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1. Introduction

Let (Ω,F ,P) be a probability space and (Fn)n≥0 an increasing sequence of sub-σ-algebras of F with
the associated conditional expectations (En)n≥0. A sequence f = ( fn)n≥0 adapted to (Fn)n≥0 is said to be
a martingale if E(| fn|) < ∞ and En( fn+1) = fn for every n ≥ 0. For the sake of simplicity, we assume
f0 = 0. Let 1 ≤ p < ∞. The quasi-Banach spaces bmop are defined as follows:

bmop = { f = ( fn)n≥0 : ∥ f ∥bmop = sup
n
∥En(| f − fn|

p)∥
1
p
∞ < ∞}.

Here, the notation f in | f − fn|
p stands for f∞. It follows from [7] that

∥ f ∥bmop = sup
n

sup
a∈Lp(Fn),∥a∥p≤1

∥( f − fn)a∥p.

Before describing our main results, we recall the classical John-Nirenberg inequality in the martingale
theory (see [6, 7]).

Theorem 1. If the stochastic basis {Fn}n≥0 is regular, then for 1 ≤ p < ∞ we have that

bmop = bmo1

with equivalent norms.
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In 2014, Yi et al. [8] proved the John-Nirenberg inequality on the rearrangement-invariant Banach
function space E with 1 ≤ pE ≤ qE < ∞. In 2019, Li [4] considered the John-Nirenberg theorem on
Lorentz space bmop,q with 1 < p < ∞ and 0 < q < ∞.

In this paper, we first prove the John-Nirenberg inequality of bmop martingale spaces for 0 < p < ∞,
extending Theorem 1 via a new interpolation method. Then, we extend this result to a wider class of
the symmetric quasi-Banach function space E with 0 < pE ≤ qE < ∞.

2. Preliminaries and notations

Let us first recall some basic facts on the symmetric quasi-Banach function spaces. Let
((0,∞),F , P) be the Lesbegue measure space and L0(0,∞) be the space of all Lesbegue measurable
real-valued functions defined on (0,∞). Let E be a quasi-Banach subspace of L0(0,∞), simply called
a quasi-Banach function space on (0,∞) in the sequel. A quasi-Banach function space E on (0,∞) is
called symmetric if for any g ∈ E and any measurable function f with µt( f ) ≤ µt(g) (µt( f ) and µt(g) re-
spectively represent the non-increasing rearrangement of f and g) for all t ≥ 0, f ∈ E and ∥ f ∥E ≤ ∥g∥E.
E is said to have the Fatou property if for every net (xi)i∈I in E satisfying 0 ≤ xi ↑ and supi∈I ∥xi∥E < ∞

the supremum x = supi∈I xi exists in E and ∥xi∥E ↑ ∥x∥E.
The Köthe dual of a symmetric Banach function space E on (0,∞) is given by

E× = { f ∈ L0(0,∞) :
∫ ∞

0
| f (t)g(t)|dt < ∞ : ∀g ∈ E},

with the norm ∥ f ∥E× := sup{
∫ ∞

0
| f (t)g(t)|dt : ∥g∥E ≤ 1}. The space E× is symmetric and has the Fatou

property. Refer to [1, 5] for more details.
For a quasi-Banach function space E on (0,∞), the lower and upper Boyd indices pE and qE of E

are respectively defined by

pE := lim
s→∞

log s
log ∥Ds∥

and qE := lim
s→0+

log s
log ∥Ds∥

,

where the dilation operator Ds on L0(0,∞) is defined by (Ds f )(t) = f (t/s) for all t ∈ (0,∞). For a
symmetric quasi-Banach function space E on (0,∞), Ds is a bounded linear operator on E for every
s > 0 and 0 ≤ pE ≤ qE ≤ ∞ (see [2, Lemma 2.2]).

Given a quasi-Banach function space E on (0,∞), for 0 < r < ∞, E(r) will denote the quasi-
Banach function space on (0,∞) defined by E(r) = {x : |x|r ∈ E} and equipped with the quasi-norm

∥x∥E(r) =
∥∥∥|x|r∥∥∥ 1

r

E
. Note that

pE(r) = rpE, qE(r) = rqE. (2.1)

Let Ei be a quasi-Banach function space on (0,∞) for i = 1, 2. The pointwise product space E1 ⊙E2

is defined by
E1 ⊙ E2 = { f ∈ L2(0,∞) : f = f1 f2, fi ∈ Ei, i = 1, 2}

with the functional ∥ · ∥E1⊙E2 being defined by

∥ f ∥E1⊙E2 = inf{∥ f ∥E1∥ f ∥E2 : f = f1 f2, fi ∈ Ei, i = 1, 2}.

