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Abstract: When the network optimization problem is discussed, in the actual situation, it is necessary 
to consider the uncertain factors in the network. This paper employs the theories of uncertainty, 
uncertain programming and network optimization to solve the uncertain network optimization problem. 
First, based on uncertainty theory and uncertainty graph, we redefine the concept of an uncertain 
network system, and propose a unified identification method for an uncertain network system based 
on a conditional uncertain measure matrix. Second, we establish the network optimization model for 
the shortest path problem based on a conditional uncertain measure matrix. Third, according to the 
measure simulation technology, a hybrid intelligent algorithm is designed to solve the model. Finally, 
the correctness and feasibility of the approach is illustrated by a numerical example of an underground 
logistics system. 
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1. Introduction 

There are a large number of optimization problems in network systems, and network system 
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optimization is a classic and important branch of operational research. However, in recent years, many 
new challenges have emerged. In many practical cases, the information which we need to extract is 
uncertain. The emergence of uncertainty leads to a large number of uncertain factors in the network 
system. In the network system, uncertain factors are mainly manifested in the uncertainty of network 
attributes and network structures. However, the traditional approaches for deterministic problems are 
not suitable for solving uncertain network optimization problems. The deterministic optimization 
model and intelligent algorithm could not solve the practical problems. Therefore, based on uncertainty 
theory, we study the optimization problem of a network system with uncertain factors. Only in this 
way can the optimization model be more in line with the actual situation. 

Many experts have studied the optimization problem with uncertain factors. For an interval 
uncertain optimization problem, Wang et al. [1] proposed an interval uncertain optimization method 
for an engineering uncertain optimization problem. The first-order derivative information may be 
unavailable in a practical engineering system. To overcome this drawback, the method to calculate the 
first-order partial derivatives with a back-propagation neural network was investigated, and a 
numerical example was presented to demonstrate its fine precision. Wang et al. [2] proposed a 
Legendre polynomial expansion method combined with the subinterval technique to evaluate the range 
enclosure of an interval function, where the expansion coefficients are computed through the 
collocation method. Wang et al. [3] illustrated a new interval uncertainty analysis method for structural 
response bounds with uncertain-but-bounded parameters by using feed forward neural network (FNN) 
differentiation. Liu et al. [4] introduced a new interval uncertainty analysis method for static response 
of structures with unknown-but-bounded parameters by using radial basis functions (RBFs). 

In recent years, scholars have focused on the research of network systems with uncertain vertex 
weights and edge weights. As a basic problem in network optimization, the shortest path problem has 
been studied by many researchers. For the shortest path problem with uncertain factors, Ji et al. [5] 
studied the shortest path problem in random environment and fuzzy environment by using random 
theory and fuzzy theory, respectively. He et al. [6] applied random theory to solve the shortest path 
problem with constraints. A random optimization model was established, and an annealing genetic 
algorithm was proposed to solve the model. Sheng et al. [7] presented the shortest path problem in an 
uncertain stochastic network. The uncertainty of its weight was described via various forms, and the 
uncertain shortest path problem based on granular computing was discussed by Gao [8]. M. Guillot [9] 
researched the stochastic shortest path problem from the perspective of a polyhedron, and a new 
framework for the stochastic shortest path problem in finite state space and action space was proposed. 
The shortest paths in an uncertain random network were defined, and an improved algorithm was 
proposed by Jie [10]. According to uncertainty theory, Gao [11] developed a novel idea for solving the 
shortest path problem with uncertain factors. He discussed the shortest path problem in an uncertain 
network and pointed out the equivalent relationship between the shortest path problem in an uncertain 
network and the shortest path problem in a deterministic network. 

The above optimization problem of the uncertain network system has been mainly discussed in 
random environment and fuzzy environment, and experts mostly focused on the uncertainty of network 
attributes. However, when the samples in the network are too few, or there are even no samples, experts 
need to evaluate and give the confidence of event occurrence. Many investigations [12] show that the 
confidence range given by a human is much larger than the actual range，and Liu [13] once cited a 
counter example to illustrate the wrong result of using probability theory and fuzzy theory to deal with 
expert confidence. Therefore, it is no longer appropriate to employ probability theory or fuzzy theory 
to deal with the uncertainty.  

