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1. Introduction

A topological space is called core compact if its topology is a continuous lattice. There is a deep
relationship between core compactness and function spaces of topological spaces [2, 4, 12]. For
example, a famous characterization is that a T0 space is core compact if and only if it is exponential
in the category of T0 spaces [7, 9]. A poset P endowed with the Scott topology σ(P) is called a Scott
space, denoted by ΣP. When all topological spaces are restricted to the Scott spaces, core compactness
can be characterized simply by productions as follows: For a poset P, σ(P) is a continuous lattice if
and only if for any poset Q one has Σ(P × Q) = Σ(P) × Σ(Q) [7], which is equivalent to σ(Γ(P)) being
a continuous lattice with σ(Γ(P)) = υ(Γ(P)) [3, 19, 20], where Γ(P) is the lattice of all Scott closed
subsets of P, and υ(Γ(P)) is the upper topology of Γ(P). These results show that the continuous Scott
topologies of posets are a class of special distributively continuous lattices. In [3], it was guessed that
these properties, like σ(Γ(P)) = υ(Γ(P)), seem to hold only for the core compact Scott topology. Is
there another class of T0 space such that the continuous topology has the same features of the Scott
spaces?

In this paper, we will investigate core compactness of posets endowed with special topologies.
Particularly, we will show that these features for core compact Scott spaces can be extended to directed
spaces and hence give a positive answer to the question. Here, a directed space [25] is a special T0
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space, which is a generalization of the Scott spaces. The idea is that the priori is a T0 space and
its convergent directed subsets relative to the specialization order rather than a poset and its existing
directed suprema. Directed spaces are natural topological extensions of directed complete partial orders
(dcpos) in domain theory. Several results obtained in this paper are closely related to a long-standing
open problem: Which distributive continuous lattice’s spectrum is exactly a sober locally compact
Scott space (see [21, Problem 528])?

2. Preliminaries

We assume some basic knowledge of domain theory and topology, as in [1, 7].
Let P be a poset. We define υ(P) and A(P) to be the upper topology and the Alexandroff topology

on P, respectively. A subset U of P is called Scott open if U is an upper set, and for any directed subset
D ⊆ P with sup D ∈ U, there exists some d ∈ D such that d ∈ U. All Scott open subsets of P form a
topology called the Scott topology, denoted by σ(P).

Topological spaces will always be supposed to be T0. For a topological space X, its topology is
denoted by O(X) or τ. The partial order v defined on X by x v y⇔ x ∈ {y} is called the specialization
order, where {y} is the closure of {y}. From now on, all order-theoretical statements about T0 spaces,
such as upper sets, lower sets, directed sets, and so on, always refer to the specialization order “v”.

For any two topological spaces X,Y , we define YX or TOP(X,Y), the set of all continuous maps
from X to Y , endowed with the pointwise order. Let H be a Scott open subset of O(X) and V be an
open subset of Y . Set N(H ← V) = { f ∈ TOP(X,Y) : f −1(V) ∈ H}. As H ranges over σ(O(X)), and V
ranges over O(Y), the sets N(H ← V) form a subbasis for a topology on TOP(X,Y), called the Isbell
topology. Define [X → Y]p and [X → Y]I to be the topological space equipped with the topology of
pointwise convergence and the Isbell topology on YX, respectively.

We now introduce the notion of a directed space.
Let (X,O(X)) be a T0 space. Every directed subset D ⊆ X can be regarded as a monotone net (d)d∈D.

Set DS (X) = {D ⊆ X : D is directed} to be the family of all directed subsets of X. For an x ∈ X, we
define D → x to mean that x is a limit of D, i.e., D converges to x with respect to the topology on X.
Then, the following result is obvious.

Lemma 2.1. Let X be a T0 space. For any (D, x) ∈ DS (X) × X, D → x if and only if D ∩ U , ∅ for
any open neighborhood of x.

Set DLim(X) = {(D, x) ∈ DS (X)× X : D→ x} to be the set of all pairs of directed subsets and their
limits in X. Then, ({y}, x) ∈ DLim(X) iff x v y for all x, y ∈ X.

Definition 2.2. Let X be a T0 space. A subset U ⊆ X is called directed-open if for all (D, x) ∈ DLim(X),
x ∈ U implies D ∩ U , ∅.

Obviously, every open set of X is directed-open. Set d(O(X)) = {U ⊆ X : U is directed-open}, and
then O(X) ⊆ d(O(X)).

Theorem 2.3. [25] Let X be a T0 topological space. Then,

(1) For all U ∈ d(O(X)), U =↑U.
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(2) X equipped with d(O(X)) is a T0 topological space such that vd=v, where vd is the specialization
order relative to d(O(X)).

(3) For a directed subset D of X, D → x iff D →d x for all x ∈ X, where D →d x means that D
converges to x with respect to the topology d(O(X)).

(4) d(d(O(X)) = d(O(X)).

Definition 2.4. [25] A topological space X is said to be a directed space if it is T0 and every directed-
open set is open; equivalently, d(O(X)) = O(X).

One can see that the idea to define a directed space is similar to define a sequential space and
the Scott topology on a poset. In T0 topological spaces, the notion of a directed space is equivalent
to a monotone determined space defined by Erné [5]. Given any space X, we denote DX to be the
topological space (X, d(O(X))).

Theorem 2.5. [25] Let X be a T0 space. We have the following.

(1) DX is a directed space.
(2) The following three conditions are equivalent to each other:

(i) X is a directed space.
(ii) For all U ⊆ X, U is open iff for any (D, x) ∈ DLim(X), x ∈ U implies U ∩ D , ∅.

(iii) For all A ⊆ X, A is closed iff for any directed subset D ⊆ A, D → x implies x ∈ A for all
x ∈ X.

