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Abstract:  This paper is concerned with the study of nonlocal fractional differential equation
of sobolev type with impulsive conditions. An associated integral equation is obtained and then
considered a sequence of approximate integral equations. By utilizing the techniques of Banach fixed
point approach and analytic semigroup, we obtain the existence and uniqueness of mild solutions
to every approximate solution. Then, Faedo-Galerkin approximation is used to establish certain
convergence outcome for approximate solutions. In order to illustrate the abstract results, we present
an application as a conclusion.
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1. Introduction

Research work in the area of fractional differential equation is multidisciplinary such as control
systems, elasticity, circuit systems, heat transfer, fluid mechanics, signal analysis, traffic flow,
pollution control, etc. It is considered as an alternative model to nonlinear differential equation.
Fractional differential equations are a useful tool in modelling several events. In [1], controllability of
Hilfer fractional neutral differential systems with infinite delay is obtained. An article obtained on
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Neutral fractional stochastic partial differential equations with Clarke subdifferential is investigated
using fractional calculus and fixed point theorems in [2]. Nisar et al. [3], in their publication, briefly
discussed the analysis of controllability for nonlinear Hilfer neutral fractional derivatives via
fractional calculus and Banach contraction principle. Numerous credible theoretical studies on
fractional differential equation can be referred to books in [4-8] and the research articles are [9—15].
The fractional differential equation has many solutions with nonlocal conditions, impulsive type and
sobolev type. In which, the nonlocal conditions is a generalization of the classical conditions, was
motivated by the physical phenomena. The pioneering work on nonlocal condition is due to
Byszewski [16]. Papers related on nonlocal conditions, we may refer [17-20].

Moreover, the theory of fractional impulsive differential equations has been entirely developed
during the past decades. Since 1990’s many mathematician have derived lots of results on differential
equations undergoing impulsive effects. It focuses on the analysis of dynamic processes that
experience abrupt changes. Impulses have a relatively shorter time difference between changes than
the overall length of the process. The following may act as motivation to investigate such systems
using impulsive differential equations. Consider the simplest scenario for a person’s hemodynamic
equilibrium. Some injectable medications, such as insulin, may be provided in the case of a
de-compensation, such as high or low glucose levels. It is clear that the entrance of medications into
the circulation and the body’s subsequent absorption are slow and ongoing processes. This
circumstance might be seen as an impulsive activity that begins suddenly and lasts for a set amount of
time. For detailed information about the impulsive fractional differential equation and its applications,
we refer to the readers [21-25].

On the other hand, the Sobolev type differential system is typically seen in the mathematical
structure of numerous physical events, such as fluid flow through fractured rocks, thermodynamics.
Additionally, Sobolev type differential equations are utilised to describe the attributes of systems and
processes in mathematical modelling and simulations. For more literature on sobolev type differential
equation, see [26-30] and references therein. In addition, one of the most effective methods for
determining out approximations of solutions to a given differential equation in an abstract space is the
Faedo-Galerkin approach. The Faedo-Galerkin method may be used within a vartional formulation in
order to provide solutions of the equations under possibly weaker assumption on the data and may
also prove a very useful tool for numerical approximation of equations. A detailed view on
Faedo-Galerkin approximation we refer [31-35].

In accordance with the aforementioned literature survey, there are relatively few work outcomes
that explore the existence and uniqueness of a mild solution to a Sobolev type fractional differential
equation with Impulses applying a fixed point technique. This fact is the fundamental motivator behind
our current progress. This article [36, 37], outlines the nonlocal Sobolev type fractional differential
impulsive system as follows:

‘DEIMx()] = Lx(o) + F (o, x(0), x(h(o))), o € [0,T], (1.1)
Ax(oy) = Ii(x(0y)), i =1,2,...,q, g € N, (1.2)
g(x) = ¢ € Hy. (1.3)

Where 0 < 8 < 1, T € (0, 0) CD(B,_ is the Caputo fractional derivative, 0 = 0y < 0 < ... < 0 <
04+1 = T are pre-fixed numbers, Ax|,—,, = x(07)—x(c;) and x(o]) = lim,_,, x(0;+h) and x(o7;) =
limj,_,o- x(0; + h) denote the right and left limits of x(0") at o = o, respectively. From (1.1), assume
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L:DL)cH — H, M: DIM) ¢ H; — H, are closed (unbounded), positive and self-adjoint
operators, where H; and H, are Hilbert spaces and the appropriate functions are ¥ : [0, T] x H; — H;
andg: C([0,T],H,) - H;,h:[0,T] = [0,T], I; : H; — H,.