In order to deal with the uncertainty, uncertainty theory was established by Liu [12] in 2007, and 
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it became a mathematical branch of axiomatic uncertainty modeling. In 2010, uncertainty theory was 
introduced into the network optimization problem, the concept of an uncertain network was proposed 
for the first time, and the project scheduling problem with uncertain time based on uncertainty theory 
was studied by Liu et al. [12–15]. Then, many scholars committed to the research of uncertain networks. 
In 2011, Gao et al. [16,17] employed the numerical method for solving the shortest path uncertainty 
distribution function in an uncertain network, and established the model for solving the shortest path 
problem with maximum uncertainty measure. In Gao's doctoral thesis [18], he researched the shortest 
path problem with uncertain network structures. The uncertainty theory was applied to graph theory, 
and the relevant theories of uncertain graphs with fixed vertex sets were further improved. The 
connectivity index and the algorithm of edge connectivity were given by Gao. Luo [19] improved the 
definition of vertices structure uncertain graphs and the uncertain measure matrix. Then, he discussed 
the network optimization problem of uncertain graphs. 

Uncertain network optimization is a hot issue in recent years. Gao [18] and Luo [19] studied 
uncertain network optimization problems with uncertain structures. It needs to be pointed out that there 
are some challenges. In actual situation, sometimes the network attributes are uncertain. Therefore, it 
is necessary to consider the uncertainty of network structures and attributes. As the uncertainty of 
network structures has just been proposed in recent years, there are a few research results for the 
network optimization problem with the uncertainty of network structures and network attributes. Now, 
the main challenge is how to unify the uncertainty of attributes and structures. Motivated by the idea 
of Gao [18], we research the network optimization problem with uncertain network structures and 
attributes. In this paper, first, the uncertainty characteristics of a network system are extracted, and the 
general definition and matrix identification of an uncertain network system are proposed. Second, 
according to the decision criteria of relevant opportunity programming, we establish a shortest path 
optimization model based on conditional uncertain measure. Third, combining measure simulation 
technology with a traditional algorithm, we design a hybrid intelligent algorithm to solve the shortest 
path problem in an uncertain network system. Finally, we discuss the tunnel planning problem of an 
underground logistics system. Then, the optimization model and the designed intelligent algorithm are 
employed to solve the problem of an underground logistics system.  

The remainder of this paper is organized as follows. In Section 2, uncertain measure and an 
uncertain network system are introduced and formulated. It includes the matrix identification of an 
uncertain network system. In Section 3, we establish a shortest path optimization model based on 
conditional uncertain measure. In Section 4, we design a hybrid intelligent algorithm to solve the 
shortest path problem according to measure simulation technology. In Section 5, we study a numerical 
case to demonstrate the correctness of concepts and methods proposed in this paper. In Section 6, a 
brief summary is given. 

2. Uncertain network system and conditional uncertain measure matrix 

2.1. Uncertain measure 

Definition 1. [12,14] Let   be a nonempty set, and L  be a    algebra over  . Each element 
  in L  is called an event. The set function M  is called an uncertain measure if it satisfies the 
following three axioms. 

Axiom 1. (Normality)   1 M . 
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Axiom 2. (Self-Duality)     1c   M M  for any event  . 

Axiom 3. (Subadditivity) For every countable sequence of events  1i i




 , we have 

   
1 1

i i
i i



 

  M M . 

The set function M  is called an uncertain measure, and the triplet ( , , ) L M  is called an uncertainty 

space. 

2.2. Uncertain network system 

An network is also called a weighted graph. In 2013, Gao [17] first proposed the graph theory problem 
with uncertain edge structures. When the weight of network attributes was a constant, Gao [17] discussed 
the network optimization problem with uncertain edge structures. In 2018, the matrix representation 
of a graph with uncertain structures was perfected by Luo [19].  

The above studies are based on two perspectives: One is to discuss the uncertainty of network 
structures; the other is to study the uncertainty of network attributes. In a practical problem, there will 
be such a situation: The weights in the network are uncertain, and the vertices and edges of the network 
are not fixed. That is, the attributes and structures of the network are uncertain. Obviously, the existing 
definition of an uncertain network is no longer applicable, and there are few studies on the network 
optimization problem with uncertainty of attributes and structures. 

