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1. Introduction

Fractional calculus and its potential applications have grown in importance because fractional
calculus has evolved into a powerful tool with more accurate and successful results in modeling
various complex phenomena in a wide range of seemingly diverse and widespread fields of science
and engineering. This technology could be used in physics, signal processing, wave propagation,
robotics, and other fields [1–8] and there are research papers on the theory of fractional differential
equations [9–38].
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The evolution of a physical system in time is described by an initial and boundary value problem,
i.e., a differential equation (ordinary or partial) and an initial or boundary condition. In many cases, it
is better to have more information on the conditions. The local condition is replaced then by a
non-local condition, which gives a better effect than the local initial or boundary condition, since the
measurement given by a non-local condition is usually more precise than the only one measurement
given by a local condition. The study of initial value problems with non-local conditions is of
significance, since they have applications in problems in physics and other areas of applied
mathematics.

Hilfer [24] developed a new sort of fractional derivative that combines Riemann-Liouville (R-L)
and Caputo fractional derivative (FDs). Impulsive differential equaitions plays an important role in the
real life applications. Many authors have examined the applications of this, see [19,20,22,23]. Inspired
by this work, several scholars have recently expressed a strong interest in this area, and readers can
consult past investigations [25, 29]. Various authors studied the outcomes of controllability results for
linear and nonlinear integer-order differential equations in [10, 11, 14–17, 21, 26, 29–34].

Nonetheless, to the best of our knowledge, the topic of controllability addressed in this article
has not been studied, which provides an impetus for our research. The Hilfer fractional implusive
differential equation (H-FIDEs) have the following form:

Dζ,η
0+ u(t) = Au(t) + F(t, ut) + Bv(t), t ∈ Y = (0, p], t , tk, (1.1)
∆u|t=tk = Ik(u(t−k )), k = 1, 2, . . . ,m, (1.2)

I(1−ζ)(1−η)
0+ u(t) = ϕ(t) + g(yt1 , yt2 , yt3 , · · · , ytm) ∈ Pg, (1.3)

where Dζ,η
0+ denotes the Hilfer FD of order ζ and type η. Also, 0 ≤ ζ ≤ 1; 1

2 < η < 1 and (U, ∥ · ∥) is a
Banach space and A denotes the infinitesimal generator of a strongly continuous functions of bounded
linear operators {T (t)}t≥0 on U. A suitable function F : Y × Pg → U is connected with the phase space
uθ(t) with the mapping ut : (−∞, 0] → U, uθ(t) = u(t + θ), θ ≤ 0. Here, v(·) is provided in L2(Y,V), a
Banach space of admissible control functions; 0 < t1 < t2 < t3 < · · · , < tm ≤ p, g : Pg → Pg denotes
continuous functions.

The article is organized as follows: Section 2 introduces a few key notions and definitions related to
our research that will be used throughout the discussion of this article. Section 3 is flipped to discuss
the controllability results of the H-FIDEs. Finally, Section 4 provides an example to illustrate the
theory.

2. Preliminaries

Now we recall some definitions, concepts, and lemmas chosen to achieve the desired outcomes.
Let PC(Y,U) be the Banach space of all continuous function spaces from Y → U. Assume that
γ = ζ +η− ζη, In our case,(1−γ) = (1− ζ)(1−η). Now, define C1−γ(Y,U) = {u : t1−γz(t) ∈ PC(Y,U)},
along ∥ · ∥γ defined by ∥u∥γ = sup{t1−γ∥u(t)∥, t ∈ Y, γ = (ζ + η − ζη)}. Clearly, C1−γ(Y,U) is a Banach
space. We introduce F with norm, ∥F∥Lµ(Y,R+), whenever F ∈ Lµ(Y,R+) for some µ with 1 ≤ µ ≤ ∞.

We will now discuss some significant fractional calculus results (see Hilfer [24]).
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Definition 2.1. Let F : [p,+∞)→ R and the integral

Iηp+F(t) =
1
Γ(η)

∫ t

p
F(θ)(t − θ)η−1dθ, t > p, η > 0

be called the left-sided R-L fractional integral of order η having a lower limit p of a continuous
function, where Γ(·) denotes the gamma function provided that the right-hand side exists.

