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Abstract: Taking into account the significance of spherical hesitant fuzzy sets, this research
concentrates on an innovative multi-criteria group decision-making technique for dealing with
spherical hesitant fuzzy (SHF) situations. To serve this purpose, we explore SHF Aczel Alsina
operational laws such as the Aczel-Alsina sum, Aczel-Alsina product and Aczel-Alsina scalar
multiplication as well as their desirable characteristics. This work is based on the fact that aggregation
operators have significant operative adaptability to aggregate the uncertain information under the SHF
context. With the aid of Aczel-Alsina operators, we develop SHF Aczel-Alsina geometric aggregation
operators to address the complex hesitant uncertain information. In addition, we describe and verify
several essential results of the newly invented aggregation operators. Furthermore, a decision aid
methodology based on the proposed operators is developed using SHF information. The applicability
and viability of the proposed methodology is demonstrated by using a case study related to breast
cancer treatment. Comprehensive parameter analysis and a systematic comparative study are also
carried out to ensure the dependability and validity of the works under consideration.
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1. Introduction

The act of evaluating, classifying, and choosing the best options based on decision support (DS)
data and a particular DS model is known as multi-attribute decision making (MADM). Choosing the
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best decision support approaches and using expert information are the two main factors in determining
a choice. In order to improve judgement on DS issues, the MADM approach [10, 11, 49] needs to
be expanded and improved to consider competence and society’s intricacies. Zadeh’s [66] idea of
fuzzy sets offers a very efficient method for addressing these problems. After that, intuitionistic fuzzy
sets (IFSs) [12] were developed, using positive membership grades (PMGs) and negative membership
grades (NMGs) to reflect uncertainty in DS processes. As time passed, decision-makers (DMs) started
to express their choices for various possibilities when presented with a DM issue by using intuitionistic
fuzzy numbers [51, 58, 61]. As a consequence, intuitionistic fuzzy information is starting to attract the
attention of more and more scholars.

To compile the knowledge collected from specialists, we require the use of various aggregation
operators (Agops). Many Agops have been developed, such as the intuitionistic fuzzy (IF) averaging
operator [59] and certain Einstein Agops, such as the IF Einstein averaging/geometric operators
developed by Wang and Liu [55]. Yu and Xu [63] created a list of prioritized Agops and talked about
how they could be used to solve difficulties involving decision-making problems (DMPs). Under
the linguistic IF technique, Liu and Wang [35] constructed some unique Agops and produced an
approach to deal with the challenging uncertain DMP. The decision-making approach incorporating
an IF Bonferroni means Agop was proposed by Xu and Yager [60]. According to the IF Agops
implemented on a linguistic data set that was prioritized by Arora and Garg [6]. In order to deal with
the uncertainty in DMP, Zhao et al. [67] proposed the generalized IF Agops, such as the generalized IF
averaing/geometric operators. Yu [64] proposed a few confidence level-based IF Agops and addressed
challenging real-world DMPs. Yu [65] developed the IF Agop and discussed its usefulness in DM by
using the Heronian mean. The decision-support methodology was developed by Jiang et al. [25] based
on the IF power Agop and entropy measure. Aczel-Alsina concept based Aczel-Alsina Agops were
developed by Senapati et al. [45] and they were used in the IF multi-attribute decision support method.
The unique generalized IF soft information-based Agops was created by Khan et al. [29], who also
investigated its use in decision-making. Seikh and Mandal [47] presented the Dombi norm based Agops
for IFSs and discussed their application to MADM. Akram et al. [4] introduced a novel outranking
approach for decision-making in an environment of complex Pythagorean fuzzy information.

All of these methods are helpful for representing partial information, but in engineering practice,
they are unable to deal with contradictory or ambiguous facts. Cuong [14] established the picture fuzzy
set (PFS), which is represented by the degrees of membership of positive, neutral and negative, and the
totality of such membership grades should not be larger than one. It is obvious that using PFSs rather
than fuzzy sets or IFSs to explain dubious data tends to be more acceptable and accurate. A large
number of scholars have begun working on the PFS after it was developed.

Information must be combined in order to create a synthesis of the achievement level of criterion.
A number of Agops of picture fuzzy numbers have been created so far, for example, Ashraf et
al. [7] presented a list of novel picture fuzzy (PF) algebraic Agops and a decision-support model
to explain the complex unclear data in DMPs. PF geometric operators are one of the Agops that
Garg [15] created. Wei [56] created a list of PF Agops and discussed how they could be utilized
to solve decision-support issues. The unique modified PF soft information-based Agops was created
by Khan et al. [30], who also investigated its use in decision-making. Many Einstein Agops, such
as PF Einstein averaging/geometric operators, were proposed by Khan et al. [31]. A certain PF
averaging/geometric Agops was created for algebraic rules and linguistic data sets by Qiyas et al. [42].
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Seikh and Mandal [48] introduced PF Agops by using the Frank t-norm and t-conorm to tackle the
uncertain information in DMPs. Jana et al. [24]. produced some Dombi Agops, like the PF Dombi
averaging/geometric operators under the conditions of PF environments. Certain PF Agops, including
PF Hamacher averaging and geometric operators utilizing the Hamacher t-norm and s-norm, were
introduced by Wei [57]. New distance measure-based algebraic Agops were developed by Ashraf et
al. [8] under a cubic PF context. The development of certain logarithmic PF Agops and discussion
of their utility in decision-making was done by Khan et al. [32]. The flexible DM according to
preferred priorities of alternatives was not fully taken into account in the MADM method, despite
the fact that these operators offer some ideas for managing the MADM challenges. Akram et al. [3]
presented the ELECTRE-I methodology under the conditions of Pythagorean fuzzy information with
hesitancy. The t-norms and the corresponding t-conorms (e.g., the algebraic t-norm and t-conorm, the
Einstein t-norm and t-conorm, and the Hamacher t-norm and t-conorm) are widely acknowledged as
being essential operations in fuzzy sets and other fuzzy systems. The Aczel-Alsina t-norm and Aczel-
Alsina t-conorm operations, which have the capability of variation by altering a parameter [2], were
introduced by Aczel and Alsina in 1982. Much aggregation information using the Aczel-Alsina t-
norm and s-norm has been developed based on the many structures of fuzzy information; for example,
Senapati et al. [46] presented the Aczel-Alsina aggregation operations for interval-valued IFS and
discussed their applications in DMPs. Mahmood et al. [36] presented the analysis and application of
Aczel-Alsina norm based Agops under the conditions of bipolar complex fuzzy information. Ashraf et
al. [9] presented the EDAS method by using single valued neutrosophic Aczel-Alsina aggregation
information. Riaz et al. [44] presented the spherical fuzzy Aczel-Alsina operations to tackle the
uncertain information in decision-making. Naeem et al. [39] developed the PF Aczel-Alsina Agops
and discussed their applications in determining the factors affecting mango crops.

In order to solve the favoured priority of alternatives in multi-attribute DMPs, this work intends
to offer the Aczel-Alsina t-norm and t-conorm operations as well as a list of new Agops under the
conditions of an image fuzzy environment. To choose the best method for breast cancer therapy,
an illustration involving breast cancer treatment is provided. The comparison demonstrates how the
suggested strategy may support the ability to make flexible selections in line with the objectives of
different possibilities. The following statements are made about our method’s requirements:

(1) For spherical hesitant fuzzy numbers (SHFNs), we developed a few Aczel-Alsina operations
that can overcome the absence of algebraic, Einstein, and Hamacher operations and represent the
relationship between various SHFNs.