In order to solve this problem, based on uncertainty theory, we unify the structure uncertainty and 
attribute uncertainty in the network by the idea of conditional measure, and we define the uncertain 
network system through a conditional uncertain measure matrix in the form of an adjacency matrix. 
An uncertain network system is defined as follows： 
Definition 2. An uncertain network system is a four-tuple composed of edge set ( )E G , vertex set 

( )V G , and uncertain variable set ( ) ( )、 G G  corresponding to the vertex and edge set, denoted as 

( , , , ) N V E , 

where the vertex set is 1 2 3( , , , , )  nV v v v v , and the edge set is 1 2 3( , , , , )  mE e e e e . i  is a nonnegative 
uncertain variable, and 1 2 3( , , , , )      m   indicates whether the corresponding vertices and edges 
exist. i  is a nonnegative uncertain variable, and 1 2 3( , , , , )      m  represents the weights of the 
vertices and edges. i  and i  are independent of each other. 

According to Definition 2, considering the uncertainty of network attributes and network 
structures, we propose a new concept of an uncertain network system. 

2.3. Conditional uncertain measure matrix 

According to the definition of an uncertain network system, the corresponding network attributes do 
not exist when the network structures do not exist. For example, for the optimization problem of road 
transportation, if the road is disrupted due to an emergency, the corresponding edge of the road in the 
network does not exist. That is, the measure of the edge existence is 0, and the weight corresponding to the 
edge does not exist. Therefore, in the uncertain network system, the existence of network structures is a 
necessary condition for the existence of network attributes. Due to this characteristic of an uncertain 
network system, based on the conditional measure matrix and uncertainty theory, we employ the 
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conditional uncertain measure matrix to identify the proposed uncertain network system. 
Definition 3. The uncertain network system uniquely corresponds to a conditional uncertain measure 
matrix  


  ij n n

, if and only if ij  satisfies the following: 

When i j  and the vertex iv  exists,  ii  represents the uncertain measure when the weight of 

vertex iv   is uncertain variable ii  , denoted as  ( 1) 1      ii ii ii ii iiM  . 1 ii   represents the 

existence of vertex iv . 
When i j  and the edge ijv  connected by vertex iv  and vertex jv  exists, ij  represents the 

uncertain measure when the weight of edge ijv   is uncertain variable ij  , denoted as

 ( 1) 1      ij ij ij ij ijM  . 1 ij   represents the existence of edge ijv   connected by vertex iv   and 

vertex jv . 

Matrix    is called a conditional uncertain measure matrix, and then the uncertain network 
system is identified as the following matrix: 

 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

ij nn n

n n n nn

   
   

    

   



 
 
 
   
 
 
 
 







   



. 

Remark 1. The conditional uncertain measure matrix is used to identify the uncertain network system. 
The unified identification method can make the storage of network information in the computer more 
convenient and easy to calculate. 

For more intuitively understanding the identification approach of the uncertain network system, 
we give the theoretical analysis for an uncertain network system with an example. Figure 1 gives 
vertices A, B, C and edges AB, AC, BC. 

 

Figure 1. Example of uncertain network system. 

In Figure 1 (a), if the vertex O is uncertain, vertex O exists with an uncertain measure
 44 44 1  OM = M  . 44   is the uncertain variable corresponding to the vertex weight, and 44 =1  

represents the existence of vertex O. Then, edges OA, OB, and OC must exist with uncertain measures. 
Assuming that the edges OA, OB and OC exist with the uncertain measure 

     14 14 24 24 34 341 , 1 , 1 .         a b cM = M M M M M 14 24 34, ,     are the uncertain variables 

corresponding to the edge weights. Then, the conditional uncertain measure matrix corresponding to 
this uncertain network system satisfies: 
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1

0

1 1 1

1 1 1

1 1 1

 
 
  
 
 
 

a

b

c

a b c

M

M

M

M M M M

 

In Figure 1 (b), if the vertex O is certain (that is 1OM = ), and edges OA, OB and OC exist with the 

uncertain measures      14 14 24 24 34 341 , 1 , 1         a b cM = M M M M M  , respectively, then the 

conditional uncertain measure matrix corresponding to this uncertain network system satisfies: 

2

1 1 1

1 1 1

1 1 1

1

 
 
  
 
 
 

a

b

c

a b c

M

M

M

M M M

. 

If the structures and weights of vertices O, A, B, C and edges OA, OB, OC, AB, AC, BC are all 
determinate, the conditional uncertain measure matrix corresponding to this uncertain network system 
satisfies: 

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 
 
  
 
 
 

. 