We need the following lemmas (see Theorem 2.1 in [1]).
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Lemma 1. Let E and F be two symmetric Banach function spaces on (0,∞).
(i) If 0 < p < ∞, then (E ⊙ F)(p) = E(p) ⊙ F(p).

(ii) L1(0,∞) = E ⊙ E×.

Lemma 2. Let E be a symmetric quasi-Banach function space on (0,∞) with the Fatou property. If
pE > p, then E( 1

p ) can be renormed as a symmetric Banach function space.

Proof. By (2.1), we have that p
E( 1

p ) =
1
p pE > 1. Thus E( 1

p ) is an interpolation space for the couple(
L1(0,∞), L∞(0,∞)

)
(see [3, Lemma 3.6]). Therefore, according to Lemma 2.2 in [1], we get that E( 1

p )

can be renormed as a symmetric Banach function space. □

Now we define the Hardy spaces and BMO spaces of martingales. For a martingale f = ( fn)n≥0,
we denote its martingale difference by d fi = fi − fi−1 (with convention f0 = 0). Then the conditional
quadratic variation and the square function are defined by

sn( f ) = (
n∑

i=1

Ei−1|d fi|
2)1/2, s( f ) = (

∞∑
i=1

Ei−1|d fi|
2)1/2,

S n( f ) = (
n∑

i=1

|d fi|
2)1/2, S ( f ) = (

∞∑
i=1

|d fi|
2)1/2.

Let 0 < p < ∞. Define

H s
p = { f = ( fn)n≥0 : ∥ f ∥Hs

p = ∥s( f )∥p < ∞},

HS
p = { f = ( fn)n≥0 : ∥ f ∥HS

p
= ∥S ( f )∥p < ∞},

bmop = { f = ( fn)n≥0 : ∥ f ∥bmop = sup
n

sup
a∈Lp(Fn),∥a∥p≤1

∥( f − fn)a∥p < ∞},

BMOp = { f = ( fn)n≥0 : ∥ f ∥BMOp = sup
n

sup
a∈Lp(Fn),∥a∥p≤1

∥( f − fn−1)a∥p < ∞}.

Here, the notation f in | f − fn−1|
p stands for f∞.

A stochastic basis (Fn)n≥0 is said to be regular if, for n ≥ 0 and A ∈ Fn, there exists B ∈ Fn−1 such
that A ⊂ B and P(B) ≤ RP(A), where R is a positive constant independent of n. A martingale is said to
be regular if it is adapted to a regular σ-algebra sequence. This means that there exists a constant R > 0
such that fn ≤ R fn−1 for all nonnegative martingales ( fn)n≥0 adapted to the stochastic basis (Fn)n≥0. We
refer the reader to Long [6] and Weisz [7] for the theory of martingales.

In what follows, unless otherwise specified, for two nonnegative quantities A and B, by A ≲ B we
mean that there exists an absolute constant C > 0 such that A ≤ CB, and by A ≈ B that A ≲ B and
B ≲ A.

3. Main results

In this section, we first establish the John-Nirenberg theorem of the bmop spaces for 0 < p < 1.

Theorem 2. If the stochastic basis (Fn)n≥0 is regular, then, for any f ∈ bmo1

∥ f ∥bmop ≈ ∥ f ∥bmo1 0 < p < 1. (3.1)
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Proof. From Hölder’s inequality it follows that

∥ f ∥bmop ≤ ∥ f ∥bmo1 .

To prove the converse we choose 1 < p1 < ∞ and 0 < θ < 1 such that 1 = (1 − θ)/p + θ/p1. Fix n, and
for any 0 < r < ∞, let Tn : Lr(Fn) → Lp(F ) be a linear operator with Tn(a) = ( f − fn)a. Then by the
definition of bmop, we have the following inequalities:

∥Tn∥Lp→Lp = sup
a∈Lp(Fn),∥a∥p≤1

∥( f − fn)a∥p ≤ ∥ f ∥bmop ,

∥Tn∥Lp1→Lp1
= sup

a∈Lp(Fn),∥a∥p1≤1
∥( f − fn)a∥p1 ≤ ∥ f ∥bmop1

.

Thus by interpolation, we have that

∥Tn∥(Lp,Lp1 )θ→(Lp,Lp1 )θ ≤ ∥ f ∥
1−θ
bmop
∥ f ∥θbmop1

.