Directed spaces include many important structures in domain theory. Let X be a topological space.
X is called a c-space if for any x ∈ X and any open subset U of X with x ∈ U, there exists some y ∈ X
such that x ∈ (↑ y)◦ ⊆ (↑ y) ⊆ U. X is called a locally hypercompact space if for any x ∈ X and any
open subset U of X with x ∈ U, there exists a finite subset F of X such that x ∈ (↑F)◦ ⊆ (↑F) ⊆ U.

Example 2.6.

(1) Every poset endowed with the Scott topology is a directed space.
(2) ([5]) Every poset endowed with the weak Scott topology is a directed space.
(3) Every c-space is a directed space. In particular, any poset endowed with the Alexandroff topology

is a directed space.
(4) ([5, 6]) Every locally hypercompact space is a directed space.

We define DTop to be the category of all nonempty directed spaces with continuous maps as
morphisms. It is easy to verify that if a directed space is T1, then it must be a discrete space [25].

Theorem 2.7. [18, 25] DTop is Cartesian closed. Let X,Y be directed spaces.

(1) The categorical product X ⊗ Y of X and Y is homeomorphic toD(X × Y).
(2) The exponential object [X → Y] is homeomorphic toD([X → Y]p).

Lemma 2.8. Given any two directed spaces X,Y , a subset U of X⊗Y is open iff the following conditions
hold:

(1) For any directed subsets (xi)I with (xi)I → x in X and any (x, y) ∈ U, we have ((xi, y))I ∩ U , ∅;
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(2) for any directed subsets (yi)I with (yi)I → y in Y and any (x, y) ∈ U, we have ((x, yi))I ∩ U , ∅.

Proof. Assume that U is open in X ⊗ Y , and (x, y) ∈ U. For any directed set (xi)I → x in X and any
y ∈ Y , ((xi, y))I is a directed subset of X ⊗ Y , and ((xi, y))I → (x, y) in X × Y . By Theorem 2.3 (3),
((xi, y))I → (x, y) in X ⊗ Y . Thus, ((xi, y))I ∩ U , ∅. It is the same for (yi)I .

Conversely, assume that (1) and (2) are satisfied. We show that U is open in X ⊗ Y . It is easily seen
that U is an upper set relative to the specialization order of X × Y . Let D = ((xi, yi))I be a directed
subset of X × Y and converge to (x, y) ∈ U in X × Y . We have that (xi)I → x in X, and (yi)I → y in Y ,
respectively. Thus, ((xi, y))I → (x, y) in X × Y , and then there exists some i0 ∈ I such that (xi0 , y) ∈ U.
By ((xi0 , yi))I → (xi0 , y), there exists some i1 ∈ I such that (xi0 , yi1) ∈ U. Let i0, i1 ≤ i2, and then
(xi2 , yi2) ∈ U. �

3. Core compactness of directed spaces

Core compactness can be viewed as a weaker continuity property than quasicontinuity,
where quasicontinuous spaces are exactly the locally hypercompact spaces [6, 26]. Although all
quasicontinuous spaces are directed spaces, not all core compact spaces are directed spaces. All
nontrivial compact T2 spaces are the examples. N>, the discrete natural numbers adding a top element,
endowed with the upper topology, is a locally compact sober space, which is neither a directed space
nor a T1 space. In [15], Lawson gave some equivalent conditions for a T0 topological space X to
be quasicontinuous. One of the key equivalent conditions is that for any T0 topological space Y ,
X × Y = X

⊗
Y , where X

⊗
Y is the tensor product of X and Y . In [7], some equivalent conditions

for a T0 topological space to be core compact were given. Recall that ΣP means a poset endowed with
the Scott topology σ(P), called a Scott space. In particular, it was proved that for a poset P, ΣP is core
compact iff for any dcpo Q, Σ(P × Q) = ΣP × ΣQ.

In this section, we investigate the core compactness of a directed space. We show that for any two
directed spaces X and Y , their tensor product X

⊗
Y is the same as their categorical product X ⊗ Y

in DTop. Similar to Scott spaces, a directed space is core compact iff for any directed spaces Y ,
X × Y = X ⊗ Y . Finally, we give more equivalent conditions for a directed space to be core compact.

Definition 3.1. [14] For any two topological spaces X,Y , the tensor product X
⊗

Y of X and Y has the
same carrier set of X × Y . A set W is open in X

⊗
Y if for all (x, y) ∈ X × Y , the slices Wx = {y ∈ Y :

(x, y) ∈ W} and Wy = {x ∈ X : (x, y) ∈ W} are open in Y and X, respectively.

Given any two topological spaces X,Y , a map from a topological space (X × Y, τ) to a topological
space Z is called separately continuous if it is continuous at each argument, i.e., for any (x0, y0) ∈ X×Y ,
the maps fx0 : Y → Z and f y0 : X → Z are continuous, where fx0(y) = f (x0, y), f y0(x) = f (x, y0). The
topology of the tensor product is also called the topology of separate continuity [15], which is the weak
topology determined by all separately continuous functions from the product. A map from X

⊗
Y is

continuous iff it is separately continuous [14].

Lemma 3.2. For any two directed spaces X and Y , X
⊗

Y = X ⊗ Y .

Proof. Assume that W is open in X ⊗ Y . Given any (x, y) ∈ W, we show that the slice Wy is open in X.
For any directed subset (xi)I of X with (xi)I → x ∈ Wy in X, since ((xi, y))I → (x, y) in X ⊗ Y , ((xi, y))I
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is finally in W. It follows that (xi)I is finally in Wy. So, Wy is open in X. Similarly, Wx is open in Y .
Therefore, W is open in X

⊗
Y .

