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Abstract: In this paper, we are interested in the minimal norm of least squares Hermitian solution
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1. Introduction

In this paper, for the convenience of expression, we first introduce some notations. R, Rm and Rm×n

stand for the sets of all real numbers, m-dimensional real column vectors and m × n real matrices,
respectively. C and Cm×n stand for the sets of all complex numbers and m × n complex matrices,
respectively. HCm×m,AHCm×m stand for the sets of all m × m complex Hermitian and anti-Hermitian
matrices, respectively. SRm×m and ASRm×m stand for the sets of all m × m real symmetric and anti-
symmetric matrices, respectively. Im is the m × m identity matrix, and δk

m is the k-th column of Im,
k = 1, 2, · · · ,m. B† and BT represent the Moore-Penrose inverse and the transpose of the matrix B,
respectively. For the matrix B = (β1, β2, · · · , βn) ∈ Rm×n, vec(B) represents the mn-dimensional column
vector (βT

1 , β
T
2 , · · · , β

T
n )T . B ⊗ C represents the Kronecker product of matrices B and C. ‖ · ‖ represents

the 2 norm of a vector or the Frobenius norm of a matrix. For a matrix C, rowi(C), col j(C) represent
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the i-th row and the j-th column of C, respectively. rand(m, n) is a function in MATLAB.
Linear matrix equations are widely used in applied mathematics, computational mathematics,

computer science, control theory, signal and color image processing and other fields, which has aroused
the interest of many scholars and achieved some valuable results [1–8]. Direct method [9–14] and
iterative method [15–20] are two common methods to solve linear matrix equations.

In this paper, we are interested in the following generalized Sylvester matrix equation

CXD + EXF = G, (1.1)

in which C,D, E, F,G are known matrices, and X is unknown matrix. This matrix equation (1.1) over
different number fields has been widely studied in recent years. Many scholars have proposed iterative
methods for different solutions of the matrix equation (1.1) [21–26]. For the direct method, some
meaningful conclusions are also obtained for the matrix equation (1.1). For example, Yuan et al. [27]
gave the expression of the minimal norm of least squares Hermitian solution for the complex matrix
equation (1.1) by a product for matrices and vectors. Zhang et al. [28] studied the least squares
Hermitian solutions for the complex matrix equation (1.1) by the real representations of complex
matrices. Yuan [29] proposed the expressions of the least squares pure imaginary solutions and real
solutions for the quaternion matrix equation (1.1) by using the complex representations of quaternion
matrices and the Moore-Penrose inverse. Wang et al. [30] gave some necessary and sufficient
conditions for the complex constraint generalized Sylvester matrix equations to have a common
solution by the rank method, and obtained the expression of the general common solution. Yuan [31]
solved the mixed complex Sylvester matrix equations by the generalized singular-value decomposition,
and gave the explicit expression of the general solution. Yuan et al. [32] studied the Hermitian solution
of the split quaternion matrix equation (1.1). Kyrchei [33] represented the solution of the quaternion
matrix equation (1.1) by quaternion row-column determinants.

In the process of solving the linearization problem of nonlinear systems, Cheng et al. [34] proposed
the theory of the semi-tensor product of matrices in recent years. The semi-tensor product of matrices
breaks through the limitation of dimension and realizes quasi commutativity, which is a generalization
of the traditional matrix multiplication. Now, the semi-tensor product of matrices has been applied to
Boolean networks [35], graph theory [36], game theory [37], logical systems [38] and so on.

To the best of our knowledge, there is no reference on the study of the complex matrix equation (1.1)
by using the semi-tensor product method. Therefore, in this paper, we will use the real vector
representations of complex matrices and the semi-tensor product of matrices to study the following
two problems.

Problem 1. Suppose C, E ∈ Cm×n,D, F ∈ Cn×p,G ∈ Cm×p and

LH = {X|X ∈ HCn×n
‖CXD + EXF −G‖=min}.

Find out XHC ∈LH satisfying ‖XHC‖= min
X∈LH
‖X‖.

Problem 2. Suppose C, E ∈ Cm×n,D, F ∈ Cn×p,G ∈ Cm×p and

LAH = {X|X ∈ AHCn×n
‖CXD + EXF −G‖=min}.