Remark 2. Analyzing the above three conditional uncertain measure matrixes, we point out that is a 
traditional network when the vertices and edges are determinate. We can regard 3  as a special case 

in uncertain network systems. Thus, the concept of an uncertain network system proposed by us 
extends the previous concepts. 

3. Shortest path problem in uncertain network system 

In this section, we discuss the shortest path problem with uncertain network attributes and 
network structures based on conditional uncertain measure. We establish the shortest path optimization 
model according to correlation chance programming. 
(1) Problem description 

The transportation network between multiple cities is given. Due to the influence of road 
conditions and emergencies, whether each road in the given network is unblocked or not is uncertain, 
and the distance of each road is also uncertain. They all exist with a certain measure. For the shortest 
path problem, given an acceptable upper bound of the shortest path length, the aim is to find if the 
shortest path that satisfies the maximum possibility of connecting each city is not greater than the given 
upper bound. 
(2) Modeling principle 

The above problem is to investigate the shortest path problem with uncertainty. It is necessary to 
consider the uncertainty of network attributes and network structures. According to the idea of 
conditional uncertain measure in Chapter 2, the uncertainty of network attributes and network 
structures is unified. The obtained conditional uncertain measure matrix can be regarded as the weights 
in the network. That is, the shortest path problem with uncertain attributes and structures can be 
transformed into a common shortest path problem with uncertain attributes. Then, we can model the 
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shortest path model with uncertain attributes and structures. 
According to the decision criteria of correlation chance programming, if the upper bound of the 

acceptable shortest path length (also known as the satisfactory length) is given by the decision-maker, 
the chance function satisfying that the shortest path length is not greater than the given length is 
maximized. 
(3) Problem analysis 

The shortest path problem can be abstracted as finding the shortest path from vertex 1v  to vertex 

nv  in the uncertain network system ( , , , )N V E   . 1 2 1 2( , , , ), ( , , , )n mV v v v E e e e       indicate that there 

are n  vertices and m  edges in the network.  


  ij n n
 is the uncertain measure matrix of existence 

of each edge corresponding to the uncertain variable   , and  


  ij n n
  is the uncertain measure 

matrix corresponding to the distance of each edge corresponding to the uncertain variable  . 0T  is 

the upper bound of acceptable shortest path length. 
According to Definition 3, the uncertain measure matrix with uncertain edge structures is 
 


  ij n n

 while the uncertain measure matrix corresponding to distance (attributes) is  


  ij n n
. 

Then, a conditional uncertain measure matrix in the uncertain network system is obtained as follows: 

 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

ij nn n

n n n nn

   
   

    

   



 
 
 
   
 
 
 
 







   



. 

If i j   and under the condition of that the edge ijv   connected by vertex iv   and vertex jv  

exists, ij  represents the uncertain measure when the path length of edge ijv  is the uncertain variable 

ij , denoted as  ( 1) 1      ij ij ij ij ijM . 1 ij  represents the existence of edge ijv  connected by 

vertex iv  and vertex jv . If i j ,   ii . 

(4) Model establishment 
Determination of decision variable: the following approach is adopted to represent the path

{ 1,2,3, , }   ijX x i j n  . 1ijx   means that edge ijv   is included in the shortest path, and 0ijx  

means that edge ijv  is not included in the shortest path. 

Determination of objective function: the shortest path length can be expressed as 
1 1

( )
n n

ij ij
i j

l P x 
 

  . 

If the shortest path length is not greater than the upper bound 0T  , it can be expressed as 

0
1 1

( )
n n

ij ij
i j

l P x T
 

   . In order to maximize the measure of the occurrence of the event, there is 

 0( )l P TM , and the objective function is: 

0
1 1

max 
 

 
 

 


n n

ij ij
i j

x TM . 

Determination of constraints: Decision variable ijx  is 0-1 variable, i.e.,  0 1，， 、 ij i jx v v V . In 

order to make each vertex in and out of equilibrium, there is 

1 1
( , ) ( , )

0 , 2,3, , 1
 
 

     

i j i j

n n

ij ji
j j

v v E v v E

x x i n . 
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As there may be cycles in the shortest path, it is necessary to restrict each vertex to go in and out 
once, that is 

1
1 1

( , ) ( , )

1 1，
 
 

   
i j i j

n n

j jn
j j

v v E v v E

x x . 

