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1. Introduction

Let N and Z be natural number set and integer set, respectively. For integers a, b, define the discrete
interval Z(a, b) := {a, a+1, · · · , b} for a ≤ b. Write Ω := Z(1,T1)×Z(1,T2), where T1, T2 ≥ 2 are given
integers. We consider the existence and multiplicity of nontrivial solutions to the following nonlinear
second order partial difference equation

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) = − f ((i, j), u(i, j)), (i, j) ∈ Ω, (1.1)

with Dirichlet boundary conditions

u(i, 0) = u(i,T2 + 1) = 0 i ∈ Z(1,T1), u(0, j) = u(T1 + 1, j) = 0 j ∈ Z(1,T2), (1.2)

where ∆1, ∆2 are the forward difference operators defined by ∆1u(i, j) = u(i + 1, j) − u(i, j) and
∆2u(i, j) = u(i, j + 1) − u(i, j). ∆2u(i, j) = ∆(∆u(i, j)). Here f ((i, j), ·) ∈ C1(Ω × R,R) satisfies
f ((i, j), 0) = 0, which means that (1.1) and (1.2) possesses a trivial solution u = 0. Meanwhile, We are
interested in nontrivial solutions and intend to seek nontrivial solutions to (1.1) and (1.2).
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Due to wide applications in many fields such as computer science, economics and mechanical
engineering, the theory of nonlinear discrete problems has been widely studied and many results are
obtained [1–6]. With the rapid development of modern computer technology, more and more
mathematical models involve functions with two or more variables. Partial difference equations,
involving two or more discrete variables, are regarded as discrete analogs of partial differential
equations. Therefore, the study of difference equations has gradually shifted to the study of partial
difference equations and attracted much attentions, for example, [7–14].

As known to all, with the rapid development of critical point theory, the Morse theory becomes
a more and more powerful tool to study the multiplicity and existence of nontrivial solutions to both
differential equations and difference equations having variational structure [15–18]. Very recently, [19–
21] studied partial difference equations via the Morse theory and obtained rich results on the existence
and multiplicity of nontrivial solutions. Thus those reasons are encouraging us to consider the existence
and multiplicity of nontrivial solutions to (1.1) and (1.2) by the Morse theory.

We organize this paper as follows. In Section 2, the variational structure and the corresponding
functional are established. Moreover, we also recall some related definitions and propositions, which
are necessary to our main results. Section 3 states our main results and their detailed proofs. Finally,
five examples and numerical simulations are provided to demonstrate applications of our main results
in Section 4.

2. Variational structure and some auxiliary results

Let E be a T1T2-dimensional Euclidean space equipped with the usual inner product (·, ·) and
norm | · |. Let

S ={u : Z(0,T1 + 1) × Z(0,T2 + 1)→ R such that u(i, 0) = u(i,T2 + 1) = 0,
i ∈ Z(0,T1 + 1) and u(0, j) = u(T1 + 1, j) = 0, j ∈ Z(0,T2 + 1)}.

Define the inner product 〈·, ·〉 on S as

〈u, v〉 =

T1+1∑
i=1

T2∑
j=1

∆1u(i − 1, j)∆1v(i − 1, j) +

T1∑
i=1

T2+1∑
j=1

∆2u(i, j − 1)∆2v(i, j − 1), ∀u, v ∈ S .

Then the induced norm is

‖u‖ =
√
〈u, u〉 =

T1+1∑
i=1

T2∑
j=1

|∆1u(i − 1, j)|2 +

T1∑
i=1

T2+1∑
j=1

|∆2u(i, j − 1)|2


1
2

, ∀u ∈ S .

Thus S is a Hilbert space and isomorphic to E. Here and hereafter, we take u ∈ S an extension of
u ∈ E if necessary.

Consider the functional J : S → R as

J(u) =
1
2

T1+1∑
i=1

T2∑
j=1

|∆1u(i − 1, j)|2 +
1
2

T1∑
i=1

T2+1∑
j=1

|∆2u(i, j − 1)|2 −
T1∑
i=1

T2∑
j=1

F((i, j), u(i, j))

=
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F((i, j), u(i, j)), ∀u ∈ S ,

(2.1)
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where F((i, j), u) =
∫ u

0
f ((i, j), τ)dτ for each (i, j) ∈ Ω. Notice that f ((i, j), u) is continuously

differentiable with respect to u. Therefore, the expression of J means that J ∈ C2(S ,R) and solutions
of the problems (1.1) and (1.2) are precisely critical points of J(u). Moreover, for any u, v ∈ S ,
applying Dirichlet boundary conditions, direct computations gives that the Fréchet derivative of J(u)
is

〈J′(u), v〉 =

T1+1∑
i=1

T2∑
j=1

∆1u(i − 1, j)∆1v(i − 1, j) +

T1∑
i=1

T2+1∑
j=1

∆2u(i, j − 1)∆2v(i, j − 1)

−

T1∑
i=1

T2∑
j=1

f ((i, j), u(i, j))v(i, j)

= −

T1∑
i=1

T2∑
j=1

[
∆2

1u(i − 1, j) + ∆2
2u(i, j − 1) + f ((i, j), u(i, j))

]
v(i, j).

(2.2)

Let Ξ be the discrete Laplacian, which is defined by Ξu(i, j) = ∆2
1u(i − 1, j) + ∆2

2u(i, j − 1). Owe
to [11], −Ξ is invertible and the distinct eigenvalues of −Ξ with zero Dirichlet boundary conditions on
Ω can be denoted by 0 < λ1 < λ2 ≤ · · · ≤ λT1T2 . Let φk = (φk(1), φk(2), · · · , φk(T1T2))tr, k ∈ [1,T1T2]
be an eigenvector corresponding to the eigenvalue λk. Write

W− = span{φ1, · · · , φk−1}, W0 = span{φk}, W+ = (W− ⊕W0)⊥.