Find out XAHC ∈LAH satisfying ‖XAHC‖= min
X∈LAH

‖X‖.
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XHC, XAHC are called the minimal norm of least squares Hermitian solution and the minimal norm
of least squares anti-Hermitian solution for the complex matrix equation (1.1), respectively.

The rest of this paper is arranged as below. In Section 2, some preliminary results are presented
for solving Problems 1 and 2. In Section 3, the solutions of Problems 1 and 2 are obtained by the real
vector representations of complex matrices and the semi-tensor product of matrices. In Section 4, two
numerical algorithms of solving Problems 1 and 2 are proposed, and two numerical examples are given
to show the effectiveness of purposed algorithms. In Section 5, this paper is summarized briefly.

2. Preliminaries

In this section, we review and present some preliminary results of solving Problems 1 and 2.

Definition 2.1. ( [39]) Let B ∈ Rm×n,C ∈ Rs×t. The semi-tensor product of B,C is defined as

B nC = (B ⊗ Iq/n)(C ⊗ Iq/s),

where q is the least common multiple of n, s.

In Definition 2.1, when n = s, the semi-tensor product of A, B is essentially the traditional matrix
product. The semi-tensor product has the following properties.

Lemma 2.2. ( [39]) Suppose A, B,C,D, E are real matrices of appropriate orders. There are the
following conclusions:

(1) (A n B) nC = A n (B nC).
(2) A n (D + E) = A n D + A n E, (D + E) n A = D n A + E n A.

Lemma 2.3. ( [39]) Let α ∈ Rm, B ∈ Rp×q, and then α n B = (Im ⊗ B) n α.

Lemma 2.3 reflects the quasi commutativity of vector and matrix. In order to realize the
commutativity between vectors, the following swap matrix is important.

Definition 2.4. ( [39]) The following square matrix

S[m,n] = (In ⊗ δ
1
m, In ⊗ δ

2
m, · · · , In ⊗ δ

m
m)

is called the (m, n)-dimension swap matrix.

Lemma 2.5. ( [39]) Let α ∈ Rm, β ∈ Rn, then

S[m,n] n α n β = β n α,

where S[m,n] is as same as that in Lemma 2.4.

To study Problems 1 and 2, we define the real vector representations of complex number, complex
vector and complex matrix, and give their properties.

Let a complex number a = a1 + a2i, where a1, a2 ∈ R, and then the following column vector

−→a =

(
a1

a2

)
is defined as the real vector representation of the complex number a.
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Lemma 2.6. ( [40]) Let a, b ∈ C, then
−→
ab = W n −→a n

−→
b , where

W =

(
1 0 0 −1
0 1 1 0

)
.

Suppose α = (x1, x2, · · · , xn), β = (y1, y2, · · · , ym)T are two complex vectors. The following column
vectors

−→α =


−→x1
−→x2
...
−→xn

 ,
−→
β =


−→y1
−→y2
...
−→ym


are defined as the real vector representations of the complex vectors α, β, respectively. And we can
easily get the following properties of the real vector representations of complex vectors:

−→xi = (δi
n)T n −→α, −→y j = (δ j

m)T n
−→
β ,

in which i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

Lemma 2.7. ( [40]) Suppose α = (x1, x2, · · · , xn), β = (y1, y2, · · · , yn)T are two complex vectors. W is
as same as that in Lemma 2.7. Then

−→
αβ = Fn n

−→α n
−→
β ,

in which Fn = W n
n∑

i=1
[(δi

n)T n (I2n ⊗ (δi
n)T )].

Let A ∈ Cm×n, and then the following column vectors

−→
Ac =



−−−−−−→
col1(A)
−−−−−−→
col2(A)

...
−−−−−−→
coln(A)


,
−→
Ar =



−−−−−−→
row1(A)
−−−−−−→
row2(A)

...
−−−−−−−→
rowm(A)


are defined as the real column and row vector representations of A, respectively. And they satisfy

−−−−−→
coli(A) = (δi

n)T n
−→
Ac,
−−−−−−→
row j(A) = (δ j

m)T n
−→
Ar,

in which i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
Further, the following properties also hold.

Lemma 2.8. Let A, B ∈ Cm×n, and then

(1)
−−−−−−−→
(A ± B)c =

−→
Ac ±

−→
Bc,

−−−−−−−→
(A ± B)r =

−→
Ar ±

−→
Br;

(2) ‖A‖ = ‖
−→
Ac‖ = ‖

−→
Ar‖.