Conversely, assume that W is open in X
⊗

Y . Given any directed subset (xi)I → x in X, then for
D = ((xi, y))I we have D → (x, y) ∈ W in X × Y . Since Wy is open in X, and X is a directed space,
there exists some i0 ∈ I such that xi0 ∈ Wy. Then, (xi0 , y) ∈ W ∩ D. Similarly, for any directed subsets
((x, yi))I → (x, y) ∈ W, there exists some yi such that (x, yi) ∈ W ∩D. Therefore, W is open in X ⊗ Y by
Lemma 2.8. �

Corollary 3.3. Let X,Y,Z be directed spaces. A map f : X ⊗ Y → Z is continuous iff it is separately
continuous.

We recall the following condition for a T0 topological space to be core compact.

Theorem 3.4. [7] Let X be a T0 space. Then, the following statements are equivalent.

(1) O(X) is a continuous lattice.
(2) The set {(U, x) ∈ O(X) × X : x ∈ U} is open in ΣO(X) × X.

Theorem 3.5. Let X be a directed space. Then, the following conditions are equivalent.

(1) X is core compact.
(2) X ⊗ Y = X × Y for any directed space Y .
(3) ΣO(X) × X = ΣO(X) ⊗ X.

Proof. (3) ⇒ (1). Assume that ΣO(X) × X = ΣO(X) ⊗ X. ΣO(X) is a directed space. To show that X
is core compact, we need only to show that E = {(U, x) ∈ O(X) × X : x ∈ U} is open in ΣO(X) × X by
Lemma 3.4. Then, it is equivalent to showing that E is open in ΣO(X) ⊗ X. Assume that a directed set
((Ui, xi))i∈I converges to (U, x) ∈ E in ΣO(X) × X. Then, (xi)I → x, (Ui)I → U. Therefore, there exists
some i0 ∈ I such that xi0 ∈ U and U ⊆

⋃
i∈I Ui. Then, ∃i1 ∈ I such that xi0 ∈ Ui1 . Letting i0, i1 ≤ i2, we

have (Ui2 , xi2) ∈ E.
(1) ⇒ (2). Suppose that X is core compact. We show that X ⊗ Y = X × Y for any directed space

Y . Since X ⊗ Y is finer than X × Y , we need only to show that every open subset U of X ⊗ Y is open
in X × Y . Given (x0, y0) ∈ U, let V = {x ∈ X : (x, y0) ∈ U}. By Lemma 3.2, V is an open subset of X.
Since X is core compact, there exists a family of open subsets {Vn : n ∈ N} such that

x0 ∈ V0 � · · · � Vn+1 � Vn � · · · � V2 � V1 � V.

Let W =
⋃

1≤n{y ∈ Y : Vn × {y} ⊆ U}. Obviously, y0 ∈ W. Since V0 ⊆ Vn for any n ≥ 1,
then V0 × W ⊆ U. We need only to show that W is an open subset of Y . Given any directed subset
D → y ∈ W in Y , there exists some n such that Vn × {y} ⊆ U. For any x ∈ Vn, ((x, d))d∈D → (x, y) ∈ U
in X ⊗ Y . Thus, there is some dx ∈ D such that (x, dx) ∈ U. Then, there exists an open neighborhood
Vx of x such that Vx × {dx} ⊆ U. Since Vn+1 � Vn ⊆

⋃
x∈Vn

Vx, we have that Vn+1 ⊆
⋃n

i=1 Vxi for some
finite subset B = {x1, · · · , xn} of Vn. Since B is finite, there exists some d0 ∈ D such that dxi ≤ d0. Then,
Vn+1 ⊆ {x ∈ X : (x, d0) ∈ U}, and thus Vn+1 × {d0} ⊆ U, i.e., d0 ∈ W. Therefore, W is open in Y . Then,
(x0, y0) ∈ V0 ×W ⊆ U, i.e., U is open in X × Y .

(2)⇒ (3). It is obvious. �
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Let X,Y be two topological spaces. It is easy to verify that any open subset of the topological
product of X and Y is open in the tensor product. By Lemma 3.2 and Theorem 3.5, we can see that
for directed spaces X,Y , the tensor product X

⊗
Y is equal to the topological product if either X or

Y is core compact. Conversely, if X is not core compact, then there exists some directed space Y
such that X

⊗
Y , X × Y . There exist directed spaces that are not core compact: for example, the

famous Johnstone space [13], which we will investigate more detailedly in Section 4. Therefore, the
tensor product X

⊗
Y of topological spaces X,Y is strictly finer than the topological product X × Y

in general. By the definition of directed topology, it is easy to check that D(X × Y) = D(DX × DY).
Therefore,D(X ×Y) = DX

⊗
DY , which is finer than X

⊗
Y . Denote by N> the flat domain, i.e., the

set of all natural numbers adding a top element >, and x ≤ y in N> iff x = y or y = >. Then, consider
topological space Z = (N>, υ(N>)). It is easily seen that DZ = (N>, A(N>)). Hence, {(>,>)} is an
open subset ofD(Z × Z). However, {(>,>)} is not open in Z

⊗
Z. Thus, the tensor product X

⊗
Y is

strictly coarser thanD(X × Y) in general.

Now, we give some more equivalent conditions for a directed space to be core compact. We define
Σ2 to be the Sierpinski space, i.e., the set {0, 1} endowed with the topology {∅, {1}, {0, 1}}.

Lemma 3.6. [15] The topology of pointwise convergence on [X → Σ2]p is the upper topology, which
corresponds to the upper topology on O(X).

Proposition 3.7. [7] If X is a space such that O(X) is a continuous lattice, and Y is an injective space,
then [X → Y]I is injective. In particular, the Isbell topology on TOP(X,Y) is the Scott topology.

Theorem 3.8. Let X be a directed space. The following conditions are equivalent.