Then S can be expressed in the form as

S = W− ⊕W0 ⊕W+.

For later use, define another norm as

‖u‖2 =

 T1∑
i=1

T2∑
j=1

|u(i, j)|2


1
2

, u ∈ S .

Then for any u ∈ S , we have
λ1‖u‖22 ≤ ‖u‖

2 ≤ λT1T2‖u‖
2
2. (2.3)

In particular, we have

λk+1‖u‖22 ≤ ‖u‖
2 ≤ λT1T2‖u‖

2
2, u ∈ W+,

λ1‖u‖22 ≤ ‖u‖
2 ≤ λk−1‖u‖22, u ∈ W−.

(2.4)

Now we recall some basic results on the Morse theory.
We say that the functional J satisfies the Palais-Smale condition ((PS ) in short) if any sequence

{un} ⊆ S , there is a constant M > 0 such that |J(un)| ≤ M, J′(un) → 0 as n → ∞, has a convergent
subsequence. From [22,23], if (PS ) is satisfied, then both the weaker Cerami condition ((C) for short)
and the deformation condition ((D) in short) are also fulfilled.
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Definition 2.1. [16, 24] Let u0 be an isolated critical group of J with J(u0) = c ∈ R, and U be a
neighborhood of u0, the group

Cq(J, u0) := Hq(Jc ∩ U, Jc ∩ U\u0), q ∈ Z,

is called the q-th critical group of J at u0. Let κ = {u ∈ S |J′(u) = 0}. For all a ∈ R each critical point
of J is greater than a and J ∈ C2(S ,R) satisfies (D), the group

Cq(J,∞) := Hq(S , Ja), q ∈ Z,

is called the q-th critical group of J at infinity.

To compute critical groups of J at both an isolated critical point and infinity, the following auxiliary
propositions are needed.

Proposition 2.1. [16, 24] Suppose that u0 is an isolated critical point of J with finite Morse index
µ(u0) and zero nullity ν(u0). Then
(Q1) Cq(J, u0) � 0 for q < [µ(u0), µ(u0) + ν(u0)];
(Q2) Cq(J, u0) � δq,u0Z, q ∈ Z, if u0 is nondegenerate;
(Q3) Cq(J, u0) � δq,kZ for k = µ(u0) or k = µ(u0) + ν(u0), if Ck(J, u0) � 0.

Proposition 2.2. [17] Let J ∈ C2(S ,R) satisfy (D). We have
(Q4) if Cq(J,∞) � 0 holds for some q, then J possesses a critical point u such that Cq(J, u) � 0;
(Q5) if 0 is the isolated critical point of J and Cq(J,∞) � Cq(J, 0) holds for some q, then J has a
non-zero critical point.

Proposition 2.3. [25] Suppose that S is a Hilbert space. For all t ∈ [0, 1], Jt ∈ C2(S ,R) is a functional
satisfying J′t and ∂tJt are locally continuous. If J0 and J1 satisfy (C), and there exist a ∈ R and δ > 0
such that

Jt(u) ≤ a⇒ (1 + ‖u‖)‖Jt(u)‖ ≥ δ, t ∈ [0, 1],

then
Cq(J0,∞) = Cq(J1,∞), q ∈ Z. (2.5)

In particular, if there is R > 0 such that

inf
t∈[0,1],‖u‖>R

(1 + ‖u‖)‖J′t (u)‖ > 0, (2.6)

and
inf

t∈[0,1],‖u‖≤R
(1 + ‖u‖)‖J′t (u)‖ > −∞, (2.7)

then (2.5) is satisfied.

Proposition 2.4. [16] Let S be a real Hilbert space. J ∈ C1(S ,R) satisfies

J(u) =
1
2
〈Tu, u〉 + Q(u), (2.8)

where T : S → S is a self-adjoint linear operator, and 0 is the isolated spectral point of T . Suppose
Q ∈ C1(S ,R) satisfies

lim
‖u‖→∞

‖Q′(u)‖
‖u‖

= 0. (2.9)
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Let W+(W−) be an invariant subspace corresponding to the positive (negative) of spectrum of T , which
has a bounded inverse. Assume that k = dim W− is finite, then J satisfies (PS ) and

Cq(J,∞) � δq,kZ, q ∈ Z.

For the purpose to obtain the critical group at origin, the following proposition about local linking is
important.

Proposition 2.5. [26] Let 0 be an isolated critical point of J with Morse index µ0 and nullity ν0.
Assume that J has a local linking at 0 subject to S = S − ⊕ S +, m = dim S − < ∞, namely, there exists
ρ > 0 such that

J(u) ≤ 0, u ∈ S −, ‖u‖ ≤ ρ,

J(u) ≥ 0, u ∈ S +, ‖u‖ ≤ ρ.

Then if m = µ0 or m = µ0 + ν0, we get

Cq(J, 0) � δq,mZ, q ∈ Z.

3. Main results and proofs

In this section, we state our main results and provide detailed proofs. For convenience, we give
some notations subject to our main results.

α∞ := f ′((i, j),∞) = lim
|u|→∞

f ((i, j), u)
u

∈ R, (i, j) ∈ Ω, (3.1)

and

α0 := f ′((i, j), 0) = lim
|u|→0

f ((i, j), u)
u

∈ R, (i, j) ∈ Ω. (3.2)

Moreover, for all (i, j) ∈ Ω, we make the following assumptions:
(I1) α0 < λ1;
(I2) α∞ > λT1T2 ;
(I3) λp < α0 < λp+1, p ∈ Z(1,T1T2 − 1);
(I4) α0 > λT1T2;
(I5) α∞ < λ1;
(I6) λp < α∞ < λp+1, p ∈ Z(1,T1T2 − 1);
(F±∞) For ∀(i, j) ∈ Ω, there exists k ∈ Z(2,T1T2 − 1) such that

lim
u→+∞

( f ((i, j), u) − λku) = ±∞, lim
u→−∞

( f ((i, j), u) − λku) = ∓∞.