Proof. (1) Notice that

−−−−−−−−−−→
col j(A ± B) =

−−−−−→
col j(A) ±

−−−−−→
col j(B), j = 1, 2, · · · , n,
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−−−−−−−−−−→
rowi(A ± B) =

−−−−−−→
rowi(A) ±

−−−−−−→
rowi(B), i = 1, 2, · · · ,m.

Thus, we obtain

−−−−−−−→
(A ± B)c =



−−−−−−−−−−→
col1(A ± B)
−−−−−−−−−−→
col2(A ± B)

...
−−−−−−−−−−→
coln(A ± B)


=



−−−−−−→
col1(A) ±

−−−−−−→
col1(B)

−−−−−−→
col2(A) ±

−−−−−−→
col2(B)

...
−−−−−−→
coln(A) ±

−−−−−−→
coln(B)


=



−−−−−−→
col1(A)
−−−−−−→
col2(A)

...
−−−−−−→
coln(A)


±



−−−−−−→
col1(B)
−−−−−−→
col2(B)

...
−−−−−−→
coln(B)


=
−→
Ac ±

−→
Bc,

−−−−−−−→
(A ± B)r =



−−−−−−−−−−→
row1(A±B)
−−−−−−−−−−→
row2(A±B)

...
−−−−−−−−−−→
rowm(A±B)


=



−−−−−−→
row1(A)±

−−−−−−→
row1(B)

−−−−−−→
row2(A)±

−−−−−−→
row2(B)
...

−−−−−−−→
rowm(A)±

−−−−−−−→
rowm(B)


=



−−−−−−→
row1(A)
−−−−−−→
row2(A)

...
−−−−−−−→
rowm(A)


±



−−−−−−→
row1(B)
−−−−−−→
row2(B)

...
−−−−−−−→
rowm(B)


=
−→
Ar±
−→
Br,

which show that (1) holds.
(2) Because ‖rowi(A)‖2 = ‖

−−−−−−→
rowi(A)‖2, ‖col j(A)‖2 = ‖

−−−−−→
col j(A)‖2, we get

‖A‖2 =

m∑
i=1

‖rowi(A)‖2 =

m∑
i=1

‖
−−−−−−→
rowi(A)‖2 = ‖

−→
Ar‖

2,

‖A‖2 =

n∑
i=1

‖col j(A)‖2 =

n∑
i=1

‖
−−−−−→
col j(A)‖2 = ‖

−→
Ac‖

2.

Thus (2) holds. �

Lemma 2.9. Let A ∈ Cm×n, B ∈ Cn×p. Fn is as same as that in Lemma 2.8. Then

−−−−→
(AB)c = Kmnp n

−→
Ar n

−→
Bc,

in which

Kmnp =


K1

mnp

K2
mnp
...

K p
mnp

 , Ki
mnp =


Fn n (δ1

m)T n (I2mn ⊗ (δi
p)T )

Fn n (δ2
m)T n (I2mn ⊗ (δi

p)T )
...

Fn n (δm
m)T n (I2mn ⊗ (δi

p)T )

 , i = 1, 2, · · · , p.

Proof. Block the matrices A, B into the following forms:

A =


row1(A)
row2(A)

...

rowm(A)

 , B = (col1(B), col2(B), · · · , colp(B)).

By using of Lemma 2.3 and Lemma 2.8, we obatin

−−−−−−−−−−−−−→
rowi(A)col j(B) = Fn n

−−−−−−→
rowi(A) n

−−−−−→
col j(B)
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= Fn n (δi
m)T n

−→
Ar n (δ j

p)T n
−→
Bc

= Fn n (δi
m)T n [I2mn ⊗ (δ j

p)T ] n
−→
Ar n

−→
Bc.

Thus, there is

−−−−→
(AB)c =



−−−−−−−−−−−−−→
row1(A)col1(B)
−−−−−−−−−−−−−→
row2(A)col1(B)

...
−−−−−−−−−−−−−−→
rowm(A)col1(B)

...
−−−−−−−−−−−−−−→
row1(A)colp(B)
−−−−−−−−−−−−−−→
row2(A)colp(B)

...
−−−−−−−−−−−−−−→
rowm(A)colp(B)



=



Fn n (δ1
m)T n (I2mn ⊗ (δ1

p)T )
Fn n (δ2

m)T n (I2mn ⊗ (δ1
p)T )

...