(2) Using spherical hesitant fuzzy (SHF) Aczel-Alsina weighted operators, we extended Aczel-
Alsina operators. SHF data can be supported by the SHF Aczel-Alsina weighted geometric
(SHFAWG), SHF Aczel-Alsina order weighted geometric (SHFAOWG), and SHF Aczel-Alsina hybrid
weighted geometric (SHFAHWG) operators, which can overcome the drawbacks of the current
operator.

(3) Using SHF data, we developed a method to address MADM difficulties.
(4) We applied the proposed SHF Aczel-Alsina Agops to a MADM issue to demonstrate the

suitability and consistency of the proposed operators.
(5) The results show that the proposed method is more effective over time and produces results that

are even more genuine than those produced by existing methods.
The arrangement of the rest of the text in the paper is as follows. In Section 2, some important details
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about t-norms, t-conorms, Aczel-Alsina t-norms, SHFSs and various operating rules in terms of SHFNs
are described. Section 3 discusses the Aczel-Alsina operational guidelines and the characteristics of
SHFNs. In Section 4, we explain several SHF Aczel-Alsina aggregation operations and examine a
number of their beneficial characteristics. The MADM problem is addressed in the following section
by using SHF Aczel-Alsina Agops. In Section 6, to study the most efficient method for breast cancer
therapy, we give an illustrated example relating to breast cancer treatment. In Section 7, We examine
how a parameter influences the results of decision-making. Section 8 compares and contrasts the
potential Agops with the current Agops. In Section 9, the paper is concluded, which expounds on
additional research.

2. Preliminaries

We shall examine a few crucial ideas that are essential to the progress of this work in this portion.

2.1. Aczel-Alsina norm

Definition 1. [2] A mapping X : [0, 1]× [0, 1]→ [0, 1] is a t-norm for every p, q, r ∈ [0, 1] if it fulfills
the below requirements.
(1) X (p, q) = X (q, p) ;
(2) X (p, q) ≤ X (p, r) if q ≤ r;
(3) X (p,X (q, r)) = X (X (p, q) , r) ;
(4) X (p, 1) = p.

Definition 2. [2] A mappingA : [0, 1]×[0, 1]→ [0, 1] is an s-norm if it fulfills the below requirements.
(1)A (p, q) = A (q, p) ;
(2)A (p, q) ≤ A (p, r) if q ≤ r;
(3)A (p,A (q, r)) = A (A (p, q) , r) ;
(4)A (p, 0) = p.

Aczél-Alsina norms are two practical processes that benefit from the flexibility that comes with
parameter activity [2].

Definition 3. [2] A mapping
(
X
ρ
β

)
ρ∈[0,∞]

is an Aczel-Alsina t-norm, if it fulfills the below requirements.

X
ρ
β (p, q) =


XD (p, q) , if ρ = 0
min (p, q) , if ρ = ∞

e−((− ln p)ρ+(− ln q)ρ)
1
ρ
, otherwise

where p, q ∈ [0, 1], ρ is positive constant and XD is a drastic t-norm, defined as

XD (p, q) =


p, if q = 1
q, if p = 1
0, otherwise

.

Definition 4. [2] A mapping
(
A

ρ
β

)
ρ∈[0,∞]

is an Aczel-Alsina s-norm, if it fulfills the below requirements.
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A
ρ
β (p, q) =


AD (p, q) , if ρ = 0
max (p, q) , if ρ = ∞

1 − e−((− ln(1−p))ρ+(− ln(1−q))ρ)
1
ρ
, otherwise

where p, q ∈ [0, 1], ρ is positive constant andAD is drastic s-norm, defined as

AD (p, q) =


p, if q = 0
q, if p = 0
0, otherwise

.

For every ρ ∈ [0,∞] , the t-norm Xρβ and s-normAρ
β are dual to each other.

2.2. Spherical hesitant fuzzy sets

Definition 5. [10, 11] A spherical fuzzy set N in F is defined as

N =
{
ÄN (t) , ËN (t) , ËN (t) ∈ [0, 1] |t ∈ F

}
,

where positive grade ÄN,neutral gradeËNand negative grade ÖN of the element t to the spherical fuzzy
set N, fulfilled that 0 ≤

(
ÄN

)2
+

(
ËN

)2
+

(
ÖN

)2
≤ 1, for each t ∈ F.

Definition 6. [27, 40] An SHF sets N in F is defined as

N =
{
ÄN (t) , ËN (t) , ÖN (t) ∈ [0, 1] |t ∈ F

}
,

where
ÄN (t) = {ä|ä ∈ ÄN (t)}, ËN (t) = {ë|ë ∈ ËN (t)} and ÖN (t) = {ö|ö ∈ ÖN (t)}

are the three sets of some values in [0, 1], denoted as the positive, neutral and negative grades with the
condition 0 ≤ (ä+)2 + (ë+)2 + (ö+)2

≤ 1, for all t ∈ F such that

ä+ =
⋃

ä∈ÄN(t)

max{ä}, ë+ =
⋃

ë∈ËN(t)

max{ë}, and ö+ =
⋃

ö∈ÖN(t)

max{ö}.

Definition 7. [27] Let NK =
{
ÄNK , ËNK , ÖNK

}
be two SHFNs, where (K = 1, 2) .

(1) N1 ⊆ N2 iff ÄN1 ≤ ÄN2 , ËN1 ≥ ËN2and ÖN1 ≥ ÖN2 for all t ∈ F;
(2) N1 = N2 if N1 ⊆ N2 and N2 ⊆ N1;
(2) N1

⋂
N2 =

⋃
(ät ,ët ,öt)∈(Ät ,Ët ,Öt)

{
min

(
Ät

)
,min

(
Ët

)
,max

(
Öt

)}
;

(3) N1
⋃
N2 =

⋃
(ät ,ët ,öt)∈(Ät ,Ët ,Öt)

{
max

(
Ät

)
,min

(
Ët

)
,min

(
Öt

)}
;

(4) (N1)c =
⋃

(ä1,ë1,ö1)∈(Ä1,Ë1,Ö1)

{
Ö1, Ë1, Ä1

}
.

Definition 8. [27] LetNK =
{
ÄNK , ËNK , ÖNK

}
be two SHFNs, where (K = 1, 2) . The operations about

any two SHFNs are introduced as follows:

(1) N1 ⊕ N2 =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)

{√
ä2

1 + ä2
2 − ä2

1.ä
2
2, ë1.ë2, ö1.ö2

}
;
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(2) N1 ⊗ N2 =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)

{
ä1.ä2, ë1.ë2,

√
ö2

1 + ö2
2 − ö2

1.ö
2
2

}
;

(3) ψ · N1 =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)

{√
1 −

(
1 − ä2

1

)ψ
, (ë1)ψ , (ö1)ψ

}
, ψ > 0;

(4) (N1)ψ =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)

{
(ä1)ψ , (ë1)ψ ,

√
1 −

(
1 − ö2

1

)ψ}
, ψ > 0.

Now, we used the operational rules of SHF sets to prove the following identities.