We are now in a position to state our main results as the following:

Theorem 3.1. If one of the following conditions is satisfied:
(1̇) (I1), (I2) or (I6) (1̇1̇) (I3), (I2) or (I5) (1̇1̇1̇) (I4), (I5) or (I6),
then (1.1) and (1.2) possesses at least two nontrivial solutions.
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Theorem 3.2. Suppose that α∞ = λk. If T1T2 is odd, then (1.1) and (1.2) has at least two nontrivial
solutions provided one of the following conditions is fulfilled:
(1̇) (I1) (1̇1̇) (I4) (1̇1̇1̇) (I3) with p , T1T2

2 .

Theorem 3.3. Let (F+
∞)[(F−∞)] hold and α∞ = λk. Then (1.1) and (1.2) admits at least two nontrivial

solutions provided one of the following conditions is met:
(1̇) (I1) (1̇1̇) (I4) (1̇1̇1̇) (I3) with p , k[p , k − 1].

Given the following sign conditions:
(F+

0 ) there exist m ∈ Z(1,T1T2 − 1) and δ > 0 such that

2F((i, j), u) − λmu2 > 0, |u(i, j)| ≤ δ, (i, j) ∈ Ω,

(F−0 ) there exist m ∈ Z(2,T1T2) and δ > 0 such that

2F((i, j), u) − λmu2 < 0, |u(i, j)| ≤ δ, (i, j) ∈ Ω.

Then we have

Theorem 3.4. Assume that (F+
0 )[(F−0 )] holds and α0 = λm. Then (1.1) and (1.2) possesses at least two

nontrivial solutions if one of the following conditions is fulfilled:
(1̇) (I5) (1̇1̇) (I2) (1̇1̇1̇) (I6) with p , m[p , m − 1].

Theorem 3.5. Let α∞ = λk and α0 = λm. If either
(1̇) (F−0 ), (F+

∞) and m + 1 , k, or
(1̇1̇) (F+

0 ), (F−∞) and k + 1 , m,
then (1.1) and (1.2) admits at least two nontrivial solutions.

To calculate the critical group at infinity under conditions of Theorems 3.1 and 3.4, we have the
following lemma.

Lemma 3.1. If (I5) or (I2) or (I6) is satisfied, then Cq(J,∞) � δq,kZ, q ∈ Z.

Proof. Let αs be a constant for s ∈ Z(1,T1T2) and denote

lim
|u|→∞

f ((i, j), u)
u

= αs, (i, j) ∈ Ω. (3.3)

Set

J(u) =
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F((i, j), u(i, j)) =
1
2
〈Tu, u〉 + Q(u),

where Q(u) = 1
2〈Λu, u〉 −

T1∑
i=1

T2∑
j=1

F((i, j), u(i, j)). Then Q′(u) is compact and T : S → S is a self-adjoint

bounded linear operator such that 0 is not in the spectrum of T . Thus T± = T |W± has bounded inverse
on W±. Moreover, k = dim W− = 0 if (I5) is satisfied, k = T1T2 if (I2) is satisfied and k = p if (I6) is
satisfied. Together with (3.3), it yields that (2.9) is fulfilled. As a matter of fact, using (3.3), we obtain

lim
|u|→∞

f ((i, j), u) − αsu
u

:= lim
|u|→∞

f̃ ((i, j), u)
u

= 0, ∀(i, j) ∈ Ω.
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Thus for any ε > 0, there exists R > 0 such that

| f̃ ((i, j), u)| <
√
λ1ε
√

2
|u(i, j)|, (i, j) ∈ Ω, |u(i, j)| > R. (3.4)

Thanks to the continuity of f̃ ((i, j), u), there exists some Mε > 0 such that

| f̃ ((i, j), u)| ≤ Mε := max
(i, j)∈Ω,|u(i, j)|≤R

{| f̃ ((i, j), u)|}. (3.5)

If ‖u‖ > max{
√

T1T2λT1T2R,
√

2T1T2 Mε

ε
}, (2.3) implies that |u(i, j)| > R for any (i, j) ∈ Ω. Consequently,

T1∑
i=1

T2∑
j=1

f̃ 2((i, j), u(i, j)) =
∑
|u(i, j)|≤R

f̃ 2((i, j), u(i, j)) +
∑
|u(i, j)|>R

f̃ 2((i, j), u(i, j))

<T1T2M2
ε +

ε2λ1

2
‖u‖22 ≤ T1T2M2

ε +
ε2

2
‖u‖2 ≤ ε2‖u‖2,

which ensures that (2.9) is valid. By Proposition 2.4, we conclude that Cq(J,∞) � δq,kZ, q ∈ Z.

In the following Lemmas 3.2 and 3.3, we calculate critical groups at both infinity and origin to make
preparations for the proof of Theorem 3.3.

Lemma 3.2. Assume α∞ = λk. Then
(1) Cq(J,∞) � δq,k−1Z, q ∈ Z if (F−∞) holds;
(2) Cq(−J,∞) � δq,T1T2−kZ, q ∈ Z if (F+

∞) is valid.

Proof. We prove the case (1) at length. The proof of (2) is similar and is omitted for brevity.
For t ∈ [0, 1], consider

Ĵ(u) = ‖u+‖2 + ‖u0‖2 − ‖u−‖2, u+ ∈ W+, u− ∈ W−, u0 ∈ W0.