This articles is organized as:

Basic concepts and lemmas are covered in Section 2. In Section 3, the fixed point theorem is used
to determine the existence and uniqueness of an approximate solution. In Section 4, the convergence of
the approximate solutions is obtained. In Section 5, the convergence of approximate Faedo-Galerkin
solutions is proved. Finally, we provide a theoretical application to assist in the effectiveness of our
result.

2. Basic results

The upcoming segment recalls the necessary things to obtain the primary facts of our discussion.

Let (H, |-, < -+ >), (Hy,|| - |l, < -,- >) be Separable Hilbert spaces. Assume C([0, 7], H;) from
[0, T'] into H; with ||x]/0.7; := sup{|[x(c)|| : o € [0, T]} be a Banach space of continuous function and
boundedness of linear operator L(H;) equipped with ||f||.q,) = sup{|[f(x)l : [|x]| = 1}.

Definition 2.1. [37] The R-L integral of order 3 > 0 is

jg?’(a) = I;(ﬁ) 6[(0- — P F(s)ds, 2.1
where ¥ € L'((0,T), H,).
Definition 2.2. [37] The R-L derivative is
RLDPF (o) = D2 JoPF (o), |B-61 € (0,1), 6 €N, (2.2)

where D%, = L F e L'((0,T), Hy), Jo *F € WH((0,T),Hy).
Definition 2.3. [37] The Caputo derivative is

1

‘DEF (o) = e f (0 — )P Fos)ds, 6-1<B <6, (2.3)
0

I'to

where € C(H((O, T),Hy)N Ll((O, T),H,),
-1 O'k
c _ k
JEDEF () = F (o) - kZ; = 740 holds.

Operators £, M impose the following conditions:

(a) L and M are closed linear operators;
(b) D(M) c D(L) and M is bijective;
(c) M':H, - D(M) c H, is compact.
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Conditions (a)-(c) and closed graph theorem imply LM : H, — H), is the boundedness of the

linear operator. Therefore, an infinitesimal generator & = LM of semigroup S(o) := ¢ and so
max,.¢; ||S(o)|| is finite. We have the following integral as per prior definition,
( - sy
Mx(o) = Mx(0) + Z Li(x(o) + F(,B) [Lx(s) + F (s, x(s)]ds, o €[0,T]. 2.4)

The above (2.4) exists a.e. As a result, aforementioned equalization is equal to the impulsive
differential equation of Sobolev type. Therefore, there exists Ny > 1 a positive constant such that
IS(o)|| < Ny. Let the resolvent set of & is p(E). Hence, &%, 0 < a < 1 be the fractional power which is
a closed linear operator and D(E?) is a subspace, in such a way its simple to show that it is a Banach
space with supremum norm and is represented as (H;), with (|| - |l.). We have
(Hi);, = (Hi)e, 0 < @ < 17 s0 the embedding is continuous. Then, we define (H;)_, = ((H;)o)", @ > 0,
dual space of (H,),, is a Banach space equipped with ||x||_, = ||E7x]|, x € (H;)_,.

Proposition 2.1. [38] Assume & of S(0), o > 0, 0 € p(E) is an infinitesimal generator. We get

(i) For o >0, a >0, S(o) maps from H; — D(E?).
(ii) For each x € D(&Y), S(0)&E%x = E*S(0)x.

(iii) Let S(O') ‘ <N;, j=1,2, 0 >0, where N; is a positive constant.

(iv) A bounded operator E*S(o), |E*S(0)|| £ Nyo=%™7, o > 0.
(v) If x € D(&Y), a € (0, 1] implies ||S(o)x — x|| < CQO"’IIS"xH.

Remark 2.1. [38] The boundedness of the linear operator & in H; such that D(E*) = Im(E™7). Let’s
denote (H,),(T) = C([0,T], (H,),) be Banach space of all (H,),-valued continuous function equipped
with ||xll@,),) = SUPgejo.r) 1X(0)las such that x(o7) is continuous on o~ # o, left continuous at o = o
and right limit x(o7) exists fori = 1,2,...,q.

3. Existence of solutions

We inspect the existence of (1.1)—(1.3) as well as their uniqueness. The respective assumptions on
EF,hI(i =1,2,..,q) is presented as:

(1) Let & be closed, positive definite and self adjoint linear operator : D(E) € H, — H,. A pure point
spectrum & has

O<Apg< <A< <4, <.,

with 4,, — oo, m — oo and complete orthonormal system {¢;},

Epj = A;¢; and (P, §;) = by, (3.1)

where

5= I, j=1
71 0, otherwise.
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(2) The continuous mapping ¥ : [0,00) X (H;), X (H;), — H, and myg : [0,00) — (0,00) an
increasing function exists, on R > 0 such that

|F (o, z, w)l| <mg(0), (3.2)
|F (o1, 21, wi) = F (02, 22, W)l <mg(a)[loy — o2l + llz1 = 2alle], (3.3)

for all (o, z, w), (071,21, W1), (02, 22, Ww2) € [0, 00) X Br((H})a) X Br((H,),) where Br(H,;) = {z €
H; : |lzllg, < R} and 6, € (0, 1).