Definition 9. [27] Let NK =
{
ÄNK , ËNK , ÖNK

}
be a collection of SHFNs, where (K = 1, 2, ..., d) and

ψ1, ψ1 > 0; then,
(1) N1 ⊕ N2 = N2 ⊕ N1;
(2) N1 ⊗ N2 = N2 ⊗ N1;
(3) ψ1 (N1 ⊕ N2) = ψ1N1 ⊕ ψ1N2;
(4) (N1 ⊗ N2)ψ1 = Nψ1

1 ⊗ N
ψ1
2 ;

(5) ψ1N1 ⊕ ψ2N1 = (ψ1 + ψ2)N1;
(6) Nψ1

1 ⊗ N
ψ2
1 = N

(ψ1+ψ2)
1 ;

(7)
(
Nψ1

1

)ψ2
= Nψ1ψ2

1 .

Definition 10. [27] Let N =
{
ÄN, ËN, ÖN

}
be an SHFN. The score α (N) and accuracy ξ (N) are given

as follows:

(1) α (N) =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)

{
1

l(ÄNK )
∑

ä
K
− 1

l(ËNK )
∑

ë
K
− 1

l(ÖNK )
∑

ö
K

}
.

Definition 11. (2) ξ (N) =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)

{
ä
K

+ ë
K

+ ö
K

}
.

Definition 12. [27] Let N =
{
ÄN, ËN, ÖN

}
be two SHFNs, where (K = 1, 2) . Then, the comparison

technique of SHFNs can be defined as:
(1) α (N1) > α (N2) implies that N1 > N2;
(2) α (N1) = α (N2) and ξ (N1) > ξ (N2) implies that N1 > N2;
(3) α (N1) = α (N2) and ξ (N1) = ξ (N2) implies that N1 = N2.

Definition 13. [27] Let NK =
{
ÄNK , ËNK , ÖNK

}
be a collection of SHFNs, where (K = 1, 2, ..., d) . An

SHF weighted geometric (SHFWG) Agop with the dimension r is a mapping Dg → D with a weight
vector µ =

(
µ1, µ2, ..., µg

)T
such that µ

K
> 0 and

∑g
K=1 µK = 1 as

S HFWG (N1,N2, ...,Nr) =

g∏
K=1

(NK )µK

=
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)


g∏

t=1

(
ä2

t

)µt
,

g∏
t=1

(
ë2

t

)µt
,

√√
1 −

g∏
t=1

(1 − ö2
t )µt

 .
3. Aczel-Alsina operation for SHFNs

We discussed Aczel-Alsina techniques in relation to SHFNs taking into account the t-norm and
t-conorm of Aczel-Alsina.
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Definition 14. Let NK =
{
ÄNK , ËNK , ÖNK

}
be two SHFNs, where (K = 1, 2) and ρ is a positive

constant. Then, operations for SHFNs based on Aczel-Alsina norms are described as follows:

(1) N1 ⊕ N2 =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)



√
1 − e−((− ln(1−ä2

1))
ρ
+(− ln(1−ä2

2))
ρ)

1
ρ

,√
e−((− ln ë2

1)
ρ
+(− ln ë2

2)
ρ)

1
ρ

,√
e−((− ln ö2

1)
ρ
+(− ln ö2

2)
ρ)

1
ρ


;

(2) N1 ⊗ N2 =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)



√
e−((− ln ä2

1)
ρ
+(− ln ä2

2)
ρ)

1
ρ

,√
1 − e−((− ln(1−ë2

1))
ρ
+(− ln(1−ë2

2))
ρ)

1
ρ

,√
1 − e−((− ln(1−ö2

1))
ρ
+(− ln(1−ö2

2))
ρ)

1
ρ


;

(3) ψ · N1 =
⋃

(ä1,ë1,ö1)∈(Ä1,Ë1,Ö1)


√

1 − e−(ψ(− ln(1−ä2
1))

ρ)
1
ρ

,

√
e−(ψ(− ln ë2

1)
ρ)

1
ρ

,√
e−(ψ(− ln ö2

1)
ρ)

1
ρ

 , ψ > 0;

(4) (N1)ψ =
⋃

(ä1,ë1,ö1)∈(Ä1,Ë1,Ö1)


√

e−(ψ(− ln ä2
1)

ρ)
1
ρ

,

√
1 − e−(ψ(− ln(1−ë2

1))
ρ)

1
ρ

,√
1 − e−(ψ(− ln(1−ö2

1))
ρ)

1
ρ

 , ψ > 0.

Theorem 1. Let NK =
{
ÄNK , ËNK , ÖNK

}
be a collection of SHFNs, where (K = 1, 2, ..., d) and ψ1, ψ1 >

0; then,
(1) N1 ⊕ N2 = N2 ⊕ N1;
(2) N1 ⊗ N2 = N2 ⊗ N1;
(3) ψ1 (N1 ⊕ N2) = ψ1N1 ⊕ ψ1N2;
(4) (N1 ⊗ N2)ψ1 = Nψ1

1 ⊗ N
ψ1
2 ;

(5) ψ1N1 ⊕ ψ2N1 = (ψ1 + ψ2)N1;
(6) Nψ1

1 ⊗ N
ψ2
1 = N

(ψ1+ψ2)
1 ;

(7)
(
Nψ1

1

)ψ2
= Nψ1ψ2

1 .

Proof. (1) Since NK =
{
ÄNK , ËNK , ÖNK

}
is a collection of SHFNs, where (K = 1, 2, ..., d) and ψ1, ψ1 >

0, then by the Definition 14, we have

N1 ⊕ N2

=
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)


√

1 − e−((− ln(1−ä2
1))

ρ
+(− ln(1−ä2

2))
ρ)

1
ρ

,

√
e−((− ln ë2

1)
ρ
+(− ln ë2

2)
ρ)

1
ρ

,√
e−((− ln ö2

1)
ρ
+(− ln ö2

2)
ρ)

1
ρ


=

⋃
(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)


√

1 − e−((− ln(1−ä2
2))

ρ
+(− ln(1−ä2

1))
ρ)

1
ρ

,

√
e−((− ln ë2

2)
ρ
+(− ln ë2

1)
ρ)

1
ρ

,√
e−((− ln ö2

2)
ρ
+(− ln ö2

1)
ρ)

1
ρ


= N2 ⊕ N1.
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(2) By Definition 14, we have

N1 ⊗ N2 =


√

e−((− ln ä2
1)

ρ
+(− ln ä2

2)
ρ)

1
ρ

,

√
e−((− ln ë2

1)
ρ
+(− ln ë2

2)
ρ)

1
ρ

,√
1 − e−((− ln(1−ö2

1))
ρ
+(− ln(1−ö2

2))
ρ)

1
ρ


=


√

e−((− ln ä2
2)

ρ
+(− ln ä2

1)
ρ)

1
ρ

,

√
e−((− ln ë2

2)
ρ
+(− ln ë2

1)
ρ)

1
ρ

,√
1 − e−((− ln(1−ö2

2))
ρ
+(− ln(1−ö2

1))
ρ)

1
ρ


= N2 ⊗ N1.