(1) [X → Y] is injective for all injective T0 spaces Y .
(2) [X → Σ2] is injective.
(3) O(X) is continuous.
(4) {(U, x) : x ∈ U} is open in ΣO(X) × X.
(5) The evaluation map ev : [X → Σ2] × X → Σ2 is continuous.
(6) For all directed spaces Y , X

⊗
Y = X ⊗ Y = X × Y .

(7) For all directed spaces Y,Z, if a map f : X × Y → Z is separately continuous, then it is jointly
continuous.

(8) For any directed space Y , the evaluation map [X → Y] × X → Y is continuous.
(9) The natural map [Z × X → Y]→ [Z → [X → Y]] is onto (and a homeomorphism) for all directed

spaces Y and Z.

Proof. (1)⇒ (2). It is obvious.
(2) ⇔ (3). Since [X → Σ2] = D([X → Σ2]p) = ΣO(X), and an injective space is a continuous

lattice endowed with the Scott topology, O(X) is continuous iff [X → Σ2] is injective.
(3)⇒ (1). Assume that Y is an injective space. By Proposition 3.7, [X → Y]I = Σ(TOP(X,Y)) is an

injective space. Thus, TOP(X,Y) is a continuous lattice. Since the topology of pointwise convergence
is coarser than the Isbell topology, [X → Y]p is coarser than Σ(TOP(X,Y)), and then [X → Y] =

D([X → Y]p) = Σ(TOP(X,Y)) = [X → Y]I .
(3)⇔ (4). By Theorem 3.4.
(4)⇔ (5). It is a direct conclusion by the fact that [X → Σ2] = ΣO(X).
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(3)⇔ (6). By Theorem 3.5 and Lemma 3.2.
(6) ⇒ (7). That f is separately continuous is equivalent to f being continuous from X

⊗
Y to Z.

Thus f is jointly continuous.
(7)⇒ (6). Given any directed space Y , let Z = X ⊗ Y . Then, Z is also a directed space. The identity

map id : X × Y → X ⊗ Y is separately continuous since X ⊗ Y = X
⊗

Y . Thus, id : X × Y → X ⊗ Y is
continuous. Then, X × Y = X ⊗ Y .

(7) ⇒ (8) ⇒ (5). Since ev : [X → Y] ⊗ X → Y is continuous, i.e., ev : [X → Y] × X → Y is
separately continuous, ev is continuous from [X → Y] × X. (8)⇒ (5) is obvious.

(8) ⇒ (9). Since the natural map [Z ⊗ X → Y] → [Z → [X → Y]] is a homeomorphism for all
directed spaces Y and Z (see [18, 25]), we need only to show (6). This has been proved.

(9) ⇒ (8). Let Z = [X → Y]. Then, the inverse of identity map id : [[X → Y] → [X → Y]] is
ev : [[X → Y] × X → Y]. �

4. Core compactness vs the lattice of closed sets

It is well known that the spectrum with the hull-kernel topology of a completely distributive lattice
(resp., a distributive hypercontinuous lattice) is exactly a continuous (resp., quasicontinuous) dcpo
endowed with the Scott topology [8, 10, 16]. In this section, some conclusions for Scott spaces are
extended to directed spaces. These conclusions are closely related to the long-standing open problem
of which distributive continuous lattice’s spectrum is exactly a sober locally compact Scott space (see
[21, Problem 528]).

Given any poset P, υ(Γ(P)) = σ(Γ(P)) is a necessary condition for ΣP to be core compact [3].
Deonte by C(X) the lattice of closed subsets of a topological space X. We show that for any directed
space X, X is core-compact iff (C(X), σ(C(X))) is sober and locally compact with σ(C(X)) = υ(C(X)).

Given a topological space X, we define
n∏

X to be the topological product of n copies of X. For any

n ∈ N, define a map sn :
n∏

X → Σ(C(X)) as follows: ∀(x1, x2, . . . , xn) ∈
n∏

X,

sn(x1, x2, . . . , xn) = ↓{x1, x2, . . . , xn}.

Proposition 4.1. For a topological space X, σ(C(X)) = υ(C(X)) holds iff sn is continuous for all n ∈ N.

Proof. Assume that σ(C(X)) = υ(C(X)). Given any F ∈ C(X),

s−1
n (↓C(X)F) = {{x1, x2, . . . , xn} ∈

n∏
X : {x1, x2, . . . , xn} ⊆ F} =

n∏
F

is a closed subset of
n∏

X. Thus, sn :
n∏

X → (C(X), υ(C(X))) is continuous. Then, sn :
n∏

X → Σ(C(X))
is continuous.

For the converse, assume that sn is continuous for all n ∈ N. Let U be an open subset of Σ(C(X)),
and A ∈ U. Assume A , ∅. Note that since A =

⋃
{↓F : F ⊆ f A}, and {↓ F : F ⊆ f A} is a directed

family in C(X), there exists a non-empty finite subset F of A such that ↓F ∈ U. Let F = {x1, x2, . . . , xn},
and then sn(x1, x2, . . . , xn) =↓F ∈ U. It follows that (x1, x2, . . . , xn) ∈ s−1

n (U). By the continuity of sn,

there exists a family of open subsets Uk(1 ≤ k ≤ n) such that U1 × U2 × · · · × Un is open in
n∏

X, and

(x1, x2, . . . , xn) ∈ U1 × U2 × · · · × Un ⊆ s−1
n (U).
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Since xk ∈ A for 1 ≤ k ≤ n, we have A ∈ 3Uk = {B ∈ C(X) : B ∩ Uk , ∅}. It follows that

A ∈
n⋂

k=1
3Uk ∈ υ(C(X)). For any B ∈

n⋂
k=1

3Uk, there exists yk ∈ B ∩ Uk for 1 ≤ k ≤ n. Since

(y1, y2, . . . , yn) ∈ s−1
n (U), we have

n⋃
k=1
↓ yk ∈ U. It follows that B ∈ U, i.e., A ∈

n⋂
k=1

3Uk ⊆ U. Thus,

σ(C(X)) = υ(C(X)). �

Lemma 4.2. [8, 22] Let L be a complete lattice. L is a quasicontinuous lattice iff ω(L) is a continuous
lattice.