(3) Let nonlinear function 4 : [0, T] — [0, T] such that #(0) < 0,0 < o < T and d constants L, > 0
such that

|h(o1) — h(o)| £ Lyloy — o3, 01,0, € [0, T]. (3.4)

(4) There exist y € C([0,T], (H;),) such that g(x) = ¢ and y(0) is locally Lipschitz continuous.
(5) All the function /; : H; — H, (i = 1,2, ..., ) are continuous function such that

()|l < O, ¥ @ €(0,1),
11;(x1) = L;Ce)lle < Nillxyr = x2llo, ¥ X1, x2 € Hy,

where O;, N;, i = 1,2, ..., g are positive constants.

Definition 3.1. [39] Let x : [0, T] — (H,), be a continuous function , if x(0) = xy and x(-) satisfies
the following integral equation

&meﬂm+§&w—mmmm»

x(o) = (3.5)

+ ]T(O' — P Tg(0 — $)F (s, x(s), x(h(s)))ds, o € [0,T],
0

is known as mild solution of (1.1)—(1.3), where

&@=fM%@&ﬁw,
0

%@:IM%%@&%W,
0

1 1 1
{p(€) = =& TRyYRETF) 2 0,

B
Yp(é) = 7_1r Z(—l)"_lf_"ﬁ_lw sin(nf),0 < & < oo,
n=1

n!

and PDF [5(€). i.e., [p(€) 2 0, [ £p(€)dé = 1.
0
Remark 3.1. [38] Let0O<v <1,

(1 +v)

v — —pv _
‘f§@®ﬂf—ff terts = 10
0 0
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Proposition 3.1. [26] Let S(0) be a uniformly continuous semigroup and & be its infinitesimal
generator. Then, Sg(0) and T (o) are boundedness of the linear operator such that

(i) 11Sp(o)xll < WiNollxdl and | Tp(e)xdl < Figtllall, x € Hi.

(ii) The strong continuity of {7 3(0), 0 > 0} and {Sg(0), 0 > 0} 0 <7y <7, < T, for x € H,, we have
T p(r2)x = Tp(r1)xll = 0 and ||Sp(r2)x — Sp(r1)xl| = 0 as 72 = 7.

(iii) Suppose S(o), o > 0 is compact, then Sg(0) and T (o) are compact operators.

(iv) For each x € Hy, we have ETg(0)x = E71T3Ex, o € [0,T1, n € (0,1). We have ||E*T 3(o)l| <

BWIN.T(2-a)
mﬂ' dﬁ, o c [O, T], [0S (O, 1)

(v) For any x € X, and fixed o > 0, we have ||Sg(0)xll, < WiNollxll, and || g(0)x|l, < Wil

20l

Arbitrarily fixed point 7y > O such that 0 < 7' < T < oo,

— WINQF(Z - (I) Tﬁ(l—a)
YT A - oy * T g <t (3.6)

Let H, be finite dimensional subspace, spanned by {¢o, ¢1, ..., #,} and a projection operator P" : H; —
H,,n=0,1,... Assume F, : [0,T] x (H,), — H, and [;,, : H; — Hj, is defined by

Fu(o, x(0), x(h(0))) = F (0, P'x(0), P"x(h(0))), (3.7)
L,(x) = L(P"x),Y x€H;, n=0,1,2,..., i = 1,2, ...q, (3.8)

and the operator Q, on B as follows

S(IMY(0) + zl Ss(0 — ) la(x()

@)@ =2 ¢ (3.9)
+ [(o = sP T (o = $)Fu(s, x(s), x(h(s)))ds, o € [0,T].
0

Theorem 3.1. Assume (1)—(5) holds, then x, € Br((H,),(T)) be a unique fixed point of Q, exists i.e.,
Qux, = x, for eachn =0, 1,2, ... and x, fulfills the approximate integral equation,

SpIMYO) + 3. Sl = )i (in(e)
X,(0) = = (3.10)

+ [( = sV T (o — $)Fu(s, xu(5), x(h(5)))ds, o € [0,T].
0
Proof. Let Q, : Br((H;)(T)) — Br((H;).(T)) is defined by
q
Sp(o)Mx(0) + ; Splo = o) (x(07))
Qx)(0) =3 « -
+ [(o = sP T (o = $)Fuls, x(s), x(h(s)))ds, o € [0,T].
0
We will demonstrate that Q, is well defined. This is sufficient to demonstrate that the map o +—
(Q.x)(o) : [0,T] into (H;), w.r.t. @ norm is continuous.