Fn n (δm
m)T n (I2mn ⊗ (δ1

p)T )
...

Fn n (δ1
m)T n (I2mn ⊗ (δp

p)T )
Fn n (δ2

m)T n (I2mn ⊗ (δp
p)T )

...

Fn n (δm
m)T n (I2mn ⊗ (δp

p)T )



n
−→
Ar n

−→
Bc.

So Lemma 2.10 holds. �

Lemma 2.10. ( [40]) Let A ∈ Cm×n, B ∈ Cn×p. Fn is as same as that in Lemma 2.8. Then

−−−−→
(AB)r = K̃mnp n

−→
Ar n

−→
Bc,

in which

K̃mnp =


K̃1

mnp

K̃2
mnp
...

K̃m
mnp

 , K̃ j
mnp =


Fn n (δ j

m)T n (I2mn ⊗ (δ1
p)T )

Fn n (δ j
m)T n (I2mn ⊗ (δ1

p)T )
...

Fn n (δ j
m)T n (I2mn ⊗ (δp

p)T )

 , j = 1, 2, · · · ,m.

In the last part of this section, we propose the necessary and sufficient conditions for a complex
matrix to be Hermitian and anti-Hermitian.

Lemma 2.11. Let X = X1 + X2i ∈ Cn×n, then

−→
Xc = M

(
vec(X1)
vec(X2)

)
,

where M = (δ1
2n2 , δ

3
2n2 , · · · , δ

2n2−1
2n2 , δ2

2n2 , δ
4
2n2 , · · · , δ

2n2

2n2).

Proof. Let X1 = (x(1)
i j )n×n, X2 = (x(2)

i j )n×n, and then

vec(X1) = (x(1)
11 , x

(1)
21 , · · · , x

(1)
n1 , · · · , x

(1)
1n , x

(1)
2n , · · · , x

(1)
nn )T ,

vec(X2) = (x(2)
11 , x

(2)
21 , · · · , x

(2)
n1 , · · · , x

(2)
1n , x

(2)
2n , · · · , x

(2)
nn )T .

Notice that

(δ1
2n2 ,δ

3
2n2 ,· · · ,δ

2n2−1
2n2 )vec(X1) = (x(1)

11 , 0, x
(1)
21 , 0, · · · , x

(1)
n1 , 0, · · · , x

(1)
1n , 0, x

(1)
2n , 0, · · · , x

(1)
nn , 0)T ,
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(δ2
2n2 , δ

4
2n2 , · · · , δ

2n2

2n2)vec(X2) = (0, x(2)
11 , 0, x

(2)
21 , · · · , 0, x

(2)
n1 , · · · , 0, x

(2)
1n , 0, x

(2)
2n , · · · , 0, x

(2)
nn )T ,

so we have

M
(
vec(X1)
vec(X2)

)
= (δ1

2n2 ,δ
3
2n2 ,· · · ,δ

2n2−1
2n2 )vec(X1) + (δ2

2n2 , δ
4
2n2 , · · · , δ

2n2

2n2)vec(X2)

= (x(1)
11 , 0, x

(1)
21 , 0, · · · , x

(1)
n1 , 0, · · · , x

(1)
1n , 0, x

(1)
2n , 0, · · · , x

(1)
nn , 0)T

+ (0, x(2)
11 , 0, x

(2)
21 , · · · , 0, x

(2)
n1 , · · · , 0, x

(2)
1n , 0, x

(2)
2n , · · · , 0, x

(2)
nn )T

= (x(1)
11 , x

(2)
11 , x

(1)
21 , x

(2)
21 · · · , x

(1)
n1 , x

(2)
n1 , · · · , x

(1)
1n , x

(2)
1n , x

(1)
2n , x

(2)
2n , · · · , x

(1)
nn , x

(2)
nn )T

=
−→
Xc.

So Lemma 2.12 holds. �

For a real matrix X = (xi j) ∈ Rn×n, we denote

α1 = (x11,x21,· · · ,xn1),α2 = (x22,x32,· · · ,xn2),· · · ,αn−1 = (x(n−1)(n−1),xn(n−1)),αn = xnn,

β1 = (x21,x31,· · · ,xn1),β2 = (x32,x42,· · · ,xn2),· · · ,βn−2 = (x(n−1)(n−2),xn(n−2)),βn−1 = xn(n−1).

vecS (X), vecA(X) stand for the following vectors

vecS (X)= (α1, α2, · · · , αn−1, αn)T ∈ R
n(n+1)

2 , (2.1)

vecA(X)= (β1, β2, · · · , βn−2, βn−1)T ∈ R
n(n−1)

2 . (2.2)

Lemma 2.12. ( [7]) Let X ∈ Rn×n, and then the following conclusions hold.