Define Jt : S → R as
Jt(u) = (1 − t)J(u) + tĴ(u), u ∈ S . (3.6)

In order to apply Proposition 2.3, we need to prove that there exist a ∈ R and δ > 0 such that

Jt(u) ≤ a⇒ ‖J′t (u)‖ ≥ δ, t ∈ [0, 1]. (3.7)

Otherwise, there exist {un} ⊆ S , tn ∈ [0, 1] such that

Jtn(un) ≤ −n, ‖J′tn(un)‖ <
1
n
,

that is,
− Jtn(un)→ +∞, J′tn(un)→ 0. (3.8)

Note

| − Jtn(un)| =|(tn − 1)J(un) − tn Ĵ(un)| ≤ |(tn − 1)J(un)| + |tn Ĵ(un)|

≤|tnJ(un)| + |J(un)| + |tn Ĵ(un)| ≤ 2|J(un)| + |Ĵ(un)| ≤ 2|J(un)| + ‖un‖
2.
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If {un} is bounded, for J is continuous, then there exists M > 0 such that ‖J(un)‖ ≤ M‖un‖, which leads
to

‖ − Jtn(un)‖ ≤ (2M + 1)‖un‖. (3.9)

Obviously, (3.9) is inconsistent with (3.8). Thus, ‖un‖ → ∞.
Define a bilinear function

σ(u, v) = λk

T1∑
i=1

T2∑
j=1

(u(i, j), v(i, j)), u, v ∈ S .

Since |σ(u, v)| ≤ λk
λ1
‖u‖‖v‖, there exists an unique continuous linear operator K : S → S such that

〈Ku, v〉 = λk

T1∑
i=1

T2∑
j=1

(u(i, j), v(i, j)).

Let g((i, j), u) = f ((i, j), u) − λku, where G((i, j), u) =
∫ u

0
g((i, j), τ)dτ = F((i, j), u) − 1

2λku2. Then for
any u, v in S ,

〈J′(u), v〉 =〈u, v〉 − λk〈u, v〉 −
T1∑
i=1

T2∑
j=1

g((i, j), u(i, j))v(i, j)

=〈(I − K)u, v〉 −
T1∑
i=1

T2∑
j=1

g((i, j), u(i, j))v(i, j),

(3.10)

and ∂tJt = −J(u)+ Ĵ(u) is locally continuous. Denoted by û = u+ +u0−u−, then (3.10) can be rewritten
as

〈J′(u), û〉 = 〈(I − K)u, û〉 −
T1∑
i=1

T2∑
j=1

g((i, j), u(i, j))̂u(i, j). (3.11)

By the definition of û, we have

〈(I − K)u, û〉 =〈(I − K)u+ + u0 + u−, u+ + u0 − u−〉

=‖u+‖2 − λk‖u+‖22 + ‖u0‖2 − λk‖u0‖22 − ‖u
−‖2 + λk‖u−‖22

≥

(
1 −

λk

λk+1

)
‖u+‖2 +

(
λk

λk−1
− 1

)
‖u−‖2.

In view of α∞ = λk and (F−∞), there exist 0 < ε < λk
λk−1
− 1, R1 > 0 such that

−λ1 · ε <
g((i, j), u)

u
≤ 0, |u(i, j)| > R1, (i, j) ∈ Ω.

Moreover,

g((i, j), u)̂u =
g((i, j), u)

u
ûu =

g((i, j), u)
u

[(u+ + u0)2 − (u−)2] < λ1ε(u−)2.
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Consequently,

T1∑
i=1

T2∑
j=1

g((i, j), u(i, j)̂u(i, j) =
∑

|u(i, j)|>R1

g((i, j), u(i, j)̂u(i, j) +
∑

|u(i, j)|≤R1

g((i, j), u(i, j)̂u(i, j)

<λ1ε
∑

|u(i, j)|>R1

(u−(i, j))2 + C1

∑
|u(i, j)|≤R1

|̂u(i, j)|

≤λ1ε

T1∑
i=1

T2∑
j=1

(u−(i, j))2 + C1

T1∑
i=1

T2∑
j=1

|̂u(i, j)|

≤λ1ε‖u−‖22 + C1‖̂u‖2 = λ1ε‖u−‖22 + C1‖u‖2

≤ε‖u−‖2 +
C1
√
λ1
‖u‖,

where C1 := max
(i, j)∈Ω,|u(i, j)|≤R1

{|g((i, j), u(i, j))|}. Denoted by C2 := C1√
λ1

and C3 := min{1− λk
λk+1

, λk
λk−1
− 1− ε},

from (3.11), we obtain

〈J′(u), û〉 ≥
(
1 −

λk

λk+1

)
‖u+‖2 +

(
λk

λk−1
− 1 − ε

)
‖u−‖2 −C2‖u‖

≥C3(‖u+‖2 + ‖u−‖2) −C2‖u‖.

Define P− : S → W− as P−u = u−. Then

Ĵ(u) = 〈u, u〉 − 2〈P−u, u〉 = 〈(I − 2P−)u, u〉,

Ĵ′(u) = 2(I − 2P−)u, Ĵ′′(u) = 2(I − 2P−).

In the following, our aim is to show tn → 0 as n→ ∞. Or else, there exists t0 > 0 such that tn ≥ t0 and
−C2(1 − tn) ≥ −C2(1 − t0). Define C4 := C2(1 − t0), since J′tn(un) → 0 as ‖un‖ → ∞, there exists some
R2 > 0 such that

‖un‖ ≥〈J′tn(un), ûn〉 = (1 − tn)〈J′(un), ûn〉 + 2tn‖un‖
2

≥(1 − tn)C3(‖u+‖2 + ‖u−‖2) −C4‖un‖ + 2tn‖un‖
2 as |u(i, j)| > R2,

which implies
(1 + C4)‖un‖ ≥ (1 − tn)C3(‖u+‖2 + ‖u−‖2) + 2tn‖un‖

2 ≥ 2tn‖un‖
2.