Proposition 4.3. [3] Let L be a continuous lattice. If L satisfies the condition that υ(Lop) = σ(Lop),
then (Lop, σ(Lop)) is a sober and locally compact space.

Proposition 4.4. Let X be a directed space. If X is core compact, then σ(C(X)) = v(C(X)). Moreover,
(C(X), σ(C(X))) is sober and locally compact.

Proof. Let X be a core compact directed space. Then, for every n ∈ N, D(
n∏

X) =
n∏

X by Theorem

3.5. Thus, sn is continuous from
n∏

X to Σ(C(X)) iff it is continuous fromD(
n∏

X) to Σ(C(X)).

We show that sn : D(
n∏

X) → Σ(C(X)) is continuous, i.e., sn preserves D → x for every (D, x) ∈

DLim(
n∏

X). Let {(x1i, x2i, . . . , xni) : i ∈ I} be a directed subset of
n∏

X converging to (x1, x2, . . . , xn)

in
n∏

X. Then, for each 1 ≤ k ≤ n, {(xki) : i ∈ I} converges to xk by the definition of the topological
product. We have

sn((x1, x2, . . . , xn)) =

n⋃
k=1

↓ xk ⊆

n⋃
k=1

⋃
i∈I

↓ xki =
⋃
i∈I

n⋃
k=1

↓ xki =
∨
i∈I

sn(x1i, x2i, . . . , xni).

Thus, sn is a continuous map fromD(
n∏

X) into Σ(C(X)).
By Proposition 4.1, we have σ(C(X)) = v(C(X)). Letting L = O(X), L is a continuous lattice, and

C(X) = Lop. (C(X), σ(C(X))) is sober and locally compact by Proposition 4.3. �

In [3], an adjunction between σ(P) and σ(Γ(P)) serves as a useful tool in studying the relation
between P and Γ(P). It can be extended to directed spaces as well. Given two posets P,Q, P is called a
retract of Q if there is a pair of Scott continuous maps f : P→ Q and g : Q→ P such that g ◦ f = 1P.

Definition 4.5. Given a directed space X, we define a map η : X → ΣC(X) and a map 3 : O(X) →
σ(C(X)) as follows: ∀x ∈ X, ∀U ∈ O(X),

η(x) =↓ x, 3(U) = {A ∈ C(X) : A ∩ U , ∅}.

Define η−1 : σ(C(X))→ O(X) as η−1(U) = {x ∈ X : ↓ x ∈ U}.

Then, we have the following result.

Proposition 4.6. For a directed space X, both η−1 and 3 preserve arbitrary sups. Moreover, 3 ◦ η−1 ≤

1σ(C(X)), and η−1 ◦3 = 1O(X). Thus, (η−1, �) forms a pair of adjunction. O(X) is a retract of σ(C(X)).
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Proof. Let {Ui : i ∈ I} be any subset of σ(C(X)). Then, 3(
⋃

i∈I Ui) = {A ∈ C(X) : A ∩
⋃

i∈I Ui ,

∅} = {A ∈ C(X) : ∃i ∈ I, A ∩ Ui , ∅} =
∨

i∈I 3(Ui). η is the special case of sn for n = 1. Thus, it
is continuous. Then, η−1 preserves arbitrary sups. Given any U ∈ O(X), x ∈ η−1(3(U)) ⇔ η(x) ∈
3(U) ⇔ ↓ x ∩ U , ∅ ⇔ x ∈ U; hence, η−1 ◦ 3 = 1O(X). For any U ∈ σ(C(X)), A ∈ 3 ◦ η−1(U) ⇔
A ∩ η−1(U) , ∅ ⇒ A ∈ U, i.e., 3 ◦ η−1 ≤ 1σ(C(X)). �

Lemma 4.7. [1] A retract of a continuous domain is continuous.

Theorem 4.8. Let X be a directed space. Then, X is core-compact iff (C(X), σ(C(X))) is core compact
iff (C(X), σ(C(X))) is sober and locally compact with σ(C(X)) = υ(C(X)).

Proof. Suppose that X is core compact. By Proposition 4.4, (C(X), σ(C(X))) is sober and locally
compact with σ(C(X)) = υ(C(X)). Conversely, suppose that (C(X), σ(C(X))) is core compact, i.e.,
σ(C(X)) is continuous. By Proposition 4.6 and Lemma 4.7, O(X) is continuous, i.e., X is core compact.

�

In [3], the example Y = {0} ∪ { 1n : n ∈ N+} of the real line R, endowed with the subspace topology,
is a core compact space, but (C(Y), σ(C(Y))) is not core compact. Given any space X, considering
η′ : X → υ(C(X)), η′(x) = ↓ x, η is continuous. (η′−1, �) forms an adjunction between O(X) and
υ(C(X)), and O(X) is a retract of υ(C(X)). Thus, υ(C(X)) is core compact iff X is core compact by
Lemma 4.2 and Lemma 4.7. We have the following question.

Problem 4.9. Let X be a T0 space and ΣC(X) be core compact. Must X be core compact? Equivalently,
must υ(C(X)) = σ(C(X))?

The adjunction (η−1,3) seems only to hold for directed spaces. A natural question that arises is
whether a topological space X that makes the map η in Definition 4.5 continuous is a directed space?
When L is a complete lattice endowed with a topology coarser than σ(L), the answer is positive.
However, for other cases, we still do not know the answer.