Let oy,0, € [0, T] with o, > 01, we get
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I1Qux(02) = Qux(o)lle = II[Sp(o2) = Sp(oD)IMy (Ol

q
+ D ISt = o) = Sptert = e lhin(xie)],
i=1

+ f (02 = s Tl = )F (s, x(s), x(h(s)))ds

a

a1

+ f (02 — V7' Tp(0a — $)Fuls, X(5), x(h(s)))ds

0
gl

- f (01 = sY ™ Tp(or1 = 9)F (s, x(s), x(h(s)))ds
0
< ESp(o2) = SploDIMx (O)lla

a

q
+ 2 iSpte2 = o) = Splrt = IE (x|,

i=1

" f (02 = P NE Tl — ) I1F (5, x(5), K(h(s)lds

+ f(m = P HE [ Tp(or1 = 5) = Tp(ora = ) IF(s, X(5), x(h(s))lds
0

o1

+ f (o1 = s~ = (02 = s NE Tp(0r2 = I IFu(s, x(s), x(h(s)))llds

0

q
< ESp(02) = SplaDIMx (O)lle + WiN, Z OlE (o2 — o)
i=1
BWiNI(2 - a) (0g = a7 L BWINI(2 — @)

(1 +p(1 —a))mR(TO) B —a) I'(l+p(1 - a))

BW N, T2 - @)
T +B(1 - a))

mg(Ty)
oy}

X f (o1 = P (o1 = 5) = (02 — 5)"Plds +

0

X mp(To) f[(Ul — s = (o) = 5 (o2 - 5)ds. (3.11)
0
For x € H,, we have,

(o) d a2
(She) - Swhene = [ S-S = [ peot eSio erdo
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Thus, we get

0 o o2 J
f MOS8 - S o)l 16 My(O)lldeé < f M58 f HES(oﬁaHda]Mllaax@l|d§
0 0

(o]

< f M LN (02 = D TIMI e O)lode
0

< Ri(on —0), (3.12)
where Ry = NiWi[IM|| [x(O)lla-
From (3.11), we have
o1
f(o'l — sV (o) = 5)™ = (03 — 5)"Plds < vd} ' (1 = )y P oy = o)V, (3.13)
0

where = [1 - ()], py = 1 - B, v=""L and 0 < d < 1.

o
_ _ —q N @ 73— — —-)— -
f[(m = = (o1 = Moy = 9 Pds < BN = )P ey -0, (B4
0
where h; = (1 - (%){%ﬂ)’ 0 < b; <1 and N,,, is some positive constant with [|E*'S(0)||< Ny1o0 177,

¥V o > 0. Thus, from the inequalities (3.11)—(3.14), (2).
We conclude that o +— F,(0,x(0)) map is uniformly Holder's continuous. We justify

Qu(Br((H)a(T))) € Br((H)o(T)). Let x € Br((H)o(T)), 0 < o < T. We get

q
QY @llo < ISs(IMEOlla + D 185(0" = T ip ()l
i=1

+| f (0 = V7' Tp(o = )F (s, x(s), x(h(s))ds||
0

q a
,BWINwr(z_a)f (1-a)—1
< WHIMIINGlx (O]l + W1N, O, - Ty)d
< WilIMINoly O]l + Wi Zl +r(1+ﬁ<1-a>)0((’ P img(To)ds

q 1—
WINJI(2 - @) A=
< WilIMIINoll x(O)lle + W1iNo E O+ — mg(To)——. (3.15)
i=1

I'(1+B(01 -a) (1-a
We may now take R as a positive integer such that,

q 1—
WiNJ (2 — ) Th1-)
R = W, |IMIINollx (O)llo + W\ N, § Oi + — mg(To)
i=1

I'a+pd-a) (1-a)
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Therefore, we deduce that Q,(Bg((H;),(T))) € Br((H;),(T)). Lastly, we demonstrate Q, is a strict
contraction map. For x1, x, € Br((H).(T)),0 <o <T.

I(Qux1)(0) = (Qux2)(@)lo < || f (0 = V' & Tp(o - s)ds||
0

X || Fuls, x1(5), x1(A(5))) = Fu(s, x2(5), x2(h(5)))llo

q
+ Z 1Sp(0 = DI i (x1 () = Lin(X2(0) e

i=1

RGBT Ll R
= m —||X] — X
TA+81-a) VA= "D
q
+ WiNg >~ Nillx = xallra < Al = xalls, - (3.16)
i=1
TA(1-)

In Eq (3.16), A = %W(mm + WiN, XL N; < 1.

As aresult, Q, is determined to be a contraction mapping. Thus, a unique x, € Bg((H,),(T)) exists
such that Q,x,, = x,,. O

Lemma 3.1. Assume (1)—(5) holds.

