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1. Introduction

Let (Q2, 7, P) be a probability space and (F,),> an increasing sequence of sub-o-algebras of ¥ with
the associated conditional expectations (E,,),>o. A sequence f = (f,).>0 adapted to (F,).s0 is said to be
a martingale if E(|f,]) < co and E,(f,+1) = f, for every n > 0. For the sake of simplicity, we assume
fo=0.Let1 < p < co. The quasi-Banach spaces bmo,, are defined as follows:

1
bmop = {f = (fn)nZO : ”f”bmop = sup ”En(lf - ﬁllp)”é]o < oo}
Here, the notation f in |f — f,|” stands for f.. It follows from [7] that

W fllomo, = sup — sup  [|(f = foall,.

naeL,(Fu)lallp<1

Before describing our main results, we recall the classical John-Nirenberg inequality in the martingale
theory (see [6, 7]).

Theorem 1. If the stochastic basis {F,},>0 is regular, then for 1 < p < oo we have that
bmo, = bmo,

with equivalent norms.
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In 2014, Yi et al. [8] proved the John-Nirenberg inequality on the rearrangement-invariant Banach
function space E with 1 < pgp < gg < co. In 2019, Li [4] considered the John-Nirenberg theorem on
Lorentz space bmo,, with 1 < p <ocoand 0 < g < co.

In this paper, we first prove the John-Nirenberg inequality of bmo, martingale spaces for 0 < p < oo,
extending Theorem 1 via a new interpolation method. Then, we extend this result to a wider class of
the symmetric quasi-Banach function space E with 0 < pg < gg < oo.

2. Preliminaries and notations

Let us first recall some basic facts on the symmetric quasi-Banach function spaces. Let
((0, ), ¥, P) be the Lesbegue measure space and L(0, co) be the space of all Lesbegue measurable
real-valued functions defined on (0, o). Let E be a quasi-Banach subspace of Ly(0, c0), simply called
a quasi-Banach function space on (0, o0) in the sequel. A quasi-Banach function space E on (0, o) is
called symmetric if for any g € E and any measurable function f with w,(f) < u,(g) (u,(f) and p,(g) re-
spectively represent the non-increasing rearrangement of f and g) forallt > 0, f € E and ||fl|g < ||glle.
E is said to have the Fatou property if for every net (x;);e; in E satisfying 0 < x; T and sup,, ||x]|g < o0
the supremum x = sup,.; x; exists in £ and ||x[|g T [|x]|¢.

The Ko6the dual of a symmetric Banach function space E on (0, 00) is given by

Exzwflmaaaiﬂ F(Og(ldi < oo : Vg € E),

with the norm ||f]|gx := sup{fooo [f(H)g()ldt : |lglle < 1}. The space E* is symmetric and has the Fatou
property. Refer to [1, 5] for more details.

For a quasi-Banach function space E on (0, ), the lower and upper Boyd indices pg and gg of E
are respectively defined by

L log s L log s
Pei= Miogip ™ 4 R oginy
where the dilation operator D; on L((0, o) is defined by (D;f)(¢) = f(¢/s) for all t € (0,0). For a
symmetric quasi-Banach function space E on (0, o), D; is a bounded linear operator on E for every
s>0and 0 < pg < gg < oo (see [2, Lemma 2.2]).

Given a quasi-Banach function space E on (0,0), for 0 < r < oo, E” will denote the quasi-
Banach function space on (0, o) defined by E” = {x : |x]" € E} and equipped with the quasi-norm

1
E Note that

x|z = [|lxl”

PE® = VP, qg» = IqE. 2.1)

Let E; be a quasi-Banach function space on (0, co) for i = 1, 2. The pointwise product space E| © E,
is defined by

El QEZ = {f € LZ(O’OO) . f = f1f27ﬁ € Ei7i = 1’2}
with the functional || - ||g,0£, being defined by

WA lleor, = nflllflle |l flle, © f = fife, fi € Eii= 1,2}

We need the following lemmas (see Theorem 2.1 in [1]).
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Lemma 1. Let E and F be two symmetric Banach function spaces on (0, o).

() If0 < p < oo, then (E© F)P = EP o FP),

(i1) L1(0,00) = E© E*.
Lemma 2. Let lE be a symmetric quasi-Banach function space on (0, c0) with the Fatou property. If
pe > p, then E) can be renormed as a symmetric Banach function space.

Proof. By (2.1), we have that P = 11—7 pe > 1. Thus E is an interpolation space for the couple
(L1(0, ), L (0, )) (see [3, Lemma 3.6]). Therefore, according to Lemma 2.2 in [1], we get that E(%)

can be renormed as a symmetric Banach function space. O

Now we define the Hardy spaces and BMO spaces of martingales. For a martingale f = (f,).>0,
we denote its martingale difference by df; = f; — fi-; (with convention f, = 0). Then the conditional
quadratic variation and the square function are defined by

$:() = O BdldfiD)2, s(f) = ) Beald i)',
i=1 i=1

()= QA2 S = ldfD)"”.
i=1 i=1
Let 0 < p < oo. Define

H3 = {f = Fwso  1flly = Is(Hl, < o),

Hy = {f = (fnzo * Ifllgs = ISP, < o0},
bmop = {f = (fn)nZO . ||f||bm0p = sup sup ”(f - fn)a”p < oo},

n a€Ll,(Fy)llall,<1

BMO, = {f = (finzo : [Ifllamo, =sup  sup  |I(f = fa-Dall, < oo}
n aely(F)lalp<1

Here, the notation f in |f — f,_1|” stands for f..

