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1. Introduction

A surface that arises when a curve α(u) is translated over another curve β(v) is called a translation
surface. A translation surface is defined to be the sum of two curves α(u) and β(v), which are
called generating curves. Therefore, translation surfaces are made up of quadrilateral, that is, four
sided, facets. Because of this property, translation surfaces are used in architecture to design and
construct free-form glass roofing structures. A translation surface in Euclidean 3-space by two curves
in orthogonal planes, is given in [2, 3] as a graph of the function z(u, v) = f (u) + g(v), such that f (u)
and g(v) are smooth functions defined on an interval of R.

The translation surfaces in E3 studied by H. F. Scherk [1] are obtained as a graph of the sum z(u, v) =

f (u) + g(v), and where he proved that the only minimal translation surfaces are the those denoted by

z(u, v) =
1
a

log
∣∣∣∣∣cos(au)
cos(av)

∣∣∣∣∣ =
1
a

log |cos(au)| −
1
a

log |cos(av)| ,

where a is a non-zero constant. These surfaces [12, 13] are nowadays said to be Scherk’s minimal
surfaces .

Constant mean curvature and constant Gaussian curvature surfaces have been the main problem
for the geometers for a long time. Translation surfaces with constant mean curvature, in particular,
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zero mean curvature, in the Euclidean space and the Minkowski space are stated in [7]. Lone and
Karacan yield categorization of dual translation surface, which has constant dual isotropic mean
curvature or constant dual isotropic Gaussian curvature [8]. Dillen, Goemans and Woestyne obtained
a categorization of translation surfaces in the 3-dimensional Euclidean and Minkowski space such that
the Weingarten circumstance is satisfying [5].

Sipus and Divjak [11] explained translation surfaces in the Galilean space having constant Gaussian
and mean curvatures together with translation Weingarten surfaces. Yoon searched coordinate finite
type translation surfaces inG3 and explained some examples of new classes of translation surfaces [12].
He also studied a translation surface in G3 with a log-linear density and classified such a surface with
vanishing weighted mean curvature [13].

LN-surfaces, which were taken into account in [6] with enough elasticity to model smooth surfaces.
Peternell and Odehnal generalized the idea of LN-surfaces to R4 [9]. Bulca calculated the Gaussian,
normal and mean curvatures of LN- surfaces in E4. Further, she pointed out the flat and minimal points
of the surfaces in [3]. Sampoli, Peternell and Jüttler indicate that even the convolution surface of an
LN-surface and any rational surface admits rational parametrization [10]. Moreover, LN and LCN
translation surfaces have been characterized in 3-dimensional affine and Euclidean spaces in [14, 15].

In this study, the dual translation surfaces defined by z = f (u) + g(v), are considered in the three
dimensional Galilean space G3.

2. Preliminaries

We emphasize that the Galilean space G3 is a Cayley-Klein space associated with a 3-dimensional
projective space P(R3) with the absolute figure. The reader is referred to [11, 12] for more details of

d (P1, P2) =

 |x2 − x1| , i f x1 , x2√
(y2 − y1)2 + (z2 − z1)2 , i f x1 = x2.

(2.1)

The group of motions of G3 is a six-parameter group given in affine coordinates by

x = a + x,

y = b + cx + y cos θ + z sin θ,
z = d + ex − y sin θ + z cos θ,

with respect to the absolute figure, there are two types of lines in the Galilean space - isotropic lines
which intersect the absolute line f and non-isotropic lines which do not. A plane is called Euclidean
if it includes f , whereas it is said isotropic. In the given affine coordinates, isotropic vectors are of the
form (0, y, z), but Euclidean planes are of the form x = k, k ∈ R. The induced geometry of a Euclidean
plane is Euclidean, and of an isotropic plane isotropic (i.e., 2-dimensional Galilean or flag-geometry).