(3) By Definition 14, we have

ψ1 (N1 ⊕ N2) =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)

ψ1



√
1 − e−((− ln(1−ä2

1))
ρ
+(− ln(1−ä2

2))
ρ)

1
ρ

,√
e−((− ln ë2

1)
ρ
+(− ln ë2

2)
ρ)

1
ρ

,√
e−((− ln ö2

1)
ρ
+(− ln ö2

2)
ρ)

1
ρ


=

⋃
(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)



√
1 − e−(ψ1(− ln(1−ä2

1))
ρ
+ψ1(− ln(1−ä2

2))
ρ)

1
ρ

,√
e−(ψ1(− ln ë2

1)
ρ
+ψ1(− ln ë2

2)
ρ)

1
ρ

,√
e−(ψ1(− ln ö2

1)
ρ
+ψ1(− ln ö2

2)
ρ)

1
ρ



=
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)





√
1 − e−(ψ1(− ln(1−ä2

1))
ρ)

1
ρ

,√
e−(ψ1(− ln ë2

1)
ρ)

1
ρ

,√
e−(ψ1(− ln ö2

1)
ρ)

1
ρ


⊕



√
1 − e−(ψ1(− ln(1−ä2

2))
ρ)

1
ρ

,√
e−(ψ1(− ln ë2)ρ)

1
ρ ,√

e−(ψ1(− ln ö2
2)

ρ)
1
ρ




= ψ1N1 ⊕ ψ1N2.

(4) It is obvious given (3).
(5) By Definition 14, we have
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ψ1N1 ⊕ ψ2N1 =
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)





√
1 − e−(ψ1(− ln(1−ä2

1))
ρ)

1
ρ

,√
e−(ψ1(− ln ë2

1)
ρ)

1
ρ

,√
e−(ψ1(− ln ö2

1)
ρ)

1
ρ


⊕



√
1 − e−(ψ2(− ln(1−ä2

1))
ρ)

1
ρ

,√
e−(ψ2(− ln ë2

1)
ρ)

1
ρ

,√
e−(ψ2(− ln ö2

1)
ρ)

1
ρ





=
⋃

(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)



√
1 − e−(ψ1(− ln(1−ä2

1))
ρ
+ψ2(− ln(1−ä2

1))
ρ)

1
ρ

,√
e−(ψ1(− ln ë2

1)
ρ
+ψ2(− ln ë2

1)
ρ)

1
ρ

,√
e−(ψ1(− ln ö2

1)
ρ
+ψ2(− ln ö2

1)
ρ)

1
ρ


=

⋃
(ät ,ët ,öt)∈(Ät ,Ët ,Öt)(t=1,2)



√
1 − e−(ψ1+ψ2(− ln(1−ä2

1))
ρ)

1
ρ

,√
e−(ψ1+ψ2(− ln ë2

1)
ρ)

1
ρ

,√
e−(ψ1+ψ2(− ln ö2

1)
ρ)

1
ρ


= (ψ1 + ψ2)N1.

(6) & (7) They can be proven in a similar way as (5). �

4. Aczel-Alsina geometric Agops for SHFNs

This section develops a list of innovative Agops using Aczel-Alsina norms in SHF environments.

Definition 15. Let NK =
{
ÄNK , ËNK , ÖNK

}
be a collection of SHFNs, where (K = 1, 2, ..., d) . An

SHFAWG Agop with the dimension r is a mapping P` → P with a weight vector µ = (µ1, µ1, ..., µ`)T

such that µ
J
> 0 and

∑`
J=1 µJ = 1 it is defined as

S HFAWG (N1,N2, ...,N`) =
∏̀
J=1

(
NJ

)µJ .
Theorem 2. Suppose NJ =

{
ÄNJ , ËNJ , ÖNJ

}
is a collection of SHFNs, where (J = 1, 2, ..., `) . An

SHFAWG Agop with the dimension ` is a mapping P` → P with the weight vector µ = (µ1, µ1, ..., µ`)T

such that µ
J
> 0 and

∑`
J=1 µJ = 1 it is defined as:
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S HFAWG (N1,N2, ...,N`) =
∏̀
J=1

(
NJ

)µJ

=
⋃

(
äNJ ,ëNJ ,ËNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1,2)



√
e−

(∑`

J=1 µJ

(
− ln ä2

NJ

)ρ) 1
ρ

,√
1 − e−

(∑`

J=1 µJ

(
− ln

(
1−ë2

NJ

))ρ) 1
ρ

,√
1 − e−

(∑`

J=1 µJ

(
− ln

(
1−ö2

NJ

))ρ) 1
ρ


.

Proof. The following results are obtained by applying mathematical induction to the proof of
Theorem 2:
Step-1: For ` = 2, we get

S HFAWG (N1,N2) = (N1)µ1 ⊗ (N2)µ2 .

By Definition 14, we have

(N1)µ1 =
⋃

(äN1 ,ëN1 ,öN1)∈(ÄN1 ,ËN1 ,ÖN1 )


√

e−
(
µ1

(
− ln ä2

N1

)ρ) 1
ρ

,

√
e−

(
µ1

(
− ln

(
ë2
N1

))ρ) 1
ρ

,√
1 − e−

(
µ1

(
− ln

(
1−ö2

N1

))ρ) 1
ρ


and

(N2)µ2 =
⋃

(
ä2
N2
,ëN2 ,öN2

)
∈(ÄN2 ,ËN2 ,ÖN2 )


√

e−
(
µ2

(
− ln ä2

N2

)ρ) 1
ρ

,

√
e−

(
µ2

(
− ln

(
ë2
N2

))ρ) 1
ρ

,√
1 − e−

(
µ2

(
− ln

(
1−ö2

N2

))ρ) 1
ρ


therefore

S HFAWG (N1,N2) =
⋃

(
äNJ ,ë

2
NJ

,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1,2)





√
e−

(
µ1

(
− ln ä2

N1

)ρ) 1
ρ

,√
e−

(
µ1

(
− ln

(
ë2
N1

))ρ) 1
ρ

,√
1 − e−

(
µ1

(
− ln

(
1−ö2

N1

))ρ) 1
ρ


⊗



√
e−

(
µ2

(
− ln ä2

N2

)ρ) 1
ρ

,√
e−

(
µ2

(
− ln

(
ë2
N2

))ρ) 1
ρ

,√
1 − e−

(
µ2

(
− ln

(
1−ö2

N2

))ρ) 1
ρ




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=
⋃

(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1,2)



√
e−

(
µ1

(
− ln ä2

N1

)ρ
+µ2

(
− ln ä2

N2

)ρ) 1
ρ

,√
e−

(
µ1

(
− ln ë2

N1

)ρ
+µ2

(
− ln ë2

N2

)ρ) 1
ρ

,√
1 − e−

(
µ1

(
− ln

(
1−ö2

N1

))ρ
+µ2

(
− ln

(
1−ö2

N2

))ρ) 1
ρ



=
⋃

(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1,2)



√
e−

(∑2
J=1 µJ

(
− ln ä2

NJ

)ρ) 1
ρ

,√
e−

(∑2
J=1 µJ

(
− ln ëNJ

)ρ) 1
ρ

,√
1 − e−

(∑2
J=1 µJ

(
− ln

(
1−ö2

NJ

))ρ) 1
ρ


.