Lemma 4.10. Any retract of a directed space is a directed space.

Proof. Let X be a topological space and Y be a directed space. Suppose that i : X → Y and r : Y → X
are continuous maps, and r ◦ i = idX. We need only to check that any directed open subset U of X is
open in X. Noticing that U = (r ◦ i)−1(U) = i−1(r−1(U)), we need only to show that r−1(U) is open in
Y . Given any directed subset D of Y and D → y ∈ r−1(U), r(D) → r(y) ∈ U. There exists some d ∈ D
such that r(d) ∈ U, i.e., there exists some d ∈ r−1(U). Thus, r−1(U) is open in Y . �

Proposition 4.11. Let L be a complete lattice, and X = (L, τ) with τ ⊆ σ(L). If η : X → Σ(C(X)) is
continuous, then X is a Scott space.

Proof. Since L is a complete lattice, we have ↓ (inf A) =
⋂

xi∈A ↓ xi, that is, η : L → C(X) preserves
all infs. Then, there exists a right adjoint d : C(X) → L such that d(F) = inf η−1(↑ C(X)F) = sup F.
Thus, (η, sup) forms a pair of adjunction, and sup : C(X) → L preserves all sups. Then, the map
sup : Σ(C(X))→ X is continuous. It is easy to check that sup ◦η = idX. Thus, X is a retract of Σ(C(X))
and a directed space by Lemma 4.10. Then, X is a Scott space since the Scott topology is the coarsest
topology on L such that it is a directed space. �

AIMS Mathematics Volume 8, Issue 2, 4862–4874.



4871

By Theorem 4.8, if the spectrum space of a distributive continuous lattice L is a directed space, then
σ(Lop) = υ(Lop) must hold. Particularly, the reverse holds when L is algebraic [3, 5]. So, we emphasize
the following open question:

Problem 4.12. Is the hull-kernel topology of the spectrum SpecL equal to the Scott topology when L
is a distributive continuous lattice with σ(Lop) = υ(Lop)?

Equivalently, let X be a sober and core compact space with υ(C(X)) = σ(C(X)). Is X a directed
space?

Another related problem is the following:

Problem 4.13. Is the soberification of a core compact directed space a directed space (Scott space)?

Obviously, so Problem 4.13 must be if Problem 4.12 is affirmative. There exists a non-continuous
spatial complete lattice L with σ(Lop) = υ(Lop), but its spectrum is not a Scott space.

Example 4.14. Let J be the classical non-sober dcpo given by Johnstone [13]. Define J = N×(N∪{ω}).
Given any two element (m1, n1), (m2, n2) of J, define (m1, n1) ≤ (m2, n2) iff one of the following two
conditions holds: (i) m1 = m2; n1 ≤ n2 in N or n2 = ω. (ii) n2 = ω, n1 ≤ m2.

It satisfies that σ(Γ(J)) = υ(Γ(J)). Set L = σ(J). The spectrum of L is created by adding a top
element to J, i.e., SpecL = J ∪ {>}, which is not sober with its Scott topology. Hence, the hull-kernel
topology of SpecL is not equal to the Scott topology. This is also an example that the soberification of
a directed space is not a directed space.

(1) σ(Γ(J)) = v(Γ(J)). Given any closed subset A of Σ(Γ(J)),
⋃
A is a lower subset of J. We show

that
⋃
A is closed in ΣJ. Given any directed subset D in

⋃
A, either D contains a largest element x of

D or is cofinal with one chain {m} × N of J and has a maximal element (m, ω) of J as the supremum.
For the first case, sup D = x ∈

⋃
A; for the second case, since A is a Scott closed subset of Γ(J),

{↓d : d ∈ D} ⊆ A. Then, ↓ (m, ω) must be in A, and (m, ω) ∈
⋃
A. Thus,

⋃
A is Scott closed. Then,

let A = η−1(A) = {x ∈ J : ↓ x ∈ A} =
⋃
A. A is closed in Σ(J). If A contains infinite maximal points

of J, then for each (m, ω) ∈ A, let Bm = N × {1, 2, . . . ,m}. Then, B = {Bm : (m, ω) ∈ A} ⊆ A forms a
directed subset of Γ(J), and

∨
B =
⋃
B = J. Thus, J ∈ A,A = Γ(J).

Now, we consider that A contains only finite maximal points of J. It is easy to see that the topology
on A inherent from ΣJ is equal to the Scott topology. Then, given any open subset U of ΣA and x ∈ U,
there must be a compact open subset K such that x ∈ K ⊆ U. We need only to let K = ↑ x ∪ ↑
{x1, . . . , xm} in A, where xi(1 ≤ i ≤ m) is a picked element that is lower than each maximal element
(ni, ω) ∈ ↑x∩U ∩ A. Then, K is compact and open. So, (A, σ(A)) is a locally compact space and hence
a core compact space. By Proposition 4.4, υ(Γ(A)) = σ(Γ(A)). Since A is a closed subset of Σ(Γ(J)),
A is closed in Σ(Γ(A)) and then closed in (Γ(A), υ(Γ(A)). Thus,A can be considered as an intersection
of a family of finitely generated lower sets in Γ(A) and then also an intersection of a family of finitely
generated lower sets in Γ(J). Thus, σ(Γ(J)) = v(Γ(J)).

(2) SpecL = J ∪ {>}. It is easy to see that a closed subset of ΣJ either contains finite maximal
elements, or is equal to the whole space. For the first case, it is not irreducible. For the second case,
it is irreducible, since any closed subset that contains infinite maximal points of J must be equal to
J. Thus, the only non-trivial irreducible closed subset of ΣJ is J. Then, SpecL is order isomorphic to
J ∪ {>}.
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(3) The hull-kernel topology of SpecL is not equal to the Scott topology. By definition, a nonempty
set U is an open set of the hull-kernel topology iff U = V ∪ {>}, where V is a non-empty open set of
ΣJ. There is no directed subset of J in SpecL whose supremum is >. Thus, {>} is Scott open in SpecL.
So, the two topologies are not equal.