(i) Let x(0) € D(EY), a € (0, 1) implies x,(0) e DE)VO <o <T,vel0,1).
(it) If x(0) € D(E), implies x,(0) e DIEV)YO <o <T,ve[0,1]).

Proof. We get a unique x,, € Br((H,),(7)) that satisfies (3.10) by using the previous theorem. In [38],
foro >0, 0 <v < 1wegetS(o): H — D&, DIM*) € D(M"). Also S(o)x € D(E). As a
outcome, of all these facts, D(E) € D(EY),0 <v < 1. O

Lemma 3.2. If (1)—(5) holds.
(i) Let x(0) € D(EY), € (0,1), 0 < 09 < T, then a constant S ., exist,

|2, (ly £ S6y 0 <v <1, 0 €[00, T], independent of n.
(ii) Let x(0) € D(E), then a constant Sy > 0 exists,
X (l, < So, 0<v <1, o€[0,T],independent of n. (3.17)

Proof. Let x(0) € D(A?). In (3.10), we apply &’ on both sides, we have

q
IE”xu ()l < IE"MSp(a)x (0] + Z 1Sp(o = o)E Li(x(o)l

i=1
+ f (0 = P IET oo = I 1T 5(5), x())ds
0

BN,W\T'(2 - v) TA(I-V)

ra+p1- U))mR(TO)m <S4 (3.18)

q
< N,WillMIlog I O)ll + N W > O; +
i=1
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Again, if ¥(0) € D(E) = x(0) € D(EY), 0 <v <1 and we get

BN, W,T(2 - v) THI-v)

T+ a0 — o) "5 )

<So. (3.19)

q
llxa (s < NoWilIMI T (Ol + N, W, Z 0; +
i=1

4. Convergence of solutions

Now, to investigate the convergence of solution x,(o") of the approximate integral Eq (3.10) to a
unique solution x(-) of the Eq (3.5).
Theorem 4.1. Suppose (1)—(5) holds, x(0) € D(A*), «a € (0,1). Then,

lim sup ||x,(0) — Xp(D)le =0, foreach O < oy < T. “4.1)

m=00 ty>m, oeloo, T}

Proof. Let n > m, we have

F (0, X, (0), X (A(5))) = Fn (0, X (), X (RC)))]
<NFulo, X,(0), X (())) = F (T, X(0), X (R()I|
H|Fu (0, Xin(0), Xin(h($))) = Fon (0, Xin(0), X (R(S))]
2mg(To)llxa(0) = X(Dllo + m(TOI(P" = P™)xn(0)lla
+HI(P" = P")x(h(0))llo- (4.2)

ForO<a<wv <1, weget
IE*(P" = P")xpu(o)l < IET(P" = P"E " xm(0)|

< [l (- (4.3)

/11/—04

m

Thus, from (4.2), (4.3) we obtain

1
Fn (o, x5) = Fulo, x)ll < 2mg(To)lllx,(0) = X(0)le + ——= X ()]l ]

/11;”—(1
Similarly , we estimate
1
/111—(1/

m

”Ii,n(-xn(o-i)) - Ii,m(-xm(o-i))” < M[”xn(o-l) - -xm(o-i)”a + ||8“xm(0',)||v]

We choose o7 such that 0 < oy <079 < T,
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[1%2(0) = Xl < (f+ f)(cr — sy ds||E T s(o — sl
0 o

1*" integral of inequality (4.4),

f (0 = sV NE T5(0 = | X IF(S, %a(5), Xn(h(8))) = Fou(5, Xon(5), Xu(h(s)))lIds

0
_28WN.T2 - a)
- T +8(1 -a)

X [IFCs, %0(8), 2 ((5))) = Fou(5, X (5), X (R(II]

q
+ D 1S5 = DI Hin (5 () = (@)
i=0

2mp(T)U(T = o™ oy

2" integral of (4.4) is evaluated as

f (0 = sV NE T5(0 = | IFu(5, Xu(8), X2 (A(5))) = Fon(8, X(8), X (h(5)))lld's

_BWINJTQ - ),
I+ (1 - )

o

1-0)-1
f(o' sy ||Xn—xm||(H]),(s)dS]

, TB(-a)

R(TO)[W

Thus, from (4.4)—(4.6) we conclude

”)Cn(O') - xm(o-)” < D]O'E)

D,
/lva

o

where
_ ZﬁWlNafr(z - a’) _ \B(-a)-1
D, = (L + A1 —a) 2mp(To)(T — oy’ ,
_BWINTQ - ), Uy, TP~
> =T By T gy W ZN

D; = WiN, Zq: Ni,

BWIN, T2 - @)

i=1

4 =

AIMS Mathematics

2mg(To).