Making use of (3.11), we obtain tn → 0 and

(1 + C4)‖un‖ ≥ C3(‖u+
n ‖

2 + ‖u−n ‖
2).

Therefore,
‖u+

n ‖
2

‖un‖
+
‖u−n ‖

2

‖un‖
≤

1 + C4

C3
,

which means both { ‖u
+
n ‖

2

‖un‖
} and { ‖u

−
n ‖

2

‖un‖
} are bounded, and

‖u+
n ‖

2

‖un‖
2 +
‖u−n ‖

2

‖un‖
2 ≤

1 + C4

C3

1
‖un‖

. (3.12)
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Recall ‖un‖ → ∞, (3.12) implies that

‖u+
n ‖

‖un‖
→ 0 and

‖u−n ‖
‖un‖

→ 0.

Joint with ‖un‖
2 = ‖u+

n ‖
2 + ‖u0

n‖
2 + ‖u−n ‖

2, we obtain ‖u0
n‖

‖un‖
→ 1. Therefore, ‖u+

n ‖
2 + ‖u0

n‖
2 − ‖u−n ‖

2 > 0,
namely, Ĵ(un) > 0.

Since

J(un) =
1
2
‖un‖

2 −

T1∑
i=1

T2∑
j=1

F((i, j), u(i, j)) =
1
2
〈(I − K)un, un〉 −

T1∑
i=1

T2∑
j=1

G((i, j), u(i, j))

≥
1
2

[(
1 −

λk

λk+1

)
‖u+

n ‖
2 +

(
λk

λk−1
− 1

)
‖u−n ‖

2
]
−

T1∑
i=1

T2∑
j=1

G((i, j), u(i, j))

≥
1
2

(
λk

λk−1
− 1

)
‖u−n ‖

2 −

T1∑
i=1

T2∑
j=1

G((i, j), u(i, j)),

then

1
‖un‖

J(un) ≥
1
2

(
λk

λk−1
− 1

)
‖u−n ‖

2

‖un‖
−

T1∑
i=1

T2∑
j=1

1
‖un‖

G((i, j), u(i, j))

≥ −C5 −

T1∑
i=1

T2∑
j=1

1
‖un‖

G((i, j), u(i, j)),

(3.13)

where C5 := 1
2 ( λk

λk−1
− 1)1+C4

C3
. Denote vn = un

‖un‖
, then ‖vn‖ = 1. Hence up to a convergent subsequence,

without loss of generality, we set the subsequence to be the subsequence, which means that there exists
some v ∈ S satisfying ‖v‖ = 1 such that vn → v as n→ ∞.

Setting
Θ := {(i, j)|(i, j) ∈ Ω, v(i, j) , 0},

then Θ , ∅. If (i, j) ∈ Θ, then un(i, j) = vn(i, j) · ‖un‖ → ∞ and lim
|u|→∞

−G((i, j),u)
|u(i, j)| = +∞. Therefore, for any

M1 > 0, there exists N2 > 0 such that −G((i, j),u)
|u(i, j)| > M1 as n > N2. If (i, j) < Θ, then vn(i, j) → 0. Since

‖un‖ → ∞, there exist C6, N3 > 0 such that −G((i, j),u)
‖un‖

≥ −C6. Consequently,

lim
n→∞

T1∑
i=1

T2∑
j=1

−G((i, j), un(i, j))
‖un‖

= +∞.

Combining with (3.13), we can deduce that 1
‖un‖

J(un)→ +∞. Further,

Jtn(un) = (1 − tn)J(un) + tn Ĵ(un) ≥ (1 − tn)J(un) ≥
‖un‖

2

(
1
‖un‖

J(un)
)
→ +∞,

which is a contradiction. Thus {Jt : t ∈ [0, 1]} satisfies (PS ), that is, J = J0 and J1 satisfy (PS ). By
Proposition 2.3, we have

Cq(J,∞) � Cq(J0,∞) � Cq(J1,∞). (3.14)
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If Ĵ′(u) = J′1(u) = 0, then u+ + u0 = u−, namely u = 2u−. Therefore, u = 0 is the only critical point of
J1 such that

Cq(J1,∞) = Cq(J1, 0). (3.15)

Let J′′1 (0)u = 0, it is easy to compute that u = 0, which means that u = 0 is a nondegenerate critical
point of J1 and its corresponding Morse index µ0 = dim W− = k − 1. Finally, combining (3.14)
with (3.15), we achieve Cq(J,∞) � δq,k−1Z, q ∈ Z. And this completes the proof of Lemma 3.2.

Lemma 3.3. Assume α∞ = λk and (F−∞) holds. Then
(1) Cq(J, 0) � δq,0 if (I1) is satisfied;
(2) Cq(J, 0) � δq,T1T2 if (I4) is satisfied;
(3) Cq(J, 0) � δq,p if (I3) is satisfied, where p , k − 1.

Proof. In case (1), u = 0 is a local minimizer of J and Cq(J, 0) � δq,0Z. In case (2), combing u = 0 is a
local maximum of J with the Morse index on u = 0 is µ0 = T1T2, it follows that Cq(J, 0) � δq,T1T2Z. In
case (3), µ0 = p , k − 1, which means that Cq(J, 0) � δq,pZ.

To prove Theorem 3.4, the following lemma on local linking is needed.

Lemma 3.4. Let α0 = λm and (F+
0 ) (or (F−0 )) hold. Then J has a local linking at 0 with respect to

S = S − ⊕ S +,

where S − = span{φ1, · · · , φm} (or S − = span{φ1, · · · , φm−1}).