Thus Theorem 2 is true for ` = 2.
Let us assume that Theorem 2 is true for ` = d; we have

S HFAWG (N1,N2, ...,Nd) =


√

e−
(∑d
J=1 µJ

(
− ln ä2

NJ

)ρ) 1
ρ

,

√
e−

(∑d
J=1 µJ

(
− ln ë2

NJ

)ρ) 1
ρ

,√
1 − e−

(∑d
J=1 µJ

(
− ln

(
1−ö2

NJ

))ρ) 1
ρ

 .
We are to prove that Theorem 2 is true for ` = d + 1.

S HFAWG (N1,N2, ...,Nd,Nd+1) =
∏̀
J=1

(
NJ

)µJ ⊗ (Nd+1)µd+1

∏̀
J=1

(
NJ

)µJ ⊗ (Nd+1)µd+1

=
⋃

(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1...d)



√
e−

(∑d
J=1 µJ

(
− ln ä2

NJ

)ρ) 1
ρ

,√
e−

(∑d
J=1 µJ

(
− ln ë2

NJ

)ρ) 1
ρ

,√
1 − e−

(∑d
J=1 µJ

(
− ln

(
1−ö2

NJ

))ρ) 1
ρ


⊗

⋃
(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )



√
e−

(
µd+1

(
− ln ä2

Nd+1

)ρ) 1
ρ

,√
e−

(
µd+1

(
− ln

(
ë2
Nd+1

))ρ) 1
ρ

,√
1 − e−

(
µd+1

(
− ln

(
1−ö2

Nd+1

))ρ) 1
ρ


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=
⋃

(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1..d)



√
e−

(∑d
J=1 µJ

(
− ln äNJ

)ρ
+µd+1(− ln äNd+1)ρ

) 1
ρ

,√
e−

(∑d
J=1 µJ

(
− ln ëNJ

)ρ
+µd+1(− ln ëNd+1)ρ

) 1
ρ

,√
1 − e−

(∑d
J=1 µJ

(
− ln

(
1−öNJ

))ρ
+µd+1(− ln(1−öNd+1))ρ

) 1
ρ


=

⋃
(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ (J=1...d+1)


√

e−
(∑d+1
J=1 µJ

(
− ln äNJ

)ρ) 1
ρ

,

√
e−

(∑d+1
J=1 µJ

(
− ln ëNJ

)ρ) 1
ρ

,√
1 − e−

(∑d+1
J=1 µJ

(
− ln

(
1−öNJ

))ρ) 1
ρ

 .
Hence, Theorem 2 is true ∀ `. �

By using the operator SHFAWG, we can clearly explain the related features.

Theorem 3. (Idempotency) Let NJ =
{
ÄNJ , ËNJ , ÖNJ

}
(J = 1, 2, ..., `) be a collection of equivalent

SHFNs, i.e., NJ = N for each (J = 1, 2, ..., `) . Then

S HFAWG (N1,N2, ...,N`) = N.

Proof. We have

S HFAWG (N1,N2, ...,N`) =
⋃

(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1..`)



√
e−

(∑`

J=1 µJ
(
− ln äNJ

)ρ) 1
ρ

,√
e−

(∑`

J=1 µJ
(
− ln ëNJ

)ρ) 1
ρ

,√
1 − e−

(∑`

J=1 µJ
(
− ln

(
1−öNJ

))ρ) 1
ρ


.

Put NJ =
{
ÄNJ , ËNJ , ÖNJ

}
= N (J = 1, 2, ..., `) ; then, we have

S HFAWG (N1,N2, ...,N`)

=
⋃

(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1..`)



√
e−

(∑`

J=1 µJ(− ln ä2
N)

ρ
) 1
ρ

,√
e−

(∑`

J=1 µJ (− ln ëN)ρ
) 1
ρ

,√
1 − e−

(∑`

J=1 µJ (− ln(1−öN))ρ
) 1
ρ


=

⋃
(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )


√

e−((− ln ä2
N)

ρ)
1
ρ

,

√
e−((− ln ëN)ρ)

1
ρ ,√

1 − e−((− ln(1−öN))ρ)
1
ρ


=

⋃
(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )

(äN, ëN, öN) = N.

Thus, S HFAWG (N1,N2, ...,N`) = N holds. �
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Theorem 4. (Boundedness) Let NJ =
{
ÄNJ , ËNJ , ÖNJ

}
(J = 1, 2, ..., `) be a collection of SHFNs.

Let N−
J

=
(
minJ

{
ÄNJ

}
,minJ

{
ËNJ

}
,maxJ

{
ÖNJ

})
and N+

J
=

(
maxJ

{
ÄNJ

}
,minJ

{
ËNJ

}
,minJ

{
ÖNJ

})
(J = 1, 2, ..., `) . Then,

N−J ≤ S HFAWG (N1,N2, ...,N`) ≤ N+
J .

Proof. We have minJ
{
ÄNJ

}
≤ ÄNJ ≤ maxJ

{
ÄNJ

}
, i.e.,

⋃
(
äNJ

)
∈(ÄNJ )(J=1..`)


√

e−
(∑`

J=1 µJ
(
− ln

(
min ÄNJ

))ρ) 1
ρ


≤

⋃
(
äNJ

)
∈(ÄNJ )(J=1..`)


√

e−
(∑`

J=1 µJ
(
− ln ÄNJ

)ρ) 1
ρ


≤

⋃
(
äNJ

)
∈(ÄNJ )(J=1..`)


√

e−
(∑`

J=1 µJ
(
− ln

(
max ÄNJ

))ρ) 1
ρ

 ;

similarly, we have

⋃
(
ëNJ

)
∈(ËNJ )(J=1..`)


√

e−
(∑`

J=1 µJ
(
− ln

(
min ËNJ

))ρ) 1
ρ


≤

⋃
(
ëNJ

)
∈(ËNJ )(J=1..`)


√

e−
(∑`

J=1 µJ
(
− ln ËNJ

)ρ) 1
ρ


≤

⋃
(
ëNJ

)
∈(ËNJ )(J=1..`)


√

e−
(∑`

J=1 µJ
(
− ln

(
min ËNJ

))ρ) 1
ρ

 .
Now, we also have

⋃
(
öNJ

)
∈(ÖNJ )(J=1..`)


√

1 − e−
(∑`

J=1 µJ
(
− ln

(
max

(
1−ÖNJ

)))ρ) 1
ρ


≤

⋃
(
öNJ

)
∈(ÖNJ )(J=1..`)

√√1 − e−
(∑`

J=1 µJ
(
− ln

(
1−ÖNJ

))ρ) 1
ρ


≤

⋃
(
öNJ

)
∈(ÖNJ )(J=1..`)


√

1 − e−
(∑`

J=1 µJ
(
− ln

(
min

(
1−ÖNJ

)))ρ) 1
ρ

 .
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Therefore,
N−J ≤ S HFAWG (N1,N2, ...,N`) ≤ N+

J .

�

Theorem 5. Let NJ =
{
ÄNJ , ËNJ , ÖNJ

}
and N∗

J
=

{
Ä∗NJ , Ë

∗
NJ
, Ö∗NJ

}
(J = 1, 2, ..., `) be two collections

of SHFNs, if NJ ≤ N∗J for (J = 1, 2, ..., `) . Then,

S HFAWG (N1,N2, ...,N`) ≤ S HFAWG
(
N∗1,N

∗
2, ...,N

∗
`

)
.

