of ϑn,1, βn,1 and exact solution for n = 0, 1, 2, 10, 20, 30.

In Figure 1, We notice that when n is larger, the sequences {ϑn,1} and {βn,1} are approximated to

the exact solution
π(ln t)2

3
. Moreover, in Table 1, we confirm our previous remark, because the error

approaches to 0 when n converges to +∞.
For m = 2: By Theorem 3.1, the auxiliary IVP of constant order CHFDE (4.4) has at least one

solution φ̃2 ∈ E2 as

φ2(t) = I1
e+

(1
π

(
√

ln t + (ln t)4) + φ2(t)
)

for t ∈ Λ2. (4.6)

In fact, we are able to observe that (φ2(t), φ2(t)) = (1, ln t + (ln t)5) is upper-lower solution to (4.6).
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We can calculate the sequences {ϑn,2} and {βn,2} by

{
ϑ0,2 = φ2

ϑn+1,2(t) = I1
e+ f (t, ϑn,2(t)), n = 0, 1, ...,

and  β0,2 = φ2

βn+1,2(t) = I
2
3
e+ f (t, βn,2(t)), n = 0, 1, ...,

for each t ∈ Λ2. We can now use Theorem 3.3 to prove ϑn,2 → ϑ2 ∈ E2 and βn,2 → β2 ∈ E2 as n → ∞.

In the meanwhile, we may obtain t ∈ Λ2 for β2(t) = ϑ2(t) = π
(ln t)5

30
.

In Table 2, we present the error (which is the sup of the absolute value of the defference) between the
sequences {ϑn,2}, {βn,2} and the exact solution for n = 5, 10, 15, 20. In Figure 2, we plot the sequences
{ϑn,2}, {βn,2} and the exact solution for n = 0, 1, 2, 10, 30. In this figure, we notice that when n is larger,

the sequences {ϑn,2} and {βn,2} are approximated to the exact solution
π(ln t)5

30
. In Table 2, we confirm

our previous remark, because the error approaches to 0 when n converges to +∞.

Consequently, in accordance with Theorem 3.5, the given nonlinear IVP of CHFDEVO (4.1) has a
solution

φ(t) =


φ̃1(t), t ∈ Λ1,

φ2(t), t ∈ Λ2,

where

φ2(t) =


0, t ∈ Λ1,

φ̃2(t), t ∈ Λ2.

Table 2. Error analysis for m = 2.

n = 5 n = 10 n = 15 n = 20

sup
t∈]e,e2]

|ϑn,2(t) − ϑ2(t)| 6.8509 × 10−3 10−6 6 × 10−10 10−10

sup
t∈]e,e2]

|βn,2(t) − β2(t)| 3.1123 × 10−2 10−6 10−7 10−12
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Figure 2. A plot of ϑn,2, βn,2 and exact solution, for n = 0, 1, 2, 10, 20, 30.

5. Conclusions

In this paper, a Caputo-Hadamard fractional nonlinear differential equation of variable order was
considered and discussed. With the help of piece-wise constant order functions on some continuous
subintervals of a partition, we converted the main variable order IVP to a constant order IVP of the
Caputo-Hadamard differential equation. By calculating and obtaining equivalent solutions in the form
of a Hadamard integral equation, we used the upper-lower solution technique to prove the relevant
existence theorems. By plotting some graphs and providing some numerical tables, we presented an
example of the variable order IVP to apply and demonstrate the results of our method. In the future, we
will extend our studies on different IVPs and BVPs (implicit, resonance, thermostat model, etc.) with
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changing conditions (terminal, integral conditions, etc.) in the future. Also, if we can define variable
order tempered fractional derivative, then it will be a new idea for this purpose [49, 50].
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1. A. O. Akdemir, A. Karaoǧlan, M. A. Ragusa, E. Set, Fractional integral inequalities via Atangana-
Baleanu operators for convex and concave functions, J. Funct. Spaces, 2021 (2021), 1055434.
https://doi.org/10.1155/2021/1055434

2. M. S. Abdo, Further results on the existence of solutions for generalized fractional
quadratic functional integral equations, J. Math. Anal. Model., 1 (2020), 33–46.
https://doi.org/10.48185/jmam.v1i1.2

3. R. Rizwan, A. Zada, X. Wang, Stability analysis of nonlinear implicit fractional
Langevin equation with noninstantaneous impulses, Adv. Differ. Equ., 2019 (2019), 85.
https://doi.org/10.1186/s13662-019-1955-1

4. D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for
thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64.
https://doi.org/10.1186/s13661-020-01361-0

5. A. Zada, J. Alzabut, H. Waheed, I. L. Popa, Ulam-Hyers stability of impulsive integrodifferential
equations with Riemann-Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64.
https://doi.org/10.1186/s13662-020-2534-1

6. E. Bonyah, C. W. Chukwu, M. L. Juga, Fatmawati, Modeling fractional-order dynamics of Syphilis
via Mittag-Leffler law, AIMS Math., 6 (2021), 8367–8389. https://doi.org/10.3934/math.2021485

7. M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for
weighted fractional order differential equations, Chaos Solitons Fract., 141 (2020), 110341.
https://doi.org/10.1016/j.chaos.2020.110341
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