Proof. In view of (F+
0 ), there exists δ̄ > 0 such that

F((i, j), u) ≥
1
2
λmu2, |u(i, j)| ≤ δ̄, (i, j) ∈ Ω.

For u ∈ S − with |u(i, j)| ≤ δ̄, there has

J(u) =
1
2
‖u‖2 −

T1∑
i=1

T2∑
j=1

F((i, j), u(i, j)) ≤
1
2
‖u‖2 −

1
2
λm‖u‖22 = 0. (3.16)

Since α0 = λm, we have

lim
u→0

2F((i, j), u)
u2 = lim

u→0

f ((i, j), u)
u

= λm.

Then for any ε > 0, there exists δ̃ > 0 such that
∣∣∣2F((i, j),u)

u2 − λm

∣∣∣ < ε as 0 < |u(i, j)| < δ̃, that is,
λm − ε <

2F((i, j),u)
u2 < λm + ε. Thus,

1
2

(λm − ε)u2 < F((i, j), u) <
1
2

(λm + ε)u2, 0 < |u(i, j)| < δ̃, (i, j) ∈ Ω.

For u ∈ S − with 0 < |u(i, j)| < δ̃, we have

J(u) ≥
1
2
‖u‖2 −

1
2

(λm + ε) ‖u‖22 ≥
1
2

(
1 −

λm + ε

λm+1

)
‖u‖2. (3.17)
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Choose δ = min{δ̄, δ̃} and 0 < ε < λm+1 − λm. Denote ρ = δ
√

T1T2λT1T2 . Then (3.16) and (3.17)
indicate that

J(u) ≤ 0, u ∈ S −, ‖u‖ ≤ ρ,

J(u) ≥ 0, u ∈ S +, ‖u‖ ≤ ρ.

Moreover, J(0) = 0 is obvious. Consequently, J has a local linking at 0. And the proof is achieved.

As for Theorem 3.5, we consider the critical groups at infinity with respect to −J. In the same
manner as Lemma 3.3, we have

Lemma 3.5. Let (F+
∞) hold and α∞ = λk. Then

(1) Cq(−J, 0) � δq,T1T2 , if (I1) is satisfied;
(2) Cq(−J, 0) � δq,0, if (I4) is satisfied;
(3) Cq(−J, 0) � δq,T1T2−p, if (I3) is satisfied and p , k.

With above preparations, it is time for us to provide detailed proofs of Theorems 3.1–3.5.
Proof of Theorem 3.1 Since all three cases of Theorem 3.1 can be proved similarly, here we only
prove the case (i) at length for brevity.

On account of (I1), u = 0 is a local minimizer of J and its Morse index µ0 = 0 and zero nullity
ν0 = 0 and

Cq(J, 0) � δq,0Z, q ∈ Z.

By Lemma 3.1, we get
Cq(J,∞) � δq,kZ, q ∈ Z.

Moreover, the process of proof of Lemma 3.1 indicates that J satisfies (PS ). By Proposition 2.2, there
exists u1 ∈ κ such that u1 , 0 and Ck(J, u1) � 0. Then u1 is a non-zero critical point of J and

J′′(u1) = I − diag{ f ′((1, 1), u1(1, 1)), · · · , f ′((T1,T2), u1(T1,T2))}.

Note that the rank of J′′(u1) is greater than T1T2 − 1, which implies ν(u1) = dim ker(J′′(u1)) ≤ 1 and
Cq(J, u1) � δq,kZ, q ∈ Z. Assume that κ = {0, u1}, then the Morse equality is

(−1)0 + (−1)k = (−1)k,

which is impossible. Hence, J has at least another nontrivial critical point, namely, (1.1) and (1.2)
possesses at least two nontrivial solutions. And the proof of Theorem 3.1 is completed.
Proof of Theorem 3.2 Recall G((i, j), u) = F((i, j), u) − 1

2λku2, there has

J(u) =
1
2
〈(I − K)u, u〉 −G(u) :=

1
2
〈Bu, u〉 −G(u).

Then B : S → S is a self-adjoint bounded linear operator such that 0 is not in the spectrum of B and
B′(u) is compact. Write B± = B|W± , then B± has a bounded inverse on W±. Let k = dim W− = T1T2

2 ,
then α∞ = λk guarantees that (2.9) is valid. By Proposition 2.4, we obtain

Cq(J,∞) � δq, T1T2
2
Z, q ∈ Z,
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and J satisfies (PS ). Use (I1) once more, we have u = 0 is a local minimizer of J and

Cq(J, 0) � δq,0Z, q ∈ Z.

According to Proposition 2.2 and ν(u2) ≤ 1, we draw a conclusion that there exists u2 ∈ κ with u2 , 0
such that

C T1T2
2

(J, u2) � 0.

Assume κ = {0, u2}, then the Morse equality expresses as

(−1)0 + (−1)
T1T2

2 = (−1)
T1T2

2 ,

which is a contradiction. Therefore, J has at least another nontrivial critical point, (1.1) and (1.2)
possesses at least two nontrivial solutions. And this completes the proof of Theorem 3.2.
Proof of Theorem 3.3 By Lemma 3.2, Cq(J,∞) = δq,k−1Z, q ∈ Z and J satisfies (PS ). Then
Proposition 2.2 indicates there exists u3 ∈ κ such that Ck−1(J, u3) � 0, which means that u3 is a
non-zero critical point of J. Since

J′′(u3) = I − diag{ f ′((1, 1), u3(1, 1)), · · · , f ′((T1,T2), u3(T1,T2))},

and the rank of J′′(u3) is greater than T1T2−1. Then ν(u3) = dim ker(J′′(u3)) ≤ 1. If q < [µ(u3), µ(u3)+