(1) X ∈ SRn×n
⇐⇒ vec(X) = PnvecS (X), where

Pn=


δ1

n δ2
n δ3

n · · · δn−1
n δn

n 0 0 · · · 0 0 · · · 0 0 0
0 δ1

n 0 · · · 0 0 δ2
n δ3

n · · · δn−1
n δn

n · · · 0 0 0
0 0 δ1

n · · · 0 0 0 δ2
n · · · 0 0 · · · 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · δ1
n 0 0 0 · · · δ2

n 0 · · · δn−1
n δn

n 0
0 0 0 · · · 0 δ1

n 0 0 · · · 0 δ2
n · · · 0 δn−1

n δn
n

 .
(2) X ∈ ASRn×n

⇐⇒ vec(X) = QnvecA(X), where

Qn=


δ2

n δ3
n · · · δn−1

n δn
n 0 · · · 0 0 · · · 0

−δ1
n 0 · · · 0 0 δ3

n · · · δn−1
n δn

n · · · 0
0 −δ1

n · · · 0 0 −δ2
n · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 · · · −δ1
n 0 0 · · · −δ2

n 0 · · · δn
n

0 0 · · · 0 −δ1
n 0 · · · 0 −δ2

n · · · −δn−1
n

 .
We can get the following results by Lemmas 2.12 and 2.13.

Lemma 2.13. Suppose X = X1 + X2i ∈ Cn×n.

(1) If X ∈ HCn×n, then
−→
Xc = H

(
vecS (X1)
vecA(X2)

)
, where H = M

(
Pn 0
0 Qn

)
.

(2) If X ∈ AHCn×n, then
−→
Xc = H̃

(
vecA(X1)
vecS (X2)

)
, where H̃ = M

(
Qn 0
0 Pn

)
.
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Proof. For X ∈ HCn×n, we have X1 ∈ SR
n×n, X2 ∈ ASR

n×n. By Lemma 2.13, we obtain

vec(X1) = PnvecS (X1), vec(X2) = QnvecA(X2).

According to Lemma 2.12, we get

−→
Xc = M

(
vec(X1)
vec(X2)

)
= M

(
PnvecS (X1)
QnvecA(X2)

)
= M

(
Pn 0
0 Qn

) (
vecS (X1)
vecA(X2)

)
= H

(
vecS (X1)
vecA(X2)

)
,

which shows that (1) holds. Similarly, we can prove that (2) holds. �

3. The solutions of Problems 1 and 2

In this section, by using the real vector representations of complex matrices and the semi-tensor
product of matrices, we first transform the least squares problems of Problems 1 and 2 into the
corresponding real least squares problems with free variables, and then obtain the expressions of the
solutions of Problems 1 and 2. Further, we give the necessary and sufficient conditions for the complex
matrix equation (1.1) to have Hermitian and anti-Hermitian solutions.

Theorem 3.1. Let C, E ∈ Cm×n,D, F ∈ Cn×p,G ∈ Cm×p. S[2np,2n2],Kmnp, K̃mnn,H are as same as those
in Definition 2.4, Lemmas 2.10, 2.11 and Lemma 2.14, respectively. Denote

U = Kmnp n K̃mnn n
(
−→
Cr n S[2np,2n2] n

−→
Dc +

−→
Er n S[2np,2n2] n

−→
Fc

)
.