To sum up, the maximum chance shortest path network optimization model based on correlation 
chance programming is as follows: 

 

0
1 1

:( , ) :( , )

max

1, 1

1,
. .

0, 2,3,4,..., 1

0 1 .，， 、


 

 

 
 

 
 

    
   
  



 

n n

ij ij
i j

n n

ij ji
j i j V j j i V

ij i j

x T

i

x x i n
s t

i n

x v v V

M

. 

Remark 3. When the uncertain variable ij  is a random variable, the objective function corresponding 

to the random variable ij  is the maximization of probability measure, that is, max 0
1 1

n n

ij ij
i j

Pr x T
 

 
 

 
 ; 

When the uncertain variable ij  is a fuzzy variable, the objective function corresponding to the fuzzy 

variable ij  is to maximize the credibility measure, i.e., max 0
1 1

n n

ij ij
i j

Cr x T
 

 
 

 
 . When the uncertain 

variable ij  is a rough variable, the objective function corresponding to the rough variable ij  is to 

maximize the reliability measure, that is, max 0
1 1

n n

ij ij
i j

Tr x T
 

 
 

 
 . 

4. Hybrid intelligence algorithm for solving the shortest path problem 

4.1. Simulation of uncertain function 

The objective function max 0
1 1

n n

ij ij
i j

x T
 

 
 

 
M   contains uncertain variables, and the measure 

simulation technology is employed to simulate the uncertain function. The uncertain function is 
denoted as ( , )T x   , and the uncertain distribution corresponding to the uncertain variable is

  1 2 3( ) ( , , , , )         pk M k . 

The uncertain function  0: ( , ) U x T x TM   is simulated as follows. First, the uncertain 

variable   is randomly generated, and repeated N  times. N  represents the number of times for 
which inequality 0( , ) T x T  holds. Give the definition: 

01, ( , ) ;
( )

0, .





 


T x T
h

others
. 

Then, 
1

[ ( )] , ( ) 


 
N

n n
n

E h U N h . According to the strong law of large numbers [20], 
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1

( )





N

n
n

h
N

N N
. 

It converges to U almost everywhere. If N  is large enough, 



N

U
N

. 

The measure simulation process is as follows: 
Step1. Let 0 N . 
Step2. Generate 1 2 3( , , , , )       p  according to the distribution function of uncertain variables. 

Step3. If 0( , ) T x T , then   N . 

Step4. Repeat step 2 and 3 for N times. 
Step5. ( ) /U x N N . 

Based on the above measure simulation, the maximum chance shortest path model in uncertain 
programming can be transformed into an equivalent deterministic form as follows: 

 

1 2 3

:( , ) :( , )

max ( ), ( , , , , )

1, 1

1,
. .

0, 2,3,4, , 1

0 1 .，， 、

 

 

 
    

    
  

 

p

n n

ij ji
j i j V j j i V

ij i j

U x X x x x x

i

x x i n
s t

i n

x v v V

. 

4.2. Hybrid intelligent algorithm based on measure simulation 

Motivated by the idea of a hybrid intelligent algorithm, first, the uncertain function is simulated. 
Second, the model of uncertain programming is transformed into its equivalent deterministic form, and 
then we employed the Floyd algorithm, which is a traditional algorithm, to solve the model. 

The Floyd algorithm [21] can solve the shortest path between vertices in a given weighted graph, 
and it can correctly deal with the shortest path problem of a directed graph. 

The steps of the algorithm are as follows: 
Step1. Generate the weight matrix between any two vertices. 
Step2. Judge whether there is another vertex u   between any two vertices v   and u  , so that the 
distance D  from v  to u  and then to u  is smaller than the weight D  in the weight matrix. 
Step3. If  D D , then D D . Otherwise, do not update. 
Step4. Stop the algorithm until the weights of any two vertices are updated. 

5. Case study on underground logistics system planning 

Underground logistics system (ULS) refers to the transportation and supply system that transports 
goods between cities through underground pipelines or tunnels similar to a subway [22]. It is a plan 
that developed countries want to adopt to solve the problem of urban freight transportation. For China, 
the construction of an urban subway network, underground space development, and the construction 
of an underground logistics system network are essential links in the construction of an “underground 
logistics system’’. 