Proof. The proof is obvious. �

Definition 16. Let NJ =
{
ÄNJ , ËNJ , ÖNJ

}
be collection of SHFNs, where (J = 1, 2, ..., `) . An

SHFAOWG Agop with the dimension ` is a mapping P` → P with a weight vector µ = (µ1, µ1, ..., µ`)T

such that µ
J
> 0 and

∑`
J=1 µJ = 1 it is defined as

S HFAOWG (N1,N2, ...,N`) =
∏̀
J=1

(
Nτ(J)

)µJ ,
where (τ (1) , τ (2) , ..., τ (`)) are the permutations in such a way as Nτ(J) ≤ Nτ(J−1).

Theorem 6. Suppose NJ =
{
ÄNJ , ËNJ , ÖNJ

}
is a collection of SHFNs, where (J = 1, 2, ..., `) . An

SHFAOWG Agop with the dimension ` is a mapping P` → P with a weight vector µ = (µ1, µ1, ..., µ`)T

such that µ
J
> 0 and

∑`
J=1 µJ = 1 it is defined as:

S HFAOWG (N1,N2, ...,N`)

=
∏̀
J=1

(
Nτ(J)

)µJ

=
⋃

(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1..`)



√
e
−

(∑`

J=1 µJ

(
− ln ä2

Nτ(J)

)ρ) 1
ρ

,√
e−

(∑`

J=1 µJ
(
− ln ËNτ(J)

)ρ) 1
ρ

,√
1 − e−

(∑`

J=1 µJ
(
− ln

(
1−ÖNτ(J)

))ρ) 1
ρ


,

where (τ (1) , τ (2) , ..., τ (`)) are the permutations in such a way as Nτ(J) ≤ Nτ(J−1).

By using the operator SHFAOWG, we can clearly explain the related features.

Theorem 7. (1) (Idempotency) LetNJ =
{
ÄNJ , ËNJ , ÖNJ

}
(J = 1, 2, ..., `) be a collection of equivalent

SHFNs, i.e., NJ = N for each (J = 1, 2, ..., `) . Then

S HFAOWG (N1,N2, ...,N`) = N.

(2) (Boundedness) Let NJ =
{
ÄNJ , ËNJ , ÖNJ

}
(J = 1, 2, ..., `) be a collection of SHFNs. Let N−

J
=(

minJ
{
ÄNJ

}
,minJ

{
ËNJ

}
,maxJ

{
ÖNJ

})
and

N+
J = (max

J

{
ÄNJ

}
,min
J

{
ËNJ

}
,min
J

{
ÖNJ

}
)
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(J = 1, 2, ..., `) . Then,
N−J ≤ PHFAOWG (N1,N2, ...,N`) ≤ N+

J .

(3) LetNJ =
{
ÄNJ , ËNJ , ÖNJ

}
andN∗

J
=

{
Ä∗NJ , Ë

∗
NJ
, Ö∗NJ

}
(J = 1, 2, ..., `) be two collections of SHFNs.

If NJ ≤ N∗J for (J = 1, 2, ..., `) . Then,

S HFAOWG (N1,N2, ...,N`) ≤ S HFAOWG
(
N∗1,N

∗
2, ...,N

∗
`

)
.

Proof. Proof of this theorem is similarly done by using Theorems 3–5. �

Definition 17. Let NJ =
{
ÄNJ , ËNJ , ÖNJ

}
be a collection of SHFNs, where (J = 1, 2, ..., `) . An

SHFAHWG Agop with the dimension ` is a mapping P` → P with a weight vector µ = (µ1, µ2, ..., µ`)T

such that µ
J
> 0 and

∑`
J=1 µJ = 1 it is defined as

S HFAHWG (N1,N2, ...,N`) =
∏̀
J=1

(
N∗τ(J)

)µJ
,

where µ = (µ1, µ2, ..., µ`)T are the associated weights such that µ
J
> 0 and

∑`
J=1 µJ = 1; also, N∗τ(J) =(

N∗τ(J) = nµ
J
Nτ(J)

)
(J = 1, 2, ..., `) and (τ (1) , τ (2) , ..., τ (`)) are the permutations in such a way as

N∗τ(J) ≤ N
∗
τ(J−1).

Theorem 8. Suppose NJ =
{
ÄNJ , ËNJ , ÖNJ

}
is a collection of SHFNs, where (J = 1, 2, ..., `) . An

SHFAHWG Agop with the dimension ` is a mapping P` → P with a weight vector µ = (µ1, µ1, ..., µ`)T

such that µ
J
> 0 and

∑`
J=1 µJ = 1 it is defined as

S HFAHWG (N1,N2, ...,N`)

=
∏̀
J=1

(
N∗τ(J)

)µJ

=
⋃

(
äNJ ,ëNJ ,öNJ

)
∈(ÄNJ ,ËNJ ,ÖNJ )(J=1..`)



√
e
−

(∑`

J=1 µJ

(
− ln ä2

N∗
τ(J)

)ρ) 1
ρ

,√
e
−

(∑`

J=1 µJ

(
− ln ËN∗

τ(J)

)ρ) 1
ρ

,√
1 − e

−

(∑`

J=1 µJ

(
− ln

(
1−ÖN∗

τ(J)

))ρ) 1
ρ


,

where µ = (µ1, µ2, ..., µ`)T are the associated weights such that µ
J
> 0 and

∑`
J=1 µJ = 1; also, N∗τ(J) =(

N∗τ(J) = µ
J
Nτ(J)

)
(J = 1, 2, ..., `) and (τ (1) , τ (2) , ..., τ (`)) are the permutations in such a way as

N∗τ(J) ≤ N
∗
τ(J−1).

By using the operator SHFAHWG, we can clearly explain the related features.

Theorem 9. (1) (Idempotency) LetNJ =
{
ÄNJ , ËNJ , ÖNJ

}
(J = 1, 2, ..., `) be a collection of equivalent

SHFNs, i.e., NJ = N for each (J = 1, 2, ..., `) . Then

S HFAHWG (N1,N2, ...,N`) = N.
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(2) (Boundedness) Let NJ =
{
ÄNJ , ËNJ , ÖNJ

}
(J = 1, 2, ..., `) be a collection of SHFNs. Let N−

J
=(

minJ
{
ÄNJ

}
,minJ

{
ËNJ

}
,maxJ

{
ÖNJ

})
and

N+
J =

(
max
J

{
ÄNJ

}
,min
J

{
ËNJ

}
,min
J

{
ÖNJ

})
(J = 1, 2, ..., `) . Then,

N−J ≤ S HFAHWG (N1,N2, ...,N`) ≤ N+
J .

(3) LetNJ =
{
ÄNJ , ËNJ , ÖNJ

}
andN∗

J
=

{
Ä∗NJ , Ë

∗
NJ
, Ö∗NJ

}
(J = 1, 2, ..., `) be two collections of SHFNs,

if NJ ≤ N∗J for (J = 1, 2, ..., `) . Then,

S HFAHWG (N1,N2, ...,N`) ≤ S HFAHWG
(
N∗1,N

∗
2, ...,N

∗
`

)
.

Proof. This theorem can be prove by utilizing Theorems 3–5. �

5. Decision support algorithm

A novel MADM method has been created to deal with the complicated ambiguous data in real-world
DS issues in order to confirm the efficacy of the SHF Aczel-Alsina geometric Agop in this study.