A Cr-surface S , r ≥ 1, immersed in the Galilean space, Ψ : U → G3,U ⊂ R2, Ψ(u, v) =

(x(u, v), y(u, v), z(u, v)) has the following first fundamental form

I = (g1du + g2dv)2 + ε
(
h11du2 + 2h12dudv + h22dv2

)
,

where the symbols gi = xi, hi j =
∼

Ψi.
∼

Ψ j stand for derivatives of the first coordinate function x(u, v)

with respect to u, v and for the Euclidean scalar product of the projections
∼

Ψk of vectors Ψk onto the
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yz-plane, respectively. Furthermore,

ε =

{
0 , if direction du : dv is non-isotropic,
1 , if direction du : dv is isotropic.

At every point of a surface, there exists a unique isotropic direction defined by g1du + g2dv = 0. In that
direction, the arc length is measured by

ds2 = h11du2 + 2h12dudv + h22dv2

=
h11g2

2 − 2h12g1g2 + h22g2
1

g2
1

=
W2

g2
1

dv2,

where g1 , 0. A surface is called admissible if it has no Euclidean tangent planes. Therefore, for an
admissible surface either g1 , 0 or g2 , 0 holds. The Gaussian curvature K and mean curvature H are
Cr−2 functions, r ≥ 2, defined by

K =
LN − M2

W2 , H =
g2

2L − 2g1g2M + g2
1N

2W2 ,

where
Li j =

x1Ψi j − xi jΨ1

x1
U, x1 = g1 , 0.

We will use Li j, i, j = 1, 2, for L, M, N. The vector U defines a normal vector to a surface and given by

U =
1
W

(0, x1z2 − x2z1, x2y1 − x1y2) ,

where W2 = (x2Ψ1 − x1Ψ2)2 [11]. It is well known that in terms of local coordinates {u, v} of S , the
Laplacian operator ∆II according to the second fundamental form on S is defined by [4]

∆IIΨ= −
1

√
LN − M2

[
∂

∂u

(
NΨu − MΨv
√

LN − M2

)
−
∂

∂v

(
MΨu − LΨv
√

LN − M2

)]
. (2.2)

Consider a surface in G3 as the graph of a function z = h(u, v). We will consider translation surfaces
of Type 1 that are obtained by translating two planar curves. Translation surfaces of Type 1 in the
Galilean 3-space can be locally represented by

z = f (u) + g(v), (2.3)

which yields the parametrization

Ψ(u, v) = (u, v, f (u) + g(v)) . (2.4)

One translated curve is a non-isotropic curve in the plane y = 0 and given as

α(u) = (u, 0, f (u)),
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and the other is an isotropic curve in the plane x = 0 and it is expressed as

β(v) = (0, v, g(v)).

Let S be a Monge patch parametrized by z = h(u, v), then the surface

Ψ∗ = (−zu,−zv,−z + uzu + vzv) , (2.5)

is called a dual surface of S ∗ in G3 and the normal vector of S ∗ is given by

U∗ =

±
(
zuuzvv − (zuv)2

)
W

 (0, v, 1) . (2.6)

The Gaussian curvature of the dual surface is

K∗ =
1(

zuuzvv − (zuv)2
) (

1 + v2)2
. (2.7)

Definition 1. A surface S in G3 is said to be Weingarten surface if and only if there exists a non-
trivial functional relation Φ (K,H) = 0 between the Gaussian curvature and mean curvature of S . The
condition Φ (K,H) = 0 is equivalent to the vanishing of the corresponding Jacobian determinant, i.e.,∣∣∣∣∂(K,H)
∂(u,v)

∣∣∣∣ = 0. A linear Weingarten surface in Galilean 3-space is a surface where there exists a relation
aK + bH = c for some non-zero real numbers a, b, c [5, 10].

In [11], Sipus and Divjak analyzed the translation surface of Type 1, which has the constant
Gaussian and mean curvatures in the Galilean 3-space G3 and they showed the following theorems:

Theorem 1. If S is a translation surface of Type 1 of constant Gaussian curvature in the Galilean 3-
space, then S is congruent to a particular surface with

f (x) = ax2 + bx + c,

a, b, c ∈ R, and

k(u) =
1
2

Au2 + Bu + C,

h(u) =
Au + B

A

√
1 − (Au + B)2 +

1
2A

arcsin (Au + B) + C1

for A, B,C,C1 ∈ R, where K = f ′′(x)k′′(u) and h′
2
+ k′

2
= 1.