At present, the studies [23–25] on ULS mainly focus on the following four aspects: (1) Concept 
and design research. (2) Feasibility study of ULS. (3) Simulation research of ULS. As a forward-
looking logistics facility, there is no successful case at home and abroad. Therefore, logistics 
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simulation is particularly important. (4) Research on network layout and optimization of ULS. At 
present, the research on this aspect is a hot spot. For example, Z. Y. Peng et al. [26] established a multi-
objective mixed integer programming model for ULS programming problem, and designed a two-
stage greedy algorithm to solve the model. W. J. Hu et al. [27] comprehensively considered the factors 
of underground tunnel distance and freight volume, and solved the planning problem of underground 
logistics based on a simulated annealing clustering algorithm. B. Erkayman et al. [28] considered the 
actual urban environment and the characteristics of logistics pipeline construction, and planned the 
underground logistics network system based on the fuzzy ideal vertex method. 

In the above optimization researches on the ULS problem, its logistics nodes and underground 
tunnel connection are certain. However, in a practical situation, considering the high cost, high risk 
and difficult reconstruction of an underground tunnel, it is necessary to consider the uncertainty of an 
underground tunnel connection. According to the concept of uncertain network system in Section 2 
and the optimization of the shortest path problem in Section 3, we investigate the underground tunnel 
planning with uncertainty in this section. 

5.1. The underground tunnel planning problem with uncertainty 

(1) Problem description 
Based on the underground logistics system (ULS) mentioned in question F of the 14th “Huawei 

Cup’’ Chinese graduate mathematical modeling competition, the aim is to plan the underground 
logistics system in the Xianlin area of Nanjing. This section plans the tunnel construction for the 
second problem on the premise that the node location problem for the first question has been solved. 

The central locations of 13 1th level nodes and 32 2th level nodes in the Xianlin area of Nanjing 
are known (see Figure 2). The real-time freight volume matrix between regions is given (because the 
real-time freight volume matrix is huge, this matrix is not given here, and the specific data can refer to 
the appendix of F competition). The construction cost of underground logistics tunnel is as follows: 
Two-way four track (double tunnel) (10 tons) costs 500 million/km, two-way double track (double 
tunnel) (10 tons) costs 400 million/km, two-way four track (double tunnel) (5 tons) costs 350 
million/km, and two-way double track (double tunnel) (5 tons) costs 300 million/km. 

 

Figure 2. Distribution diagram of logistics nodes at all levels. 

Planning of underground logistics system: How to make the best tunnel planning for each logistics 
node on the premise of known data? The 1th level nodes can be connected with 1th level nodes, and 
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they are only connected with the 2th level nodes in the region. The 2th level nodes can be connected 
with the 2th level nodes. 
(2) Problem analysis 

In order to solve the tunnel planning problem between nodes, it is necessary to comprehensively 
consider the construction cost and service capacity of the tunnel. Whether to build tunnels between 
nodes is closely related to the real-time freight volume. If the freight flow between nodes is larger, it 
is more probable to construct tunnels for meeting the service demand and alleviating the traffic 
pressure. Moreover, it is uncertain whether the two-way four track or two-way double track is used to 
construct the logistics tunnel between nodes, so the cost of the tunnel is also uncertain. Based on this 
situation, we regard the underground logistics system planning problem as the shortest path problem 
in an uncertain network system. 

If the freight volume between nodes is larger, it indicates that tunnels should be more probable to 
be constructed. If the freight volume between the two places is small, even if the distance between 
nodes is short, tunnel planning will not be given priority in planning. Therefore, the possibility of the 
existence of the tunnel can be described by the freight volume, and the freight volume between the two 
places can describe the uncertain measure of the edge. 

If the freight volume from logistics node i to logistics node j is ijh , the uncertain measure ij  

between vertex i and vertex j satisfies:  

, {1,2, }

, {1,2, }, {1,2, }

min { }

max { } min { }
 











ij iji j n
ij

ij iji j ni j n

h h

h h
 

where 
, {1,2,..., }

max { }
 ij

i j n
h  and

, {1,2,..., }
min { }
 iji j n

h , respectively, represent the maximum and minimum freight volume 

of the whole system in a certain period of time. 
As the tunnel type is uncertain, the construction cost is uncertain. ij  is the construction cost of 

the tunnel between node i and node j. Obviously, ij  is an uncertain variable. Given an acceptable 

upper bound 0T , the problem can be transformed into the problem of finding the optimal tunnel from 
node 1v  to node nv  that satisfies that the maximum possibility of the minimum cost is not greater 
than the given upper bound 0T  in the uncertain network system ( , , , )N V E   ? The existence of each 

edge is the variable  , and the uncertain measure matrix corresponding to it is  
ij n n

. The cost of 

each edge is the variable  , and the uncertain measure matrix corresponding to it is  
ij n n

. 