Noting that (Lp, Lp1)θ = L1 with equal norms and using the inequality

∥ f ∥bmoq ≤ Cq∥ f ∥bmo1 for 1 ≤ q < ∞,

(see[7, Corollory 2.51]) we reduce that

∥Tn∥L1→L1 ≤ (Cp1)
θ∥ f ∥1−θbmop

∥ f ∥θbmo1

which implies that
∥ f ∥bmo1 ≤ (Cp1)

θ
1−θ ∥ f ∥bmop .

□

Remark 1. (i) If, in the proof of Theorem 2, we replace f − fn with f − fn−1 and bmop and bmo1 with
BMOp and BMO1 then

∥ f ∥BMOp ≈ ∥ f ∥BMO1 for 0 < p < 1.

(ii) According to Theorem 1, bmop coincides with bmo1 for 1 ≤ p < ∞. While for 0 < p < 1, if a
priori we assume that f ∈ bmo1. Theorem 2 tells us the norms of bmop and bmo1 are also equivalent.

Recall that if (Fn)n≥0 is regular, then H s
1 = HS

1 which follows that their dual spaces bmo2 and BMO2

are equivalent. Hence, by Theorem 2, Theorem 1, (i) of Remark 1 and [7, Theorem 2.50], we obtain
the following result.

corollary 1. Let 0 < p < ∞. If the stochastic basis (Fn)n≥0 is regular, then for any f ∈ BMO1 and
f ∈ bmo1

∥ f ∥bmop ≈ ∥ f ∥bmo1 ≈ ∥ f ∥BMOp ≈ ∥ f ∥BMO1 .

Now we present the John-Nirenberg inequality of martingale spaces associated with symmetric
quasi-Banach function spaces, generalizing the results obtained in [8, 4].
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Theorem 3. Let E be a symmetric quasi-Banach function space on (0,∞) with 0 < pE ≤ qE < ∞ that
has the Fatou property. If (Fn)n≥0 is regular, then for any f ∈ bmo1,

∥ f ∥bmoE ≈ ∥ f ∥bmo1 , (3.2)

where
bmoE = { f = ( fn)n≥0 : ∥ f ∥bmoE = sup

n
sup

a∈E(Fn),∥a∥E≤1
∥( f − fn)a∥E < ∞}.

Proof. Choose p and q such that 0 < p < pE ≤ qE < q < ∞. Then by Lemma 2, E( 1
p ) can be renormed

as a symmetric Banach function space; so, we assume that E( 1
p ) is a symmetric Banach function space.

By (ii) of Lemma 1, we have that L1(0,∞) = E( 1
p )
⊙ E( 1

p )×. It follows that

Lp(0,∞) = E ⊙ F, (3.3)

where F = (E( 1
p )×)p (see (i) of Lemma 1). Fix n. Take a ∈ Lp(Fn) with ∥a∥p ≤ 1. Then by (3.3), there

exist a1 ∈ E and a2 ∈ F such that a = a1a2 and ∥a1∥E, ∥a2∥F ≤ 1. Thus we have that

∥( f − fn)a∥p = ∥( f − fn)a1a2∥p

≤ ∥a2∥F∥( f − fn)a1∥E

≤ ∥ f ∥bmoE ,

which implies ∥ f ∥bmop ≤ ∥ f ∥bmoE . Therefore, by Theorem 2, ∥ f ∥bmo1 ≤ ∥ f ∥bmoE .

Now we turn to the converse inequality. Fix n. Similar to the definition of the operator Tn in
Theorem 3.1, we can view f − fn as an operator from Lp(Fn) to Lp(F ) and from Lq(Fn) to Lq(F ); then,
we get that

∥ f − fn∥Lp→Lp ≤ ∥ f ∥bmop and ∥ f − fn∥Lq→Lq ≤ ∥ f ∥bmoq . (3.4)

By Lemma 3.6 in [3], we have that E is an interpolation space in (Lp(0,∞), Lq(0,∞)) which implies
that

∥ f − fn∥E→E ≤ C max{∥ f − fn∥Lp→Lp , ∥ f − fn∥Lq→Lq}, (3.5)

where C > 0 is a constant depending only on p and q. Putting (3.4) and (3.5) together and using
Corollary 1, we obtain that

∥ f − fn∥E→E ≤ C max{∥ f ∥bmop , ∥ f ∥bmoq} ≤ C∥ f ∥bmo1 .

It follows that ∥ f ∥bmoE ≤ C∥ f ∥bmo1 . This completes the proof. □

Remark 2. When E = Lp(0,∞) for 0 < p < ∞, (3.2) implies that

∥ f ∥bmop ≈ ∥ f ∥bmo1 .
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