ν(u3)] and Cq(J, u3) = 0, then either k − 1 = µ(u3) + ν(u3) or k − 1 = µ(u3). Thus, Cq(J, u3) � δq,k−1Z. If
κ = {0, u3}, by the Morse equality, we have

(−1)∗ + (−1)k−1 = (−1)k−1, (3.18)

where ∗ = 0, T1T2 or p corresponds to (I1), (I4) or (I3), respectively. Meanwhile, it is impossible
for (3.18) to be true. Therefore, J at least has another non-zero critical point, and (1.1)–(1.2) possesses
at least two nontrivial solutions and the proof is achieved.
Proof of Theorem 3.4 Lemma 3.1 yields Cq(J,∞) � δq,kZ, q ∈ Z, which means that there exists u4 ∈ κ

such that Ck(J,∞) � 0. Since

J′′(u4) = I − diag{ f ′((1, 1), u4(1, 1)), · · · , f ′((T1,T2), u4(T1,T2))},

and the rank of J′′(u4) is greater than T1T2 − 1, then ν(u4) = dim ker(J′′(u4)) ≤ 1. If q < [µ(u4), µ(u4) +

ν(u4)] and Cq(J, u4) = 0, then either k = µ(u4) or k = µ(u4) +ν(u4), which implies that Cq(J, u4) � δq,kZ.
Note that Lemma 3.4 shows that J has a local linking at 0 and dim S − = m. Further, 0 is the isolated
critical point of J and J′′(0) is a Fredholm operator and Cm(J, 0) � 0, then Cq(J, 0) � δq,mZ. If
κ = {0, u4}, the Morse equality is in the form as

(−1)m + (−1)k = (−1)k. (3.19)

However, (3.19) is impossible. Consequently, J at least has another non-zero critical point, (1.1)
and (1.2) possesses at least two nontrivial solutions. The proof of Theorem 3.4 is finished.
Proof of Theorem 3.5 Let α∞ = λk and (F+

∞) be satisfied, Lemma 3.2 gives

Cq(−J,∞) � δq,T1T2−kZ, q ∈ Z.
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Furthermore, (F−0 ) and α0 = λm lead to

Cq(−J, 0) � δq,T1T2−(m+1)Z, q ∈ Z.

Notice that m + 1 , k and nondegenerate critical points are isolated, then there exists some critical
point u5 ∈ κ with u5 , 0 such that

CT1T2−k(−J, u5) � 0,

then
Cq(−J, u5) � δq,T1T2−kZ.

If κ = {0, u5}, then there holds the Morse equality

(−1)T1T2−(m+1) + (−1)T1T2−k = (−1)T1T2−k,

which is impossible. Then −J at least has another non-zero critical point, (1.1) and (1.2) possesses at
least two nontrivial solutions. The proof of Theorem 3.5 is completed.

4. Examples

Finally, we present five examples to verify the feasibility of our results.

Example 4.1. Take T1 = 3, T2 = 2, consider

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) +
(λ1

2 − 2λT1T2)u
1 + u2 + 2λT1T2u = 0, (4.1)

with boundary value conditions (1.2).

Because f ((i, j), u) =
( λ1

2 −2λT1T2 )u
1+u2 + 2λT1T2u, it follows that f ((i, j), 0) = 0 and

f ′((i, j), u) =
(6λT1T2 −

λ1
2 )u2 + 2λT1T2u

4 + λ1
2

(1 + u2)2 .

Then f ′((i, j), 0) = λ1
2 < λ1 and f ′((i, j),∞) = 2λT1T2 > λT1T2 , which means that (I1) and (I2) are

satisfied. Consequently, Theorem 3.1 guarantees that (4.1) and (1.2) admits at least two nontrivial
solutions.

Example 4.2. Take T1 = 3, T2 = 5, consider

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) +
(λ1

2 − λk)u
1 + u2 + λku = 0, (4.2)

with boundary value conditions (1.2).

Clear, T1T2 = 15 is odd and

f ((i, j), u) =
(λ1

2 − λk)u
1 + u2 + λku.
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It is easy to calculate that f ((i, j), 0) = 0 and

α∞ = lim
|u|→∞

f ((i, j), u)
u

= lim
|u|→∞

 λ1
2 − λk

1 + u2 + λk

 = λk.

Moreover, direct computation gives

f ′((i, j), u) =
(3λk −

λ1
2 )u2 + λku4 + λ1

2

(1 + u2)2 ,

which indicates f ′((i, j), 0) = λ1
2 < λ1. As a result, (I1) is valid and Theorem 3.2 ensures that (4.2)

and (1.2) admits at least two nontrivial solutions.

Example 4.3. Take T1 = 3, T2 = 2, r = e
λ1
2 −λk > 0. Consider

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) +
(λ1

2 − λk) sin u
u + 1

+ λku + u
1
3 ln(r + |u|3) = 0, (4.3)

with boundary value conditions (1.2).

Since f ((i, j), u) =
( λ1

2 −λk) sin u
u+1 + λku + u

1
3 ln(r + |u|3), it is easy to get that f ((i, j), 0) = 0 and

α∞ = lim
|u|→∞

f ((i, j), u)
u

= lim
|u|→∞

 (λ1
2 − λk) sin u

u(u + 1)
+ λk +

ln(r + |u|3)

u
2
3

 = λk.

Further,

f ′((i, j), u) = λk +
cos u(λ1

2 − λk)(u + 1) − sin u(λ1
2 − λk)

(u + 1)2 + u−
2
3 ln(r + |u|3) +

3u
7
3

r + |u|3
.

Thus f ′((i, j), 0) = λ1
2 < λ1 and (I1) is satisfied.