I'(1+B(01 -a)

4.4)

4.5)

(4.6)

1-a)-1
+ D3||xn(0-) xm(o-)”a + D4 f(o- - S)B( - ”-xn - xm”(H1) (A)ds
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Since 1 — WiN, %7, N; > 0, we have

||)Cn(0') - xm(o-)”a <

o
1 . Dy .
=D, [Dlo'o + w + Dy f(O' — s x, - lel(Hl)tv(s)ds]'
7

By lemma 5.6.7 in [38], we have that there exist a constant K such that

X2 (07) = X (O)la <

D
[D]O'E) + 2 ]7(

v—a
/11’”

1 - Dy
Taking supremum over [0, 7] and let m — oo, we obtain

’

) 1
lim sup [|x,(0) = Xp(O)le < oK.
M= ty>m,o0<o<T) (1 - D3)

Because o7 is arbitrary, the right side of the expression could be made as tiny as required simply
reducing o,. O

Proposition 4.1. Assume y(0) € D(E). Then

lim  sup|x,(0) — x ()|l = O.
m—oo, 0€l[0,T]

Theorem 4.2. Assume (1)—(5) holds, x(0) € D(&E*). Then, 3 x,(00) € (H)).(T) a unique function
satisfying,

Sp(IMY(0) + [(o = s~ T (o = $)Fu(s, Xu(5), X, (h(5)))dss
0

=], (4.7
+ 2. Sl — o)l n(x4(0y), o €][0,T],
i=1
and x € (H,),(T) satisfying
Sp(a)Mx(0) + j:(O' - s)ﬁ‘l‘i;;(a — )F (s, x(5), x(h(s)))ds
x(o) = 0 (4.8)

+ i Sp(o — opli(x(0y)), o € [0,T].
i=1

such that x,, converges to x in (H,),(T) i.e., x, = xasn — oo.

Proof. Suppose x(0) € D(E). From previous preposition, there is a x € (H;),(T) such that
lim,,_, x,(07) = x(0). Since x, € Br((H;).(T)) V n, we get x € Br((H;)(T)) Y 0 € (0, T],

10 (0, %4(07), Xa(h(5))) = F (07, x(0°), x(R(D| = [|F (0, P"x(0), xa(B(5))) — F (0, x(07), x(h(s)l
< 2mp(To)[llxs () = x()lla + I(P" = Dx(0)lle]-

Taking supremum over [0, T'], we have

sup ||F. (o, x,(0) = F (o, x(o)I| < 2mp(To)lllxy — Xl cry + IP" = Dxll@yy, ] — 0, as n — oo.
oe[0.T]
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Thus, we get

Sp(o)Mxy + f(o' — P T 5(0 — $)F (s, x(5), x(h(s)))ds
x(o’) = . 0
+ 2, Splo — o)li(x(0)), o €[0,T].

i=1

Now, let y(0) € D(&E?*). Since & x,(0) converges to E*x(o) for each o € (0, T] and x,,(0) = x(0) = x(0).
Then, &%x,(07) converges to &*x(o) in H;. Furthermore, we have that x, € Bg((H,),(T)) for each n.
Also x € Br((H,),(T)). From previous theorem, we get

lim sup |[x,(0) — x(o)ll, = 0.
n= gelg,T]

Also, we have
Sl[?)pT ] |F (0, x4 (0), xu(h(s))) — F (0, x(0), x(h(s)))l|

<2mg(To)lllx, = Xl cry + IP" = Dxlley),r] = 0 as n— oo,

Therefore, 0 < 0y < 0, Eq (3.10) can be reframed as

S @IMO) + ([ + [ ) = P Tyl = $)F (s, xu(5), X, (h(5)))ds
0 oo (4.9)

X)) =9
+ 2 Sl — o)l w(x,(0)), o €[0,T].
i=1

we estimate the 1* integral of (4.9) as

NoW o’
O D mg(To) 2.

| f(a = 5P I Te = T, 55 s < T E

Thus, we deduce that
q g
1, (o) = Sp(a) My (0) - Z Sp(o — o)1 p(x,(07)) — f (0 = Y Tp(o = $)Fu(s, xu(5), X, (h(5)))ds]|
i=1
MW

AVE) B

Letting n — oo and getting

q o
(o) = Sp(@IMx(0) = > Sp( = I (x(e3)) — f (0 = V" Tp(o = $)F (s, x(5), x(h(s))ds|
i=1

NoW,; ‘7§
< T sz(TO)F-
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Since, o is arbitrary, we deduce x(o) satisfies the integral Eq (3.5). Now, we shall show the
uniqueness. Let x; and x, be the two solutions of integral Eq (3.5). Thus, we have

lx1(0) = x2(lle < f(U = P HIE T (o = I IF (5, x1(5), x1 ((5)))
0

q
= F (s, x2(5), x2(h(s))llds + Z ISs(o — )l Ii(x1 (o)) = Li(x2(0)]
i=1
_ BN - @)
T +B(1 - a))