Then the set LH in Problem 1 can be expressed as

LH = {X|
−→
Xc =H (UH)†

−→
Gc + H[In2 − (UH)† (UH)]y, y ∈ Rn2

}, (3.1)

and the unique Hermitian solution XHC ∈ LH of Problem 1 satisfies

−−−−−→
(XHC)c =H (UH)†

−→
Gc. (3.2)

Proof. By Lemma 2.5, Lemmas 2.9–2.11, we obtain

‖CXD + EXF −G‖ =
∥∥∥∥−−−−−−−−−−−−−−−−−−→(CXD + EXF −G)c

∥∥∥∥
=

∥∥∥∥−−−−−−→(CXD)c +
−−−−−−→
(EXF)c −

−→
Gc

∥∥∥∥
=

∥∥∥∥Kmnp n
−−−−→
(CX)r n

−→
Dc + Kmnp n

−−−−→
(EX)r n

−→
Fc −

−→
Gc

∥∥∥∥
=

∥∥∥∥Kmnp n K̃mnn n
−→
Cr n

−→
Xc n

−→
Dc + Kmnp n K̃mnn n

−→
Er n

−→
Xc n

−→
Fc −

−→
Gc

∥∥∥∥
=

∥∥∥∥∥Kmnp n K̃mnn n
(
−→
Cr n S[2np,2n2] n

−→
Dc +

−→
Er n S[2np,2n2] n

−→
Fc

)
−→
Xc −

−→
Gc

∥∥∥∥∥
=

∥∥∥∥U
−→
Xc −

−→
Gc

∥∥∥∥ .
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For the Hermitian matrix X = X1 + X2i, by applying Lemma 2.14, we have

−→
Xc = H

(
vecS (X1)
vecA(X2)

)
.

So we get

‖CXD + EXF −G‖=

∥∥∥∥∥∥UH
(

vecS (X1)
vecA(X2)

)
−
−→
Gc

∥∥∥∥∥∥ .
Then the complex least squares problem of Problem 1 is converted into the real least squares problem
with free variables

min

∥∥∥∥∥∥UH
(

vecS (X1)
vecA(X2)

)
−
−→
Gc

∥∥∥∥∥∥ .
The general solution of the above least squares problem is(

vecS (X1)
vecA(X2)

)
= (UH)†

−→
Gc + [In2 − (UH)† (UH)]y, y ∈ Rn2

.

Then applying Lemma 2.14, we obtain that (3.1) holds. Therefore, the unique Hermitian solution
XCH ∈LH of Problem 1 satisfies (3.2). �

Now, we propose a necessary and sufficient condition that the complex matrix equation (1.1) has a
Hermitian solution, and the expression of general Hermitian solutions.

Corollary 3.2. Let C, E ∈ Cm×n,D, F ∈ Cn×p,G ∈ Cm×p. H, U are as same as those in Lemma 2.14
and Theorem 3.1, respectively. Then the necessary and sufficient condition that the complex matrix
equation (1.1) has a Hermitian solution is(

UH(UH)† − I2mp

)−→
Gc = 0. (3.3)

If (3.3) holds, the Hermitian solution set of the complex matrix equation (1.1) is

SH={X|
−→
Xc = H (UH)†

−→
Gc + H[In2 − (UH)† (UH)]y, y ∈ Rn2

}. (3.4)

Proof. The necessary and sufficient condition that the complex matrix equation (1.1) has a Hermitian
solution is for any X ∈ HCn×n,

‖CXD + EXF −G‖ = 0.

According to Theorem 3.1, we have

‖CXD + EXF −G‖

=

∥∥∥∥∥∥UH
(
vecS (X1)
vecA(X2)

)
−
−→
Gc

∥∥∥∥∥∥
=

∥∥∥∥∥∥UH(UH)†UH
(
vecS (X1)
vecA(X2)

)
−
−→
Gc

∥∥∥∥∥∥
=

∥∥∥∥UH(UH)†
−→
Gc −

−→
Gc

∥∥∥∥
AIMS Mathematics Volume 8, Issue 3, 5200–5215.



5209

=
∥∥∥∥(UH(UH)† − I2mp

)−→
Gc

∥∥∥∥ .
Therefore, the necessary and sufficient condition that the complex matrix equation (1.1) has a
Hermitian solution is (

UH(UH)† − I2mp

)−→
Gc = 0,

which illustrates that (3.3) holds. For X ∈ HCn×n, we get

‖CXD + EXF −G‖ =

∥∥∥∥∥∥UH
(
vecS (X1)
vecA(X2)

)
−
−→
Gc

∥∥∥∥∥∥ .
Therefore, when the complex matrix equation (1.1) has a Hermitian solution, the Hermitian solutions
of (1.1) satisfy the following equation

UH
(
vecS (X1)
vecA(X2)

)
=
−→
Gc.