Definition 2.2. Let F : [p,+∞)→ R and the integral

(R−L)Dη
p+F(t) =

1
Γ(k − η)

(
d
dt

)k ∫ t

p

F(t)
(t − θ)k−η−1 dt, t > p, k − 1 < η < k

be called the left-sided (R-L) fractional derivative of order η ∈ [k − 1, k), where k ∈ R.

Definition 2.3. Let F : [p,+∞)→ R and the integral

Dζ,η
p+F(t) =

(
Iζ(1−η)

p+ D
(
I(1−ζ)(1−η)

p+ F
))

(t)

be called the left-sided Hilfer-fractional derivative of order 0 ≤ ζ ≤ 1 and 0 < η < 1 function of F(t) .

Definition 2.4. Let F : [p,+∞)→ R and the integral

CDµ
p+F(t) =

1
Γ(k − η)

dk

dtk

∫ t

p
F

(k)(t)(t − θ)k−η−1dt, t > p, k − 1 < η < k

be called the left-sided Caputo’s derivative type of order η ∈ (k − 1, k), where k ∈ R.

Remark 2.5. (i) The Hilfer FD coincides with the standard (R-L) FD; if ζ = 0, 0 < η < 1 and p = 0,
then

D0,η
0+ F(t) =

d
dt

I1−η
0+ F(t) =(R−L) Dη

0+F(t);

(ii) The Hilfer FD coincides with the standard Caputo derivative; if ζ = 1, 0 < η < 1 and p = 0, then

D1,η
0+ F(t) = I1−η

0+
d
dt
F(t) =C Dη

0+F(t).

Let us characterize the abstract phase space Pg and refer to [35] for more details. Consider that
g : (−∞, 0]→ (0,+∞) is continuous along j =

∫ 0

−∞
g(λ)dλ < +∞. For each k > 0,

P = {ψ : [−i, 0]→ U such that ψ(λ) is bounded and measurable} ,

along
∥ψ∥[−i,0] = sup

δ∈[−i,0]
∥ψ(δ)∥

for all ψ ∈ P.
Now, we define

Pg =

{
ψ : (−∞, 0]→ U such that for any i > 0, ψ|[−i,0] ∈ P and

∫ 0

−∞

g(δ)∥ψ∥[δ,0]dδ < +∞
}
,
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provided that Pg is endowed along

∥ψ∥Pg =

∫ 0

−∞

g(δ)∥ψ∥[δ,0]dδ

for all ψ ∈ Pg; therefore, (Pg.∥ · ∥Pg) is a Banach space.
Now, we discuss

Pg
′ =

{
u : (−∞, p)→ U such that u|Y ∈ C(Y,U), u0 = ψ ∈ Pg, k = 0, 1, . . . , n

}
,

where uk is a limitation of u to Y = (λk, λk+1] for k = 0, 1, . . . , n.
Set ∥ · ∥p as semi-norm in Pg′ defined by

∥u∥p = ∥ϕ∥Pg + sup ∥u(χ)∥ : χ ∈ [0, p]}, u ∈ P′g.

Lemma 2.6. Assuming u ∈ Pg′; then, for λ ∈ Y, u ∈ P′g. Moreover,

j|u(λ)| ≤ ∥uλ∥Pg ≤ ∥ϕ∥Pg + j sup
δ∈[0,λ]

∥u(δ)∥,

where

j =
∫ 0

−∞

g(λ)dλ < +∞.

Lemma 2.7. A continuous function u : (−∞, p] → U is said to be an integral solution of H-FIDEs
(1.1)–(1.3) if

(i) u : [0, p]→ U is continuous;
(ii) Ib

o+u(t) ∈ D(A) for t ∈ [0, p]; and
(iii) For [0, p], the system u(t) satisfies

u(t) =
ϕ0

Γ(ζ(1 − η) + η)
t
(ζ−1)(1−η)

+ g(yt1 , yt2 , yt3 , · · · , ytm)

+
1
Γ(η)

∫ t

0
(t − ϱ)(η−1)

F(ϱ, uϱ)dϱ

+
1
Γ(η)

∫ t

0
(t − ϱ)(η−1)Bv(ϱ)dϱ,

+
∑

0<ti<t

S ζ,η(t − ti)Ii(u(t−i ))

for t ∈ Y.