Theorem 2. If S is a translation surface of Type 1 of constant mean curvature H , 0 in the Galilean 3-
space, then S is congruent to a surface

z = f (u) −
1

2H

√
1 − (2Hv + c1)2 + c2,

where c1, c2 ∈ R.
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3. Dual translation surfaces in G3

The main aim of this section is to give a classification of dual translation surfaces with constant
Gaussian and mean curvatures in the Galilean 3-space. Let S ∗ be a dual translation surface. Using (2.3)
and (2.5), we can define dual translation surfaces as

Ψ∗(u, v) =
(
− f ′(u),−g′(v), u f ′(u) + vg′(v) − f (u) − g(v)

)
. (3.1)

The unit normal vector field U∗ of the surface (3.1) is

U∗ = −
1

√
1 + v2

(0, v, 1) . (3.2)

By a straightforward computation, the Gaussian and mean curvatures of the dual translation surface
are given by

K∗ =
1

f ′′g′′
(
1 + v2)2 , H∗ = −

1

2
(
1 + v2) 3

2 g′′
, (3.3)

where f ′′, g′′ , 0. Thus we have the following result.

Corollary 1. If S ∗ is a dual translation surface in the Galilean 3-space, then there are no flat and
minimal dual translation surfaces.

Proof. The proof is obvious by Eq (3.3). �

Theorem 3. Let S ∗ be a dual translation surface which has constant Gaussian curvature in G3. Then
it is congruent to an open part of the surface (3.1) with

z = f (u) +

(
c1 + c2v +

c3

2
v arctan v

)
.

Proof. Dual translation surface with constant curvature K∗0 is described by the ordinary differential
equation

K∗0 f ′′g′′
(
1 + v2

)2
− 1 = 0, K∗0 ∈ R. (3.4)

By partial differentiation of the previous expression with respect to v, we get

f ′′
(
4v

(
1 + v2

)
g′′ +

(
1 + v2

)2
g′′′

)
= 0.

Therefore either f ′′ = 0 or
4v

(
1 + v2

)
g′′ +

(
1 + v2

)2
g′′′ = 0. (3.5)

If f ′′ = 0, then we have a contradiction. The general solution of (3.5) is given by

g(v) = c1 + c2v +
c3

2
v arctan v,

where ci ∈ R. Therefore, S is determined by

z = f (u) +

(
c1 + c2v +

c3

2
v arctan v

)
, (3.6)
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where f ′′ , 0 (see Figure 1).

Figure 1. z = cos u +
(
c1 + c2v + c3

2 v arctan v
)
.

�

Theorem 4. Let S ∗ be a dual translation surface which has constant mean curvature in G3. Then it is
congruent to an open part of the surface (3.1) with

z = f (u) +

c1 + c2v −

√
1 + v2

2H∗0

 .
Proof. We suppose that dual translation surface has constant mean curvature. Then we obtain

2
(
1 + v2

) 3
2 g′′H∗0 − 1 = 0, H∗0 ∈ R. (3.7)

After solving (3.7), we get

g(v) = c1 + c2v −

√
1 + v2

2H∗0
.

Therefore S is determined by

z = f (u) +

c1 + c2v −

√
1 + v2

2H∗0

 , (3.8)

where ci ∈ R (see Figure 2).
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Figure 2. z = cos u +

(
c1 + c2v −

√
1+v2

2H∗0

)
.

�

Theorem 5. Let S ∗ be a Weingarten dual translation surface in G3. Then it is congruent to an open
part of the surface (3.1) with

z =
(
c1 + c2u + c3u2

)
+ g(v),

or
z = f (u) +

(
c4 + c5v + c6

√
1 + v2

)
.