By Theorem 3.1, (3.4) is established. �

Theorem 3.3. Let C, E ∈ Cm×n,D, F ∈ Cn×p,G ∈ Cm×p. H̃,U are as same as those in Lemma 2.14 and
Theorem 3.1, respectively. Then the set LAH of Problem 2 can be expressed as

LAH = {X|
−→
Xc = H̃

(
UH̃

)†−→
Gc + H̃[In2 −

(
UH̃

)†
(UH̃)]y, y ∈ Rn2

}, (3.5)

and the unique anti-Hermitian solution XAHC ∈ LAH of Problem 2 satisfies

−−−−−−→
(XAHC)c = H̃

(
UH̃

)†−→
Gc. (3.6)

Proof. By Theorem 3.1, we obtain

‖CXD + EXF −G‖ =
∥∥∥∥U
−→
Xc −

−→
Gc

∥∥∥∥ .
For X = X1 + X2i ∈ AHCn×n, we have

−→
Xc = H̃

(
vecA(X1)
vecS (X2)

)
. Thus we get

‖CXD + EXF −G‖=

∥∥∥∥∥∥UH̃
(

vecA(X1)
vecS (X2)

)
−
−→
Gc

∥∥∥∥∥∥ .
min

∥∥∥∥∥∥UH̃
(

vecA(X1)
vecS (X2)

)
−
−→
Gc

∥∥∥∥∥∥ has the following general solution:

(
vecA(X1)
vecS (X2)

)
=
(
UH̃

)†−→
Gc + [In2 −

(
UH̃

)†
(UH̃)]y, y ∈ Rn2

.

By Lemma 2.14, (3.5) holds. Further, the unique anti-Hermitian solution XACH ∈ LAH of Problem 2
satisfies (3.6). �
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Now, we give the necessary and sufficient condition that the complex matrix equation (1.1) to have
an anti-Hermitian solution and the expression of general anti-Hermitian solution. Because the research
method is similar to Corollary 3.2, we only give these conclusions and omit the specific derivation
process.

Corollary 3.4. Let C, E ∈ Cm×n,D, F ∈ Cn×p,G ∈ Cm×p. H̃,U are as same as those in Lemma 2.14
and Theorem 3.1, respectively. Then the necessary and sufficient condition that the complex matrix
equation (1.1) has an anti-Hermitian solution is(

UH̃(UH̃)† − I2mp

)−→
Gc = 0. (3.7)

If (3.7) holds, the anti-Hermitian solution set of the complex matrix equation (1.1) is

SAH={X|
−→
Xc = H̃

(
UH̃

)†−→
Gc + H̃[In2 −

(
UH̃

)†
(UH̃)]y, y ∈ Rn2

}. (3.8)

Remark 1. The semi-tensor product of matrices provides a new method for solving linear matrix
equations. The feature of this method is to first convert complex matrices into the corresponding
real vectors, and then use the quasi commutativity of the vectors to transform the complex matrix
equation into the real linear system with the form Ax = b, so as to obtain the solution of the complex
matrix equation. This method only involves real matrices and real vectors, so it is more convenient in
numerical calculation. The weakness of this method is that it leads to the expansion of the dimension
when the complex matrix is straightened into a real vector, and therefore it is not convenient to calculate
the complex matrix equation of higher order.

Remark 2. In [27], the authors propose a method of solving the solution of Problem 1 by a product
for matrices and vectors. This method involves a lot of calculations of complex matrix, the Moore-
Penrose inverse and matrix inner product, which reduces the accuracy of the result to some degree.
The numerical example in Section 5 will illustrate this.

4. Numerical algorithms and examples

In this section, two numerical algorithms are first proposed to solve Problems 1 and 2, and then two
numerical examples are given to show the effectiveness of purposed algorithms. In the first example, we
give the errors of the solutions of Problems 1 and 2. In the second example, we compare the accuracy
of the solution of Problem 1 calculated by Algorithm 4.1 and the method in [27]. All calculations are
implemented on an Intel Core i7-2600@3.40GHz/8GB computer by using MATLAB R2021b.

Algorithm 4.1. (The solution of Problem 1 )

(1) Input matrices C, E ∈ Cm×n, D, F ∈ Cn×p, G ∈ Cm×p, W, S[2np,2n2], Pn,Qn, M.

(2) Generate
−→
Cr,
−→
Er,
−→
Dc,
−→
Fc,
−→
Gc, Fn, and then calculate Kmnp, K̃mnn, U and H.