Remark 2.8. We introduce the mild solution of the H-FIDEs by introducing the Wright function to
M(ψ). (1.1)–(1.3) as follows:

M(ψ) =
∞∑

k=1

(−ψ)k−1

(k − 1)!Γ(1 − kη)
, 0 < η < 1, ψ ∈ C
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and it satisfies ∫ ∞

0
ψϱM(ψ)dψ =

Γ(1 + ϱ)
Γ(1 + ηϱ)

for ψ ≥ 0.

Lemma 2.9. If the H-FIDEs (1.1)–(1.3) are satisfied, then ∃ F : Y × Ph → U; we get

u(t) = S ζ,η(t)[ϕ0 + g(yt1 , yt2 , yt3 , · · · , ytm)] +
∫ t

0
Pη(t)F(t, uϱ)dϱ

+

∫ t

0
Pη(t)Bv(ϱ)dϱ +

∑
0<ti<t

S ζ,η(t − ti)Ii(u(t−i )),

where t ∈ Y,

Qη(t) =
∫ ∞

0
ηψM(ψ)S (tηψ)dψ

and
Pη(t) = tη−1Qη(t); S ζ,η(t) = Iζ(1−η)

0+ (t)tη−1Qη(t).

Definition 2.10. A continuous function u : (−∞, p] → U is defined as a mild solution of H-FIDEs
(1.1)–(1.3) if u0 = ϕ(0) ∈ Pg on (−∞, 0] that satisfies

u(t) = S ζ,η(t)[ϕ(0) + g(yt1 , yt2 , yt3 , · · · , ytm)] +
∫ t

0
(t − ϱ)η−1Qη(t − ϱ)F(ϱ, uϱ)dϱ

+

∫ t

0
(t − ϱ)η−1Qη(t − ϱ)Bv(ϱ)d(ϱ)

+
∑

0<ti<t

S ζ,η((t − ti))Ii(u(t−i )), (2.1)

where t ∈ Y,

S ζ,η(t) =
∫ ∞

0
χη(ψ)M(tηψ)dψ,

Qη = η

∫ ∞

0
ψχη(ψ)M(tηψ)dψ

are the characteristic solution operators and for ψ ∈ (0,∞),

χη(ψ) =
1
η
ψ−1− 1

η wη(ψ−
1
η ) ≥ 0,

wη(ψ) =
1
π

∞∑
k=1

(−1)n−1ψ−nη−1Γ(nη + 1)
n

sin(nπη).

Here, χη is a probalility denisty function(pdf) defined on (0,∞), that is, χη(ψ) ≥ 0, ψ ∈ (0,∞) and∫ ∞
0
χη(ψ)dψ = 1.
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Remark 2.11. For v ∈ [0, 1], we have∫ ∞

0
ψvχη(ψ)dψ =

∫ ∞

0
ψ−ηvψη(ψ)dψ =

Γ(1 + v)
Γ(1 + ηv)

.

Lemma 2.12. The functions S ζ,η and Qη satisfy the following:

(i) Any fixed t ≥ 0, S ζ,η and Qη are linear and bounded that is, for any u ∈ U,

∥S ζ,η(t)u∥ ≤
Mtγ−1

Γ(ζ(1 − η) + η)
∥u∥ and ∥Qη(t)u∥ ≤

M
Γ(η)
∥u∥,

where S ζ,η(t) = Iζ(1−η)
0+ Pη(t) and Pη(t) = tη−1Qη(t);

(ii) {S ζ,η(t)}t≥0 and {Qη(t)}t≥0 are strongly continuous functions.

Lemma 2.13. The H-FIDEs (1.1)–(1.3) are said to be controllable on Y for every ϕ ∈ Pg, u1 ∈ U;
there exists v ∈ L2(Y,V) such that the mild solution u(t) of (1.1)–(1.3) satisfies u(p) = u1.

Lemma 2.14. {Qη(t)}t≥0 and {S ζ,η(t)}t≥0 are strongly continuous, that is, for any u ∈ U, 0 < t′ < t′′ ≤ p,

∥(t′)η−1Qη(t′)u − (t′′)η−1Qη(t′′u∥ → 0

and ∥S ζ,η(t′)u − S ζ,η(t′′)u∥ → 0 as t′′ → t′.

We now present the basic result on measures of non-compactness (MNCs).