Theorem 4.15. [3, 5] Let L be a continuous lattice. Consider the following conditions:

(1) σ(L) = υ(L),
(2) σ(Lop) = υ(Lop),
(3) every upper set closed in the dual Scott topology σ(Lop) is compact in the Scott σ(L), and
(4) the hull-kernel topology of the spectrum SpecL is equal to its Scott topology.

Then, (1)⇒ (2)⇔ (3). When L is distributive, one has (4)⇒ (2). Additionally, if L is distributive and
algebraic, then (1)⇔ (2)⇔ (3)⇔ (4).

In Theorem 4.15, condition (1) is equivalent to L being hypercontinuous. J. Lawson gave an
important example of a meet-continuous non-continuous lattice W such that the Scott topology σ(W)
is continuous (see [7, Theorem VI-4.5]). Let L = σ(W). Then, σ(Lop) = υ(Lop). However, since W is
not quasicontinuous, it follows that σ(L) , υ(L). Thus, for general continuous lattices, the condition
(1) is strictly stronger than condition (2).

A complete lattice L is said to be lean if condition (3) of Theorem 4.15 holds [11]. In the end, we
give an equivalent condition for σ(Lop) = υ(Lop).

Lemma 4.16. [23] Let L be a complete lattice, F ⊆ L. F is closed in (L, σ(L)) iff it is compact saturated
in (Lop, υ(Lop)).

Lemma 4.17. [3, 24] Let L be a complete lattice. Then, (L, υ(L)) is sober, and (L, σ(L)) is well-filtered.

Lemma 4.18. [17] A topological space X is core compact and well-filtered iff X is locally compact
and sober.

Theorem 4.19. For a continuous lattice L, the following two conditions are equivalent to each other:

(1) σ(Lop) = υ(Lop), i.e., L is lean;
(2) Lop is lean.

Proof. (1) ⇒ (2). Given any closed subset F of (L, σ(L)), it is a compact saturated subset of
(Lop, υ(Lop)) by Lemma 4.16. Thus, F is compact saturated in (Lop, σ(Lop)), i.e., Lop is lean.

(2)⇒ (1). Assume that Lop is lean. For any space X, denote by Q(X) the set of nonempty compact
saturated subsets of X with the reverse inclusion order. Given any closed subset F of (L, σ(L)), it is
compact saturated in (Lop, σ(Lop)). By Lemma 4.16 and Lemma 4.2, Q(ΣLop) = Q((Lop, υ(Lop))), and
υ(Lop) = ω(L) is continuous. Thus, (Lop, υ(Lop)) is core compact. Since Lop is a complete lattice,
(Lop, υ(Lop)) is locally compact and sober by Lemma 4.17 and Lemma 4.18.

We claim that ΣLop is core compact. Define η : Lop → Q(ΣLop), η(a) = ↑ a, and 2 : σ(Lop) →
σ(Q(ΣLop)), 2(U) = {K ∈ Q(ΣLop) : K ⊆ U}. It is easy to see that η is Scott continuous. η−1 preserves
arbitrary sups. Lop is a complete lattice, so ΣLop is well-filtered. Then, 2 is well defined and Scott
continuous. η−1 ◦ 2 (U) = η−1({K ∈ Q(ΣLop) : K ⊆ U}) = U. Thus, η−1 ◦ 2 = idσ(Lop), σ(Lop) is a
retract of σ(Q(ΣLop)). Then, σ(Lop) is continuous, i.e., ΣLop is core compact. So, it is locally compact
and sober by Lemma 4.18.
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By the Hofmann-Mislove Theorem [7, Theorem II-2.14], OFlit(Q(X)) is isomorphic toO(X) for any
locally compact sober space X under the maps g : OFilt(Q(X)) → O(X), g(F ) = ∪F and f : O(X) →
OFilt(Q(X)), f (U) = 2U. Since (Lop, σ(Lop)) and (Lop, υ(Lop)) are both locally compact sober, and
they have the same compact saturated subsets, (Lop, σ(Lop)) is equal to (Lop, υ(Lop)). �

5. Conclusions

Directed spaces are natural topological extensions of dcpos in domain theory. We showed that
for directed spaces, the tensor products are equal to the categorical products and gave out a series of
characterizations of core compactness of directed spaces. Some special properties of Scott spaces can
be extended to directed spaces. For example, the upper topology and the Scott topology on the lattice
of closed subsets of a core compact directed space coincide. We showed that the example L = σ(J) is
a non-continuous spatical complete lattice with σ(Lop) = υ(Lop), but its spectrum is not a Scott space.
These results can help us understand more about the long-standing open problem of which distributive
lattice’s spectrum is a sober locally compact Scott space. The answers of Problem 4.12 and Problem
4.13 are still unknown. It is also interesting to investigate if these results, like Proposition 4.4 and
Proposition 4.6, only hold for directed spaces.
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5. M. Erné, Infinite distributive laws versus local connectedness and compactness properties, Topol.
Appl., 156 (2009), 2054–2069. http://dx.doi.org/10.1016/j.topol.2009.03.029

6. H. R. Feng, H. Kou, Quasicontinuity and meet-continuity of T0 spaces (Chinese), J. Sichuan. Univ.,
54 (2017), 905–910. http://dx.doi.org/10.3969/j.issn.0490-6756.2017.05.002

7. G. Gierz, K. H. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Continuous Lattices and
Domains. Cambridge: Cambridge university press, 2003.