According to Definition 3, the conditional uncertain measure matrix can be obtained as follows: 

 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

ij nn n

n n n nn

   
   
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 
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 







   



. 

If i j  and under the condition that the edge ijv  connected by vertex iv  and vertex jv  exists, 

ij  represents the uncertain measure when construction cost of edge ijv  is the uncertain variable ij , 

denoted as  ( 1) 1      ij ij ij ij ijM . 1 ij  represents the existence of edge ijv  connected by vertex 

iv   and vertex jv  . If i j  , take   ii  . Let the conditional uncertain distribution function 

corresponding to the uncertain variable ij  be  ( ) { 1}       ij ij ij ijkk M k M . 
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5.2. Optimal tunnel network planning of ULS 

We establish a model for solving the optimal tunnel network planning problem of ULS. 
The decision variable: Let path { 1, 2,3, , }   ijX x i j n , where 1ijx  indicates that edge ijv  is 

included in the optimal tunnel network; 0ijx  indicates that edge ijv  is not included in the optimal 

tunnel network. 
Determination of objective function and constraint conditions: The construction cost should not 

exceed standard level of 1300 billion. Let 0 1300T , and the objective function is 

0
1 1

max 
 

 
 

 


n n

ij ij
i j

x TM . 

The network optimization model of ULS is: 
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s t
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M

. 

Next, we employ a hybrid algorithm to solve the model based on measure simulation technology. 
Nodes are divided into 1th level and 2th level nodes, and the freight volume of nodes is also 

significantly different. Therefore, whether there is a route between nodes, the idea of a hierarchical 
sequence method is considered to plan the underground logistics network. The optimal adjacency matrix 
satisfying the constraints is sought for the 1th level and 2th level nodes, respectively: the adjacency 
matrix P1 and the adjacency matrix P2. Then, as the 2th level nodes are only connected with the 1th level 
nodes in the region, the adjacency matrix is recombined and constructed based on this rule. 

Based on measure simulation technology and hybrid intelligent algorithm, the network tunnel 
planning problem of ULS in the uncertain network system is solved. 

The optimal tunnel network is calculated by programming with MATLAB. Due to the length 
limitation, only tunnel planning between the 1th level nodes and ULS network tunnel planning diagram 
is listed here, as shown in Table 1 and Figure 3. 

Table 1. Tunnel network planning between the 1th level nodes. 

Tunnel 

number 
Node pairing 

volume of 

freight 

(front) 

volume of 

freight 

(back) 

Tunnel 

number 

Node  

Pairing 

volume of 

freight 

(front) 

volume of 

freight 

(back) 

1 （2,14） 3072.27 22763.26 12 （76,86） 12703.78 14060.64 

2 （2,24） 3072.27 28216.1 13 （86,89） 14060.64 20528.94 

3 （14,24） 22763.26 28216.1 14 （86,104） 14060.64 12067.63 

4 （14,36） 22763.26 18768.6 15 （86,109） 14060.64 12847.71 

Continued on next page 
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Tunnel 

number 
Node pairing 

volume of 

freight 

(front) 

volume of 

freight 

(back) 

Tunnel 

number 

Node  

Pairing 

volume of 

freight 

(front) 

volume of 

freight 

(back) 

5 （14,44） 22763.26 22219.27 16 （89,101） 20528.94 12363.04 

6 （24,76） 28216.1 12703.78 17 （89,106） 20528.94 406.708 

7 （36,86） 18768.6 14060.64 18 （101,104） 12363.04 12067.63 

8 （36,89） 18768.6 20528.94 19 （101,106） 12363.04 406.708 

9 （44,67） 22219.27 16840.39 20 （104,109） 12067.63 12847.71 

10 （44,86） 22219.27 14060.64 21 （109,106） 406.708 12847.71 

11 （67,76） 16840.39 12703.78     

 

Figure 3. Optimal network tunnel planning of ULS. 

Remark 4. By studying the above impressive example, the ideas and approaches proposed by us are 
verified to be correct and effective. The established model and the designed hybrid intelligent 
algorithm provide a new way to solve the optimization problem in uncertain network system. 