The algorithm is described in the below steps.
Suppose that there is an arrangement of ` choices {η1, η2, ..., η`} that are suitably evaluated by a set

of m criteria that are {z1, z2, ..., zm}. A weight vector µ = (µ1, µ1, ..., µm)T is then used to specify the
usefulness of different attributes zı (ı = 1, 2, ...,m) such that µ

ı
> 0 and

∑m
ı=1 µı = 1.

Let NJ ı =
{
ÄNJ ı , ËNJ ı , ÖNJ ı

}
for ÄNJ ı , ËNJ ı , ÖNJ ı ∈ [0, 1] be the suitable evaluation of each property

for every option, where ÄN`m denotes the PMG that the alternative ηJ (J = 1, 2, . . . , `). ËN`m and ÖN`m
indicate the NMG and the NeMG, respectively. According to all of the evaluation results, we can build
the decision matrix of SHFNs: N =

(
NJ ı

)
`m.

The MADM problem was solved in this work by using the newly discovered SHF Aczel-Alsina
geometric operators, and the various stages are given for selecting the most suitable alternative:

Step-1. Establish a group of characteristics that are suitable for the evaluation issue under discussion:
An expert committee is put together to screen the features and come up with an acceptable set of
appraisal features after gathering probable appraisal properties.

DJ×ı =

η1

η2
...

η`



z1 z2 zm(
ÄN11 , ËN11 , ÖN11

) (
ÄN12 , ËN12 , ÖN12

)
...

(
ÄN1m , ËN1m , ÖN1m

)(
ÄN21 , ËN21 , ÖN21

) (
ÄN22 , ËN22 , ÖN22

)
...

(
ÄN2m , ËN2m , ÖN2m

)
...

...
. . .

...(
ÄN`1 , ËN`1 , ÖN`1

) (
ÄN`2 , ËN`2 , ÖN`2

)
...

(
ÄN`m , ËN`m , ÖN`m

)


.

Step-2. Using the following normalization, we get the normalized decision matrix:

NJ×ı =


(
ÄNJ ı , ËNJ ı , ÖNJ ı

)
i f CI(

ÖNJ ı , ËNJ ı , ÄNJ ı
)

i f CII
(5.1)
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where CI refers to “if zı (ı = 1, 2, ...,m) is a benefit criterion” and CII refers to “if zı (ı = 1, 2, ...,m)
is a cost criterion”.

Step-3. SHFWG Agops are used to accumulate the acquired expert data of DS situations.

Step-4. Utilizing newly designed SHF Aczel-Alsina geometric operators, decision support problems’
expert ambiguous data are aggregated..

Step-5(a). SHFAWG operator is used to combine the aggregated data.

Step-5(b). SHFAOWG operator is used to combine the aggregated data.

Step-5(c). SHFAHWG operator is used to combine the aggregated data.

Step-6. The score values of ηJ (J = 1, 2, . . . , `) are computed using the score function in
Definition 10.

Step-7. All options are ordered in descending order according to their score values, and the option
with the highest score value is chosen as the best.

6. Mathematical illustration

A breast cancer treatment related case study is presented in this section to verify the usefulness and
viability of the proposed methodology.
Case study: The question of choosing a treatment for breast cancer is covered in the study’s
implementation of a plan. In order to achieve this, four breast cancer treatment options, such as surgery
(η1), radiation treatment (η2), drug therapy (η3), and hormonal treatment (η4) are appraised using four
factors: The type of illness or tumor (z1), the phase of the disease (z2), the kind of of patient (z3) and
the adverse effects (z4).

The following are the alternatives:
η1 Operation: A surgical procedure or course of therapy for cancer entails the surgical removal

of a tumor and possibly some neighboring cells. Breast cancer surgery might improve both the
oncologic and efficiency of life outcomes for the patient [26]. η2 Radiotherapy: This technique
utilizes highly energetic radiation to eradicate any potential cancer cells. Breast cancer treatment must
include radiotherapy, which has been demonstrated to increase both local control and ultimate success
rates [53]. η3 Chemotherapy: Conventional chemotherapy is a crucial component of cancer treatment
plans for a range of cancer types. This course of action uses toxic drugs to kill cancer cells [43]. η4

Hormone replacement: A type of cancer therapy known as hormone therapy slows or stops the growth
of the disease. Despite its impressive effects, it is frequently used as a therapeutic adjunct and in severe
malignancies. Hormone therapy is a widely used method in the treatment of breast cancer [34].

The following are the attributes:
z1 Illness or tumor form: One of the key determinants of the technique and extent of cancer therapy

is the kind of cancer [1]. z2 Phase of illness: The cancer’s stage and where it is located in the body are
both taken into account when determining the best course of treatment [1]. z3 Patient kind: Despite the
lack of a generally acknowledged strategy for treating breast cancer at any stage, each patient’s general
health, degree of fitness and medical characteristics are unique, demanding the formulation of a tailored
treatment plan [20]. z4 Adverse effect: The life expectancy of cancer patients can be significantly
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impacted by a number of undesirable adverse effects from cancer treatments, both emotionally and
cognitively [21]. It is crucial to consider for any potential negative effects while developing a treatment
plan. Weight = µ = (0.15, 0.25, 0.35, 0.25) , ρ = 4.

Step-1. Table 1 summarizes the SHFN expert informations:

Table 1. Expert Matrix-1 of SHFNs.

z1 z2 z3 z4

η1




0.32,
0.33,
0.48







0.31,
0.37,
0.43

 ,
0.26,
0.43,
0.51








0.20,
0.27,
0.50


 ,




0.38,
0.42,
0.48




η2




0.31,
0.37,
0.43

 ,(
0.27,

0.43, 0.53

)





0.28,
0.39,
0.41







0.36,
0.49,
0.69







0.17,
0.34,
0.54




η3




0.28,
0.26,
0.39







0.25,
0.48,
0.27







0.43,
0.65,
0.62







0.19,
0.41,
0.27

 ,
0.27,
0.23,
0.35





η4




0.33,
0.34,
0.35







0.32,
0.27,
0.61







0.11,
0.13,
0.24

 ,
0.12,
0.22,
0.25








0.41,
0.65,
0.44



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Step-2. The normalized decision matrices are evaluated in Table 2:

Table 2. Normalized Expert Matrix-1 of SHFNs.

z1 z2 z3 z4

η1




0.48,
0.33,
0.32







0.43,
0.37,
0.31

 ,
0.51,
0.43,
0.26








0.50,
0.27,
0.20


 ,




0.48,
0.42,
0.38




η2




0.43,
0.37,
0.31

 ,
0.53,
0.43,
0.27








0.41,
0.39,
0.28







0.69,
0.49,
0.36







0.54,
0.34,
0.17




η3




0.39,
0.26,
0.28







0.27,
0.48,
0.25




{(
0.62,

0.65, 0.43

)}



0.27,
0.41,
0.19

 ,
0.35,
0.23,
0.27





η4




0.35,
0.34,
0.33







0.61,
0.27,
0.32







0.24,
0.13,
0.11

 ,
0.25,
0.22,
0.12








0.44,
0.65,
0.41




Step-3. Utilize the SHFAWG operator to integrate the aggregated data enclosed in Table 3:

Table 3. SHF aggregated data (SHFAWG).