(on
l—a)-1
f(o'— s 2mp(To)llxr = X2l )
0

q
+ N, W, Z Nillxr = xall@y g )-

i=1
Taking supremum on [0, o] and obtaining

BN, W\ T2 — )
T(1 +B(1 - a))

o
l—a)-1
11 = 2ol )y < f(O' — P mp(To)llx1 — Xl 0)ds
0

q
+ N, W, Z Nillx1 = X2l ()

i=1

From Gronwall’s inequality and the fact that

1
Ix1(0) = xa()ll < Il = Xl a)-
0

We deduce that x; = x, on [0, T]. O
5. Faedo-Galerkin approximation
Additionally, the convergence findings were accomplished using the Faedo-Galerkin approximation

technique.
There is a unique x € (H;).(T), T € (0, T)), that fulfils the integral equation,

Sp()My(0) + f (0 = sV 1T 5(0 — $)F (s, x(s), x(h(s)))ds
0

x(o) = g (5.1
+ 2 Sl — o)li(x(0})), o €[0,T].
i=1
An approximate integral equation has an unique solution x, € (H;),(7),
SpIMY(0) + [(0 = 5P Tp(o = $)Fu(s, xa(5), xa(h(5)))dss
Xa(0) = 0 (5.2)

3 840 — ) n(xa(0)), o € [0,T].
i=1
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The Faedo-Galerkin Approximation is produced by applying the projection on (5.2) as
va(0) = P xu(0),

Sp(a)MP"x(0) + f(O' - S)ﬁ_lﬁ(O' — S)P"F (s, P"x,(s), P"x,(h(s)))ds
0

ann(O') = Vn(O') =
+ 2 Spo — a) P (x,(077))
i-1

Sp(aIMP"x(0) + (fT(G = Y Tp(a = )P F (5, va(8), va(h($)))dss
0

valor) = . (5.3)
+ 2, Sp(o — )P (vi(0y)), o € [0,T].
i=1
Let solution x(-) of (5.1) and v,(-) of (5.3) have the following representation:
x(o) = Z a; ()i, ai(o) = (x(0),¢,), i=0,1,2,..., 5.4)
i=0
va(0r) = Z@?((T)% @} (o) = (vp(0), ), i =0,1,2, ... (5.5)

i=0
Using (5.5) in (5.3) and taking inner product with ¢;, we obtain a system of fractional order integro-
differential equation of the form.
4P
——@;(0) + L (o) = F' (0, a(0), @(0), ..., @, (0)),
doP
Ad(o) = D@ (o), k= 1,2, ...q,
@;(0) = Z, ()

Where,

P 0. 040, = (MO, D 0t ) ol ).
i=0 i=0

1 = (1 qu Z ACATARA]

k=1 i=1
Zi=(x(0),¢,), i=1,2,...n.
We also have the following convergence theorem.

Theorem 5.1. If the hypothesis (1)—(5) holds. The results follows:
(i) If xo € D(EY), then for any o € (0, T]

lim  sup  [|E¥[va(0) = V()] = 0. (5.6)

M= {n>m,oeloo,T1}

(ii) If xo € D(E), then

lim  sup  [|E%[va(0) = viu(o)]ll = O. (5.7)

M= {n>m,oe[0,T1}
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Proof. If n > m, 0 < @ < v. Then, we have

||Vn(0') - vm(o-)”a = “ann(o-) - mem(o-)”a

< ||Pn[xn(0-) - xm(o-)]”a + ”(Pn - Pm)xm”a

1
< @) = (@l + 21X (@)

By the Theorem 4.1 and Proposition 4.1, we have that x, — x,, and 4,, = co as m — oo. m|

Theorem 5.2. Suppose (1)—(5) is fulfilled, x, € D(EY), unique function v, € (H,),(T) exists, satisfying
the following equation:

Sp()MP"xy + f(O' — P T (0 — $)P"F (s, va(s))ds
0 (5.8)

Vn(O') = q
+ 2, Sl — o) Pl ,(vi(0y)), o € [0,T].
i1

Proof. For xy € D(E¥) and o € [0, T]. We have

va(o) = x(0)lle = IP"x,(07) = P"x(07) + P"x(0) — x(0)lo
< IP"(xy(0) = x(0Dllo + I(P" = Dx(0)le-

We have v, — x as n — oo according to the Theorem 4.2. As a result, the Theorem 4.2 leads to the
conclusion. The preceding theorem can be used to show @} to @;’s convergence. O