A stochastic basis (7,),>0 is said to be regular if, for n > 0 and A € ¥, there exists B € F,_; such
that A ¢ B and P(B) < RP(A), where R is a positive constant independent of n. A martingale is said to
be regular if it is adapted to a regular o-algebra sequence. This means that there exists a constant R > 0
such that f, < Rf,_, for all nonnegative martingales (f;,),>o adapted to the stochastic basis (7,),>0. We
refer the reader to Long [6] and Weisz [7] for the theory of martingales.

In what follows, unless otherwise specified, for two nonnegative quantities A and B, by A < B we
mean that there exists an absolute constant C > 0 such that A < CB, and by A = Bthat A < B and
B < A.

3. Main results

In this section, we first establish the John-Nirenberg theorem of the bmo, spaces for 0 < p < 1.

Theorem 2. [f the stochastic basis (F,),>o is regular, then, for any f € bmo,

WA llomo,, = [1fllomo, O < p < 1. (3.1
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Proof. From Holder’s inequality it follows that

”f”bmop < ||f||bm01~

To prove the converse we choose 1 < p; < oo and 0 <0 < 1 suchthat1 = (1 -6)/p+6/p,. Fixn, and
forany 0 < r < oo, let T, : L(F,) — L,(¥) be a linear operator with T,,(a) = (f — f,)a. Then by the
definition of bmo,, we have the following inequalities:

WTlle,~z, = sup  |I(f = fally < 11/ lomo, »
aeLy(Fn)llall,<1
||Tn||L,,|—>Lp] = sup ”(f - f;z)a”pl < Hf”bmopI .

acLy(F) Nl <1

Thus by interpolation, we have that

1-6 0
W allcLy 1 D=L o < ||f||bm0p||f||bmopl~

Noting that (L,, L,, )¢ = L; with equal norms and using the inequality

”f”bmoq < Cq”f”bmm fOI' 1 < q < 00,

(see[7, Corollory 2.51]) we reduce that

0 1-6 0
Il < (Cp) N llpmo, 11F pmo,

which implies that
”f”bmo] < (Cpl)m”fnbmop-

O

Remark 1. (i) If, in the proof of Theorem 2, we replace f — f, with f — f,_1 and bmo, and bmo, with
BMO,, and BMO; then

“f”BMO,, ~ ||f||BMO, fOY‘ 0< p < 1.

(ii) According to Theorem 1, bmo,, coincides with bmo; for 1 < p < co. While for 0 < p <1, ifa
priori we assume that f € bmo,. Theorem 2 tells us the norms of bmo, and bmo, are also equivalent.

Recall that if (F,,),5 is regular, then H} = Hf which follows that their dual spaces bmo, and BMO,
are equivalent. Hence, by Theorem 2, Theorem 1, (i) of Remark 1 and [7, Theorem 2.50], we obtain
the following result.

corollary 1. Let O < p < oco. If the stochastic basis (F,),sq is regular, then for any f € BMO, and
f € bmo,

1 lbmo, = 1fllomo, = 11fllBrm0, = 11fllBMO, -

Now we present the John-Nirenberg inequality of martingale spaces associated with symmetric
quasi-Banach function spaces, generalizing the results obtained in [8, 4].
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Theorem 3. Let E be a symmetric quasi-Banach function space on (0, 00) with 0 < pg < gg < oo that
has the Fatou property. If (F,),so is regular, then for any f € bmo,,

1A lomor = 11.fllbmo, » (3.2)

where
bmog = {f = (f)uzo * 1flomor =sup ~ sup  [|[(f = fu)alle < oo}.

n - acE(Fp)llallg<1

Proof. Choose p and g such that 0 < p < pg < gg < g < co. Then by Lemma 2, E% can be renormed
1
as a symmetric Banach function space; so, we assume that E?’ is a symmetric Banach function space.
1 1
By (ii) of Lemma 1, we have that L,(0, ) = E»’ @ E%*. Tt follows that

L,0,00) = EOF, (3.3)

where F = (E(%)X)P (see (i) of Lemma 1). Fix n. Take a € L,(¥,) with |la||, < 1. Then by (3.3), there
exist a; € E and a, € F such that a = a;a, and ||a;||g, ||a2|lr £ 1. Thus we have that

W = fall, = 1I(f = foarall,
< llaallrll(f = fdanlle
< ||f||bm05,

which lmphes ”f”bmo,, < ”f”bmog- Therefore, by Theorem 2, ”f”bmol < ”f”hmog-

Now we turn to the converse inequality. Fix n. Similar to the definition of the operator 7}, in
Theorem 3.1, we can view f — f, as an operator from L,(¥,) to L,(#) and from L, (¥,) to L,(F); then,
we get that

If = falle,»z, < Ufllomo, and |If = fulle,~z, < Ilfllomo,- (3.4)

By Lemma 3.6 in [3], we have that E is an interpolation space in (L,(0, ), L,(0, c0)) which implies
that

If = fullese < Cmaxillf = fulle,~,» If = fallz,~z,}» (3.5)

where C > 0 is a constant depending only on p and ¢g. Putting (3.4) and (3.5) together and using
Corollary 1, we obtain that

If = fulle—e < Cmax{l| fllomo,» 1fllomo,} < ClIfllbmo, -

It follows that || f1lpme; < Cllfllpmo,- This completes the proof. |
Remark 2. When E = L,(0, 00) for 0 < p < oo, (3.2) implies that

”f”bmop = ”f”bmol-
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