η1 {(0.7466, 0.3736, 0.3339) , (0.7785, 0.3951, 0.3297)}
η2 {(0.7350, 0.4436, 0.3254) , (0.7503, 0.4475, 0.3226)}
η3 {(0.4846, 0.5896, 0.3824) , (0.5294, 0.5890, 0.3828)}
η4 {(0.4530, 0.5674, 0.3572) , (0.4729, 0.5674, 0.3572)}
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Step-5(b). Utilize the SHFAOWG operator to integrate the aggregated data enclosed in Table 4:

Table 4. SHF aggregated data (SHFAOWG).

η1 {(0.7364, 0.3572, 0.3384) , (0.7770, 0.4044, 0.3330)}
η2 {(0.7178, 0.4315, 0.3212) , (0.7487, 0.4424, 0.3138)}
η3 {(0.4846, 0.5896, 0.3824) , (0.5294, 0.5891, 0.3828)}
η4 {(0.4759, 0.5674, 0.3597) , (0.4937, 0.5675, 0.3597)}

Step-5(c). Utilize the SHFAHWG operator (under the associated weights (0.15, 0.25, 0.35, 0.25)T to
integrate the aggregated data enclosed in Table 5:

Table 5. SHF aggregated data (SHFAHWG).

η1 {(0.7364, 0.3783, 0.3384) , (0.7770, 0.3783, 0.3330)}
η2 {(0.7263, 0.4441, 0.3279) , (0.7499, 0.4504, 0.3234)}
η3 {(0.484, 0.5896, 0.3824) , (0.5294, 0.5891, 0.3828)}
η4 {(0.4759, 0.5674, 0.3597) , (0.4937, 0.5675, 0.3597)}

Step-6. According to the score function in Definition 10, the score values of ηJ (J = 1, 2, 3, 4) are
enclosed in Table 6:

Table 6. Score and ranking of SHFNs.

Score
Operators ξ (η1) ξ (η2) ξ (η3) ξ (η4) Ranking
S HFAWG 0.0464 -0.0212 -0.4649 -0.4616 η1 > η2 > η4 > η3

S HFAOWG 0.0402 -0.0212 -0.4624 -0.4423 η1 > η2 > η4 > η3

S HFAHWG 0.0427 -0.0348 -0.4652 -0.4423 η1 > η2 > η4 > η3

Step-7. With regard to the features given in the factors that affect cancer treatment, η1 (operation)
has the greatest score value among all of the recommended Aczel-Alsina operators, making it our
best option.

7. Comparison analysis

This section presents a comparison analysis of the proposed SHF Aczel-Alsina Agops based
methodology with the existing DS method developed in the literature.

Comparison with wang and Li [54]:
To determine the optimum option, wang et al. [54] presented a list of innovative PF weighted

interaction aggregation operations. The comparative results are shown in Tables 9 and 10. We utilized
the proposed method to verify and check the validity of the proposed methodology; we used the
SHFWG operator to rank the alternatives, having the attribute weight vector w = (0.2, 0.1, 0.3, 0.4)
with ρ = 3. The results are shown below.
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The collected expert data [54] are presented in Table 7:

Table 7. Expert evaluation information.

z1 z2 z3 z4

η1


{0.43,
0.53},
{0.33},
{0.06, 0.09}



{0.76, 0.89},
{0.05, 0.08},
{0.03}



{0.42},
{0.35},
{0.12, 0.18}




{0.08},
{0.75, 0.89},
{0.02}


η2



{0.53,
0.65,
0.73},

{0.10, 0.12},
{0.08}




{0.13},
{0.53, 0.64},
{0.12, 0.21}




{0.03},
{0.77, 0.82},
{0.10, 0.13}



{0.58, 0.73},
{0.15},
{0.08}



η3



{0.72,
0.86,
0.91},
{0.03},
{0.02}




{0.07},
{0.05, 0.09},
{0.05}




{0.04},
{0.65, 0.72, 0.85},
{0.05, 0.10}



{0.45, 0.68},
{0.18, 0.26},
{0.06}


η4


{0.77,
0.85},
{0.09},
{0.05}



{0.65, 0.74},
{0.10, 0.16},
{0.10}




{0.02},
{0.78, 0.89},
{0.05}




{0.08},
{0.65, 0.84},
{0.06}



Table 8. Collected expert data under SHFNs.

η1

{
0.1509, 0.1509, 0.1519,

0.1519

}
,

{
0.6757, 0.8282,
0.6757, 0.8282

}
,

{
0.09849, 0.1476,

0.100, 0.1480

}
η2


{0.0903, 0.0905, 0.09054, 0.09076, 0.09058, 0.09085} ,

{0.6737, 0.7262, 0.6776, 0.7282, 0.6737, 0.7262, 0.6776, 0.7282} ,
{0.09539, 0.1114, 0.1453, 0.1480}


η3


{0.1007, 0.1019, 0.1007, 0.1019, 0.1007, 0.1019} ,{

0.5546, 0.5548, 0.6219, 0.6220, 0.7590,
0.7590, 0.5546, 0.5548, 0.6219, 0.6220, 0.7590, 0.7590

}
,

{0.05385, 0.08307}


η4

{
0.05494, 0.05494,
0.05494, 0.05497

}
,

{
0.7021, 0.7934, 0.8107, 0.8424, 0.7021,

0.7934, 0.8107, 0.8424

}
, {0.07071}
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Comparative studies the expert data collected in [54] are enclosed in Table 9:

Table 9. Score and ranking.

Score
wang and Li [54] ξ (η1) ξ (η2) ξ (η3) ξ (η4) Ranking

PHFWG -0.6792 -0.6822 -0.5961 -0.7788 η3 > η1 > η2 > η4

Score
Proposed Method ξ (η1) ξ (η2) ξ (η3) ξ (η4) Ranking

SHFAWG -0.7240 -0.7358 -0.6123 -0.8029 η3 > η1 > η2 > η4

8. Conclusions

In the current study, we studied the features and connections of these systems while also
generalizing the Aczel-Alsina t-norm and t-conorm to SHF situations. The SHFAWG operator,
SHFAOWG operator, and SHFAHWG operator have all been added as additional Agops to deal with
scenarios when the given conflicts are in SHFNs. The interactions among these operators, along with
many alluring features and individual instances of those operators, have all been carefully examined.
In multi-attribute group decision-making (MAGDM) scenarios with SHF data, the suggested operators
were used, and a mathematical formulation was offered to show the DMP. The impact of factors on
the outcomes of decision-making has been studied. By correctly selecting the parameter, the suggested
operators can be used to gain the best option. The indicated Agops provide DMs with a newly adaptable
strategy for lowering SHF MAGDM issues as a result. To put it differently, we can quickly characterize
fuzzy data by giving it a parameter, which makes the information aggregation system more apparent
than some other existing approaches. On the contrary, existing Agops, such as those developed by
Wang and Li [54] do not make data aggregation more flexible. As a consequence, our suggested Agops
are more knowledgeable and reliable when making decisions using SHF data.

In future projects, we will look into the applications of Aczel-Alsina weighted Agops of SHFNs in
more domains like industrial automation, pattern recognition, and data analysis.
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