Theorem 5.3. Suppose (1)—(5) holds. Then,
(i) If xo € D(E?), then forany 0 < oy < T

n

lim sup [Z X% (o) — a(0))*] = 0. (5.9)
= gelg,T] =0

(ii) If xo € D(E), then
lim sup [Z L% ai(o) — al(o))*] = 0. (5.10)

n—o0
cel0.T] <=5

Proof. The system (*) determines the a!’s. It can be easily investigated that

ETx(e) = v()] = &' ) (@) - a}(o)]
i=0

= Z Al (ai(o) — @} (0))g;.
i=0
Thus,

167 [x(0) = v@IP = ) A el = (@)

i=0

As a result, the Theorems 5.1 and 5.2 lead to the conclusion. O
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6. Applications

Let the fractional impulsive differential system of sobolev type is of the form:

2
CDf,[w(O', x) — wylo, x)] + % = f(o,w(o,x)), x€ 8, o0 €[0,T], (6.1)
_ 2w(oy,x) L
Aw(o;, x) = SRR s i=1,2,..,q, xe(0,n), (6.2)
w(0, x) = wo(x), (6.3)
w(o,0)=w(o,1)=0,0<0<T,0<T < oo. (6.4)

Where CD(B, is Caputo derivative, 8 € (0, 1). Suppose w(o)(x) = w(o, x) and f(o,-) = F (0o, ). Let
Aw(o, x) = w(o, x) — w(o;, x), where w(o |, x) and w(o;, x) are respectively the right and the left
hand limit of w at (o, x) = (07, x).

Now, we take H; = H, = L*(0, 7) and consider the operator £, M on domains and ranges contained
in L*(0, 1) defined by

My =y —y”
Ly :_yll

An infinitesimal generator of an analytic semigroup is denoted by & = LM™!, such that

with the domain
D(E) = {y € H, : y, y'are absolutely continuous y” € H;, y(0) = y(x) = 0}
If we take 8 = %, then D(E?) which is denoted by B 1 is the Banach space endowed with the norm,

1 1
lxlly = 1182 xll, x € D(E?).

1
Also, for o € [0, T]. we define D; = {y : y is a map from [0, T'] into ,6’% > x(0) is continuous at o # 0
left continuous at o = o; and right limit x(c}) exists fori = 1,2, ..., g}.
The spectrum of & is given by &y = —y” = ay. The general solution y of Ey = ay is

y(x) = C cos( Vax) + D sin( Vax).

Using the boundary conditions y(0) = y(r) = 0. we obtain C = 0, a = @, = n?, n € N. Thus for each
n € N, the solution is given by y,(x) = Dsinnx. If we take D = %, then < y,,y,, >= 0, n # m and
< Yu, Ym >= 1, n = m. Thus & has pure point spectrum and eigenvalues y, are orthonormal.
Suppose, I;(w(o;, x)) = % Let us define y(o)(x) = w(o, x) and I;(w(o, x)) = I;(x(0;))(y) then
2y(c:)

I,(y(o)) = et For y;,y, € D(ﬂ%), we have
i) = Lyl < Mlyr = yalls,

AIMS Mathematics Volume 8, Issue 2, 4645-4665.



4662

Loy < il

Now, we define

f(o, x(0)) = F (o, w(T, X)),
L;(w(o, X)) = L(x(o))(y),
¢(o)(x) = g(o, x),

then problem (6.1)—(6.4) reduces to

‘DEIMx(0)] = Lx(o) + F (o, x(0), x(h(0))), o € [0,T],
Ax(oy) = Ii(x(0y)), i =1,2,...,q, g €N,
g(x) = ¢.

It is easy to see that the operator & fulfils (1). Also, by Holder continuity of A, fulfils (3). Then, from
the definitions, it can be easily shown that y and /; are satisfies (4) and (5).
Now we prove that F satisfies the condition (2):

lF (01,21, w1) = F (02, 22, wo)ll 12
1
2

SL[fIT(oq(x, o), 21(x, o), wi(x, o)) — F(02(x, o), 22(x, 0°), wa(x, o)) dx
0

n 1

SL[ f (e1(x, @) = a2(x, )| + (21 (x, ) = z2(x, ) |I*}dx i
0
<L2L[loy — o2l + |lz1 = zallz2]-

Hence (2) holds.
Thus, all the assumptions of Theorem 5.2 are satisfied. So, Theorem 5.2 guarantees the existence
of Faedo-Galerkin approximations and their convergence to the unique solution of (6.1)—(6.4).

7. Conclusions

The Faedo-Galerkin approximation outcomes for Caputo fractional impulsive derivative of Sobolev
type with nonlocal condition are the main subject of this paper. The major ideas were developed by
utilising the analytic semigroup and the Banach fixed point theorem. Finally, we give examples to
back up our abstract conclusion. In future, it might be used to find the generalization in fractional
differential equations.
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