At last, by direct computation, we obtain

lim
u→+∞

( f ((i, j), u) − λku) = lim
u→+∞

 (λ1
2 − λk) sin u

u + 1
+ u

1
3 ln(r + |u|3)

 = +∞,

lim
u→−∞

( f ((i, j), u) − λku) = lim
u→−∞

 (λ1
2 − λk) sin u

u + 1
+ u

1
3 ln(r + |u|3)

 = −∞,

which means that (F+
∞) is met.

Therefore, all conditions of Theorem 3.3 are fulfilled and (4.3) and (1.2) admits at least two
nontrivial solutions.

Example 4.4. Take T1 = 3, T2 = 2. Consider

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) +
2(λm −

λp+λp+1

2 )u
2 − u2 +

λp + λp+1

2
u = 0, (4.4)

with boundary value conditions (1.2).
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Owe to f ((i, j), u) =
2(λm−

λp+λp+1
2 )u

2−u2 +
λp+λp+1

2 u, it follows that f ((i, j), 0) = 0 and

F((i, j), u) = (
λp + λp+1

2
− λm) ln(2 − u2) +

λp + λp+1

4
u2.

Then

f ′((i, j), u) =
2(λm −

λp+λp+1

2 )(2 + u2)
(2 − u2)2 +

λp + λp+1

2
,

and

α∞ = lim
|u|→0

f ((i, j), u)
u

= λm.

Additionally, λp < f ′((i, j),∞) =
λp+λp+1

2 < λp+1, which implies that (I6) is met. In the following, we
check (F+

0 ). Write

A =



4 −1 0 −1 0 0
−1 4 −1 0 −1 0
0 −1 4 0 0 −1
−1 0 0 4 −1 0
0 −1 0 −1 4 −1
0 0 −1 0 −1 4


,

then A is positive-define and the corresponding eigenvalues are

λ1 = 3 −
√

2, λ2 = 3, λ3 = 5 −
√

2, λ4 = 3 +
√

2, λ5 = 5, λ6 = 5 +
√

2.

Take m = 1, p = 3, then there exists δ > 0 such that 2F((i, j), u) − λmu2 > 0 when |u(i, j)| ≤ δ. In fact,
for any (i, j) ∈ Z(1, 3) × Z(1, 2), we can choose δ = 1 > 0, then 0 < |u(i, j)|2 ≤ 1 for 0 < |u(i, j)| ≤ 1,
which means that

(
√

2 + 1) ln(2 − u2) + (
√

2 − 1)u2 > 0.

Thus (F+
0 ) is fulfilled. Consequently, Theorem 3.4 ensures that (4.4) and (1.2) possesses at least two

nontrivial solutions.
More clearly, using Matlab, we find that problem (4.4) and (1.2) has 63 solutions including 1

trivial solution and 62 nontrivial solutions. Here we list a few: (-2.1408, 1.8608, -2.1408, 2.1408,
-1.8608, 2.1408), (2.1408, -1.8608, 2.1408, -2.1408, 1.8608, -2.1408), (−8.3211 × 10−9,
−1.1767 × 10−8, −8.3211 × 10−9, −8.3211 × 10−9, −1.1767 × 10−8, −8.3211 × 10−9), (8.3211 × 10−9,
1.1767 × 10−8, 8.3211 × 10−9, 8.3211 × 10−9, 1.1767 × 10−8, 8.3211 × 10−9).

Example 4.5. Take T1 = 3, T2 = 2. Consider

∆2
1u(i − 1, j) + ∆2

2u(i, j − 1) +
(λk − λm)u3

1 + u2 + λmu + u
1
3 ln(1 + |u|3) = 0, (4.5)

with boundary value conditions (1.2).
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From (4.5), we find f ((i, j), u) =
(λk−λm)u3

1+u2 + λmu + u
1
3 ln(1 + |u|3), then

F((i, j), u) =
1
2
λmu2 +

λk − λm

2
(u2 − ln(1 + u2)) + u ln(1 + u) − u + ln(1 + u) + C,

take C = −1 and δ = e − 1 > 0, then when m > k and 0 < |u(i, j)| < δ,

F((i, j), u) −
1
2
λmu2 =

λk − λm

2
(u2 − ln(1 + u2)) + u ln(1 + u) − u + ln(1 + u) + C

=(u + 1)(ln(u + 1) − 1) +
λk − λm

2
(u2 − ln(1 + u2))

=(u + 1)(ln(u + 1) − ln e) +
λk − λm

2
(u2 − ln(1 + u2)) < 0,

which means that (F−0 ) is fulfilled.
On the other side, it is easy to get f ((i, j), 0) = 0 and

α∞ = lim
|u|→∞

f ((i, j), u)
u

= lim
|u|→∞

[
(λk − λm)u2

1 + u2 + λm +
ln(1 + |u|3)

u
2
3

]
= λk,

α0 = lim
|u|→0

f ((i, j), u)
u

= lim
|u|→0

[
(λk − λm)u2

1 + u2 + λm +
ln(1 + |u|3)

u
2
3

]
= λm.

Furthermore, there hold

lim
u→+∞

( f ((i, j), u) − λku) = lim
u→+∞

(
u

1
3 ln(1 + |u|3) + (λm − λk)u +

(λk − λm)u3

1 + u2

)
= +∞,

lim
u→−∞

( f ((i, j), u) − λku) = lim
u→−∞

(
u

1
3 ln(1 + |u|3) + (λm − λk)u +

(λk − λm)u3

1 + u2

)
= −∞,

which guarantees that (F+
∞) is satisfied.

Therefore, all conditions of Theorem 3.5 are valid and (4.5) and (1.2) has at least two nontrivial
solutions.
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