Proof. The condition ∂(K∗,H∗)
∂(u,v) = 0 must be satisfied for the Weingarten surface S ∗, it leads to K∗uH∗v −

K∗v H∗u = 0. Since the mean curvature H∗v is a function of v only, the previous equation reduces K∗uH∗v = 0.
Therefore, either K∗u = 0 or H∗v = 0. The first condition K∗u = 0 describes that a dual translation surface
satisfies

−
f ′′′(

1 + v2)2 f ′′2g′′
= 0.

Therefore f ′′′ = 0 which implies
f (u) = c1 + c2u + c3u2.

If the second condition H∗v = 0, then we have

3vg′′ +
(
1 + v2

)
g′′′

2
(
1 + v2) 5

2 g′′2
= 0,

and

g(v) = c4 + c5v + c6

√
1 + v2,
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where ci ∈ R. Thus S is determined by either

z =
(
c1 + c2u + c3u2

)
+ g(v), (3.9)

see Figure 3, or
z = f (u) +

(
c4 + c5v + c6

√
1 + v2

)
, (3.10)

see Figure 4.

Figure 3. z = cos v +
(
c1 + c2u + c3u2

)
.

Figure 4. z = eu +
(
c4 + c5v + c6

√
1 + v2

)
.

�
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Theorem 6. Let S ∗ be a linear Weingarten dual translation surface satisfying aK∗ + bH∗ = c, where
a, b, c are real constants. Then S ∗ is congruent to (3.1) with

z = c1 + c2u +
m
2

u2 + c3 + c4v +
−bm

√
1 + v2 + av arctan v

2cm
.

Proof. Let us consider surface with a , 0, b , 0. A dual translation surface is linear Weingarten if and
only if

2a
√

1 + v2 + f ′′
(
−b − bv2 − 2cg′′

(
1 + v2

) (
1 + 2v2 + v4

))
= 0, (3.11)

which can be written as

f ′′ = −
2a
√

1 + v2(
−b − bv2 − 2cg′′

(
1 + v2) (1 + 2v2 + v4)) = m,

where m ∈ R. Therefore, we get

f (u) = c1 + c2u +
m
2

u2, (3.12)

g(v) = c3 + c4v +
−bm

√
1 + v2 + av arctan v

2cm
,

where ci,m ∈ R and they satisfy the functional relationship aK∗ + bH∗ = c for any constants a, b, c,
(see Figure 5).

Figure 5. z = c1 + c2u + m
2 u2 + c3 + c4v + −bm

√
1+v2+av arctan v

2cm .

�

Theorem 7. Let S ∗ be a dual translation surface given by (3.1) in the three dimensional Galilean
space G3. Then there is no surface S ∗ satisfies the condition ∆IIΨ = λiΨi, where λi∈R, i=1, 2, 3.
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Proof. We classify dual translation surfaces in G3 satisfying the equation

∆IIΨ = λixi, (3.13)

where λi∈R, i=1, 2, 3 and
∆IIΨ =

(
∆IIΨ1,∆

IIΨ2,∆
IIΨ3

)
. (3.14)

By a straightforward computation, using Eq (2.2), the Laplacian operator on S ∗ turns out to be

∆IIΨ =


−

√
1+v2 f ′′′

2 f ′′ ,

−

√
1+v2g′′′

2g′′ ,

2
√

1 + v2 + u
√

1+v2 f ′′′

2 f ′′ + v
√

1+v2g′′′

2g′′

 . (3.15)

So Eq (3.13) by means of (3.15) gives the following system of ordinary differential equations
√

1 + v2 f ′′′

2 f ′′
= λ1 f ′, (3.16)

√
1 + v2g′′′

2g′′
= λ2g′, (3.17)

2
√

1 + v2 + u

√
1 + v2 f ′′′

2 f ′′
+ v

√
1 + v2g′′′

2g′′
= λ3

(
u f ′(u) + vg′(v) − f (u) − g(v)

)
, (3.18)

where λi ∈ R. On combining Eqs (3.16)–(3.18), we have

2
√

1 + v2 + λ1u f ′ + vλ2g′ = λ3
(
u f ′ + vg′ − f − g

)
, (3.19)

which can be written as

λ1u f ′ − λ3
(
u f ′ + f

)
= m, (3.20)