5.3. Comparisons with the traditional methods 

To illustrate the superiority of the proposed method, we adopt a previous optimization method to 
solve this problem. Moreover, we analyze the results and compare the new approach with the previous 
approach. 

According to [29], we employ the dynamic programming model of the ULS to obtain its 
construction schedule and dynamic evolution process. Let the tunnel be constructed at each stage and 
the specific model is as follows: 

  1
0

0 0

( ) max ( 1, 2, , )

( ) 0

 
    

 


k k p

k k k k k k k k
d x L

f L x d f L d x k m

f L
 

where (1,2, , ) k m  is the stage variable, kd  the length of the kth tunnel, kL  is the total length of 

previous k tunnels allowed to be constructed in the ULS network at the beginning of the kth stage and 

0 0L ,  0,1kx  indicates whether the kth tunnel is built or not, and ( )k kf L  represents the maximum 
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value of which the total length of being allowed construction routes is less than kL . 

We adopt the simulated annealing algorithm to solve the above model. By programming with 
MATLAB, the table of dynamic planning for the tunnels and the ULS network tunnel planning diagram 
are shown as follows: 

Table 2. The dynamic planning for the tunnels in each year. 

Year 
Total flow of 

freight  

Total length 

of tunnels 

Total number 

of tunnels 
The number of constructed tunnels 

First year 302.476 39.468 19 2,5,6,10,18,19,25,27,29,32,34,35,39,42,44,48,52,54,56 

Second year 270.073 36.332 15 7,13,16,17,22,23,38,40,46,47,49,50,53,55,57 

Third year 110.929 30.550 10 1,11,14,20,21,24,28,31,37,43 

Fourth year 130.789 36.371 13 3,4,8,9,12,15,26,30,33,36,41,45,51 

Total 814.267 143.721 57  

 

Figure 4. Dynamic network tunnel planning of ULS 

By analyzing the results of dynamical network tunnel planning and uncertain network system 
planning, we found that though the result of the previous approach is acceptable, some 1th level nodes 
with vast volume are not connected with each other. Moreover, some 2th level nodes are close to each 
other, but the freight volume is small, and there is no need to build tunnels between these nodes. This 
planning scheme cannot meet the needs of logistics and transportation to the greatest extent. As we 
consider the uncertainty of tunnel construction, the tunnel planning of ULS proposed by us is more 
reasonable and effective. 
Remark 5. The Comparison of two methods illustrates the improvement and superiority of the 
proposed method. 
Remark 6. In this paper, we adopt the hybrid intelligent algorithm to solve the optimization model in 
an uncertain network system. It needs to simulate the uncertain function first, and then use the Floyd 
algorithm to solve the model. The algorithm steps are not simple enough, and the simulation of 
uncertain function is random. In the future, we will devote ourselves to designing the heuristic 
algorithm to directly solve the uncertain programming model. 
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6. Conclusions 

There are vast uncertain factors in the network system; therefore, it is necessary for us to consider 
the uncertainty in the network system when studying network optimization problems. Based on 
uncertainty theory, uncertain programming, network optimization theory and hybrid intelligent 
algorithm, we investigate the optimization problem of an uncertain network system. First, we propose 
the general definition of an uncertain network system based on the uncertainty of network attributes 
and network structures. Second, by the form of an adjacency matrix, we employ the conditional 
uncertain measure matrix to identify the uncertain network system, which provides a new idea for the 
storage form of the uncertain network system in computer. Third, we establish the optimization model 
of the shortest path problem in an uncertain network system, and we design a hybrid intelligent 
algorithm to solve the optimization model. Finally, by studying an example and comparing it with 
other results, the ideas and approaches proposed in this paper are verified to be correct and effective. 
The established model and designed intelligent algorithm provide a new way to solve the optimization 
problem in an uncertain network system. 

In the future, we will focus on further combining the uncertainty theory with the uncertain 
network system and developing the uncertain optimization model with different decision criteria such 
as expected value planning and opportunity constraint planning. Furthermore, we will extend our idea 
to the maximum flow problem, matching problem and minimum cost flow problem in uncertain 
network system. For the algorithm of the optimization model in an uncertain network system, the 
hybrid intelligent algorithm is adopted in this paper. In the future, we will devote ourselves to designing 
the heuristic algorithm to directly solve the uncertain programming model. 
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