AIMS Mathematics Volume 8, Issue 2, 4862–4874.

http://dx.doi.org/http://dx.doi.org/10.1155/2021/6699092
http://dx.doi.org/http://dx.doi.org/10.1016/J.TOPOL.2021.107918
http://dx.doi.org/http://dx.doi.org/10.1017/S0305004100045850
http://dx.doi.org/http://dx.doi.org/10.1016/j.topol.2009.03.029
http://dx.doi.org/http://dx.doi.org/10.3969/j.issn.0490-6756.2017.05.002


4874

8. G. Gierz, J. Lawson, Generalized continuous and hypercontinuous lattices, Rocky. Mt. J. Math., 11
(1981), 271–296. http://dx.doi.org/10.1216/RMJ-1981-11-2-271

9. J. Goubault-Larrecq, Non-Hausdorff topology and domain theory: Selected topics in point-set
topology, Cambridge: Cambridge University Press, 2013.

10. R. E. Hoffmann, Continuous posets, prime spectra of completely distributive lattices, and
Hausdorff compactification, Continuous Lattices, Berlin-Heidelberg: Springer, 871 (1981), 159–
208. http://dx.doi.org/10.1007/BFb0089907

11. M. Huth, A. Jung, K. Keimel, Linear types, approximation, and topology, Math. Struct. Comp. Sci.,
10 (2000), 719–746. http://dx.doi.org/10.1017/s0960129500003200

12. J. R. Isbell, Function spaces and adjoints, Math. Scand., 36 (1975), 317–339.
http://dx.doi.org/10.7146/MATH.SCAND.A-11581

13. P. Johnstone, Scott is not always sober, In: Continuous Lattices, In: Lecture Notes in Mathematics,
Springer, 871 (1981), 282–283. http://dx.doi.org/10.1007/BFB0089911

14. C. J. Knight, W. Moran, J. S. Pym, The topologies of separate continuity, Math. Proc. Cambridge.,
68 (1970), 663–671. http://dx.doi.org/10.1017/S0305004100076659

15. J. Lawson, T0-spaces and pointwise convergence, Topol. Appl., 21 (1985), 73–76.
http://dx.doi.org/10.1016/0166-8641(85)90059-8

16. J. Lawson, The duality of continuous posets, Houston. J. Math., 5 (1979), 357–386.
17. J. Lawson, G. H. Wu, X. Y. Xi, Well-filtered spaces, compactness, and the lower topology, Houston.

J. Math., 46 (2020), 283–294.
18. S. Z. Luo, X. Q. Xu, On Monotone Determined Spaces, Electron. Notes. Theor., 333 (2017), 63–72.

http://dx.doi.org/10.1016/J.ENTCS.2017.08.006
19. Z. C. Lyu, Y. Chen, X. D. Jia, Core-compactness, consonance and the Smyth powerspaces, Topol.

Appl., 312 (2022), 108066. http://dx.doi.org/10.1016/j.topol.2022.108066
20. H. L. Miao, Q. G. Li, D. S. Zhao, On two problems about sobriety of topological spaces, Topol.

Appl., 295 (2021), 107667. http://dx.doi.org/10.1016/J.TOPOL.2021.107667
21. J. V. Mill, G. M. Reed, Open Problems in Topology, Amsterdam: North-Holland, 1990.
22. P. Venugopalan, Priestley spaces, P. Am. Math. Soc., 109 (1990), 605–610.

https://doi.org/10.2307/2048197
23. X. P. Wen, X. Q. Xu, Sober is not always co-sober, Topol. Appl., 250 (2018), 48–52.

http://dx.doi.org/10.1016/J.TOPOL.2018.10.003
24. X. Y. Xi, J. Lawson, On well-filtered spaces and ordered sets, Topol. Appl., 228 (2017), 139–144.

http://dx.doi.org/10.1016/J.TOPOL.2017.06.002
25. Y. Yu, H. Kou, Directed spaces defined by the specialization order of T0 space (Chinese), J.

Sichuan. Univ., 52 (2015), 217–222. http://dx.doi.org/10.3969/j.issn.0490-6756.2015.02.001
26. Z. X. Zhang, F. G. Shi, Q. G. Li, Continuity and Directed Completion of Topological Spaces,

Order, (2021), 1–14. http://dx.doi.org/10.1007/s11083-021-09586-z

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 2, 4862–4874.

http://dx.doi.org/http://dx.doi.org/10.1216/RMJ-1981-11-2-271
http://dx.doi.org/http://dx.doi.org/10.1007/BFb0089907
http://dx.doi.org/http://dx.doi.org/10.1017/s0960129500003200
http://dx.doi.org/http://dx.doi.org/10.7146/MATH.SCAND.A-11581
http://dx.doi.org/http://dx.doi.org/10.1007/BFB0089911
http://dx.doi.org/http://dx.doi.org/10.1017/S0305004100076659
http://dx.doi.org/http://dx.doi.org/10.1016/0166-8641(85)90059-8
http://dx.doi.org/http://dx.doi.org/10.1016/J.ENTCS.2017.08.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.topol.2022.108066
http://dx.doi.org/http://dx.doi.org/10.1016/J.TOPOL.2021.107667
http://dx.doi.org/https://doi.org/10.2307/2048197
http://dx.doi.org/http://dx.doi.org/10.1016/J.TOPOL.2018.10.003
http://dx.doi.org/http://dx.doi.org/10.1016/J.TOPOL.2017.06.002
http://dx.doi.org/http://dx.doi.org/10.3969/j.issn.0490-6756.2015.02.001
http://dx.doi.org/http://dx.doi.org/10.1007/s11083-021-09586-z
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Core compactness of directed spaces
	Core compactness vs the lattice of closed sets
	Conclusions