λ3
(
vg′ − g

)
− λ2vg′ − 2

√
1 + v2 = m,

where λi,m ∈ R. If {λ1, λ2, λ3} = {0, 0, 0} , hence we have a contradiction. In the cases
{λ1, λ2 , 0, λ3 , 0}, there are no analytical solutions for the function g(v). We discuss three cases
with respect to constants λ1, λ2, λ3. We summarized the solutions of (3.20) in the following:

λ1 , 0, λ2 = 0, λ3 , 0⇒

 f (u) = m
λ3

+ c1 (u (λ1 − λ3))−
λ3

λ1−λ3

g(v) = c2vλ3−m−2
√

1+v2+2v arcsin v
λ3

 ,
λ1 , 0, λ2 , 0, λ3 = 0⇒

 f (u) = c1 +
m ln|u|
λ1

g(v) =
c1λ2−2

√
1+v2−(2+m) ln|v|+2 ln

∣∣∣∣1+
√

1+v2
∣∣∣∣

λ2

 ,
λ1 = 0, λ2 = 0, λ3 , 0⇒

 f (u) = c1u + m
λ3

g(v) = c2vλ3−m−2
√

1+v2+2v arcsin v
λ3

 ,
for some constants ci , 0 and λi , 0. In the third row, we have a contradiction for the function f (u),
because substituting the first and second rows into (3.14)–(3.16), respectively we can easily see that
they do not satisfy these equations. �
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Theorem 8. The dual translation surface H∗
2
− K∗ = 0 is locally a generalized umbilical surface and

it can be stated to be a surface (3.1) by

z = c1 + c2u +
m
2

u2 + c3 + c4v +
1
4

m
(
v arctan v −

1
2

ln
∣∣∣1 + v2

∣∣∣) .
Proof. Next, we aim to classify the dual translation surfaces given by (3.1) in G3 that satisfy
H∗

2
− K∗ = 0. By considering Eq (3.3), we have

f ′′ − 4g′′ − 4v2g′′

2
(
1 + v2)3 f ′′g′′2

= 0. (3.21)

We can rewrite (3.21) as

f ′′ − 4g′′ − 4v2g′′ = 0,

which implies

f ′′ = 4g′′ + 4v2g′′ = m.

Solving this, we obtain

f (u) = c1 + c2u +
m
2

u2, (3.22)

g(v) = c3 + c4v +
1
4

m
(
v arctan v −

1
2

ln
∣∣∣1 + v2

∣∣∣) ,
where m, ci ∈ R (see Figure 6).

Figure 6. z = c1 + c2u + m
2 u2 + c3 + c4v + 1

4m
(
v arctan v − 1

2 ln
∣∣∣1 + v2

∣∣∣) .
�
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4. Results

A rational surface S ∗ in R3 is called LN-surface if its tangent planes admit the representation
T (u, v) = ux + vy + z = h(u, v) with a rational function h(u, v) = f (u) + g(v). In the present study, we
have defined these surfaces in Galilean 3-space and called these surfaces as dual translation surfaces.

We also have calculated the Gaussian and mean curvatures of these surfaces. Further, we have
pointed out the constant Gaussian and mean curvatures of these surfaces.

We have discussed whether these surfaces satisfy the Laplacian operator with respect to the second
fundamental form.
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15. N. Yüksel, M. Karacan, Y. Tunçer, Convulation of LN-translation surfaces in Euclidean 3-space,
Acta Universitatis Apulensis, 68 (2021), 13–23. http://dx.doi.org/10.17114/j.aua.2021.68.02

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 2, 4830–4842.

http://dx.doi.org/http://dx.doi.org/10.3336/gm.46.2.14
http://dx.doi.org/http://dx.doi.org/10.1515/math-2017-0043
http://dx.doi.org/http://dx.doi.org/10.17114/j.aua.2021.68.02
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Dual translation surfaces in G3
	Results