(3) Calculate the unique Hermitian solution XCH of Problem 1 by (3.2).

Algorithm 4.2. (The solution of Problem 2 )

(1) Input matrices C, E ∈ Cm×n, D, F ∈ Cn×p, G ∈ Cm×p, W, S[2np,2n2], Pn,Qn, M.

(2) Generate
−→
Cr,
−→
Er,
−→
Dc,
−→
Fc,
−→
Gc, Fn, and then calculate Kmnp, K̃mnn, U and H̃.
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(3) Calculate the unique anti-Hermitian solution XAHC of Problem 2 by (3.4).

Example 4.1. Suppose C, E ∈ Cm×n, D, F ∈ Cn×p are random matrices generated by MATLAB. Let
M1 =rand(n, n), M2 =rand(n, n).

(1) According to M1,M2, we generate the following matrix

X = (M1 + MT
1 ) + (M2 − MT

2 )i,

and then X ∈ HCn×n. Let G = CXD + EXF, and m = n = p = k. Here, all matrices are square,
and the probability that random matrices are nonsingular is 1. Therefore, (1.1) has a unique
Hermitian solution X, which is also the unique solution of Problem 1. We calculate the solution
XHC of Problem 1 by Algorithm 4.1. Let k = 2 : 10 and the error ε = log10(‖XHC−X‖). The
relation between the error ε and k is shown in Figure 1 (a).

(2) Generate the following matrix

X = (M1 − MT
1 ) + (M2 + MT

2 )i,

and then X ∈ AHCn×n. Let G = CXD + EXF, and m = n = p = k. Then, (1.1) has a unique anti-
Hermitian solution X, which is also the unique solution of Problem 2. We calculate the solution
XAHC of Problem 2 by Algorithm 4.2. Let k = 2 : 10 and the error ε = log10(‖XAHC−X‖). The
relation between the error ε and k is shown in Figure 1 (b).
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(a)  Problem 1 (b)  Problem 2

Figure 1. The errors of solving Problems 1 and 2.

From Figure 1, we see that ε < −12, and thus the errors of solving Problems 1 and 2 are all no
more than 10−12. This shows that the effectiveness of Algorithms 4.1 and 4.2. In addition, (a) and (b)
of Figure 1 are little difference, which reflects that the calculation amount of the solution of Problem 1
is almost the same as that of Problem 2. These are consistent with theoretical reality, and therefore
Figure 1 is reasonable.
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Example 4.2. Suppose

C =10rand(m, n) + 20rand(m, n)i, D=20rand(n, p) + 10rand(n, p)i,

E =20rand(m, n) + 10rand(m, n)i, F =10rand(n, p) + 20rand(n, p)i.

X is same as that in Example 4.1. Let G = CXD + EXF. When m = n = p = k, X is the unique solution
of Problem 1. X1, X2 represent the solutions of Problem 1 computed by Algorithm 4.1 and the method
in [27], respectively. Let ε1 = ‖X1 − X‖, ε2 = ‖X2 − X‖. Table 1 shows the errors ε1, ε2 of matrices of
different orders.

Table 1. Error comparison of two methods in solving Problem 1.

k ε1 ε2

2 5.1179e-16 4.0656e-15
3 3.8081e-15 1.5832e-13
4 6.9372e-15 2.8004e-13
5 3.1605e-14 2.0132e-12
6 3.0276e-14 1.3684e-12
7 5.8574e-14 2.7640e-12
8 2.5821e-13 1.4964e-11
9 3.1605e-13 1.1339e-11

10 7.4086e-13 1.1213e-11

Table 1 illustrates that the errors obtained by Algorithm 4.1 are smaller than those obtained by the
method in [27]. This is because, in the process of solving Problem 1, [27] involves a lot of calculations
of complex matrix, the Moore-Penrose inverse and matrix inner product, which leads to the reduction
of calculation accuracy. Thus Algorithm 4.1 is more accurate and efficient.

5. Conclusions

In this paper, we obtain the minimal norm of least squares Hermitian solution and the minimal
norm of least squares anti-Hermitian solution for the complex matrix equation CXD + EXF = G by
the semi-tensor product of matrices. The numerical examples show that our purposed method is more
effective and accurate. The semi-tensor product of matrices provides a new idea for the study of matrix
equations. This method can also be applied to the study of solutions of many types of linear matrix
equations.
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