Definition 2.15. ([26]). Assume F+ is the positive cone of ordered Banach space (F,≤). The value of
F+ is said to be an MNC on U of D defined on the set of all bounded subsets of U iff D(coα) = D(α) for
all bounded subsets α ∈ U, where coϕ is a closed convex hull of α. The measure of non-compactness
ϕ is said to be the following:

(i) Monotone iff, for all bounded subsets α,α1, α2 of U we have (α1 ⊆ ϕ2)⇒ (D(α1) ≤ D(α2));
(ii) Non-singular iff D({c} ∪ α) = D(α) for every c ∈ U, α ⊂ U;

(iii) Regular iff D(α) = 0 iff α is relatively compact in U.
The MNC of the Hausdorff R is defined on each bounded subset α of U by

R(α) = inf {D > 0 : α can be covered by a finite number of balls of radii smaller than D}

for all bounded subsets α, α1, α2 of U;
(iv) R(α1 + α2) ≤ R(α1) + R(α2), where α1 + α2 = {x1 + x2 : x1 ∈ α1, x2 ∈ α2};
(v) R(α1 + α2) ≤ max{R(α1),R(α2};

(vi) R(ρα) ≤ |ρ|R(α) for any ρ ∈ R;
(vii) Let Z be a Banach space. If Q is Lipschitz continuous with the mapping Q : E(Q) ⊆ U → Z with

i > 0, then RZ(Qα) ≤ iR(α) for any bounded subset α ⊆ E(Q).

Lemma 2.16. If H ⊂ C(Y,U) is bounded and eqicontinuous, then t → R(H(t)) is continuous for any
t ∈ Y,

R(H) = sup
t∈Y

{R(H(t)), t ∈ Y},

where H(t) = {u(t) : u ∈ H} ⊆ U.
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Theorem 2.17. {vm}m=1
∞ is a sequence of Bochner integrable functions from Y → U with the

estimation ∥vm(t)∥ ≤ ϵ(t) for almost all t ∈ Y and every m ≥ 1, where ϵ ∈ L′(N,R); then,

α(t) = R({vm(t) : m ≥ 1}) ∈ L1(N,R) and satisfies R
(
{
∫ t

0
vm(ϱ)dϱ : m ≥ 1}

)
≤ 2

∫ t
0
ϕ(ϱ)dϱ.

Lemma 2.18. Suppose F is a closed convex subset of U and t ∈ F, X : E → Y is continuous which
fulfills Monch’s cndition, i.e., P ⊆ F is countable, P ⊆ co(0) ∪G(P)) ⇒ P is compact. Then, X has a
fixed point in F.

3. Controllability results

This section is mainly focusing on the mild solutions of H-FIDEs (1.1)–(1.3). Consider the
following assumptions for the discussion of H-FIDEs (1.1)–(1.3):

(H0) For all bounded subsets F ⊂ U and u ∈ F,

∥T (t2ηϱ)u − T (t1ηϱ)u∥ → 0, ast2 → t1

for each fixed ϱ ∈ (0,∞).
(H1) F : [0, p] × Ph → U fulfiles the following:

(i) Let F(·, ϕ) be a measurable function ∀ϕ ∈ Pg and F(t, ·) be continuous for t ∈ Y and for u ∈
Pg,G(·, ·) : [0,T ]→ U is strongly measurable.

(ii) ∃ q1 ∈ (0, η), η ∈ (0, 1) and l1 ∈ L
1

q1 (U,R+) and α : R+ → R+ ∋ ∥G(t, ϕ)∥ ≤ l1(t)ψ(t1−γ∥ϕ∥Pg, for
all (t, ϕ) ∈ Y × Pg where Φ satisfies lim infm→∞

Φ(m)
m = 0.

(iii) ∃ q2 ∈ (0, η) and l2 ∈ L
1

q1 (Y,R+) such that for any bounded subset G1 ⊂ Pg,

R(F(t,G1)) ≤ l2(t)
[

sup
−∞<α≤0

R(G1(ρ))
]

for a.e. t ∈ Y, where G1(ρ) = {D(ρ) ∈ E1} and R is the Hausdroff measure of non-compactness.
(iv) Let Ii : F 7→ F denote continuous functions and there exists a constant N > 0 such that, for all
t ∈ Y, we have ∥Ii(u1) − Ii(u2)∥ ≤ N∥u1 − u2∥.

(H2) The operatorW : L2(Y,V)→ U which is bounded and defined by

Wv =
∫ p

0
(p − ϱ)η−1Qη(t − ϱ)Bv(ϱ)dϱ,

satisfies the following:
(i) The bounded linear operator W having an inverseW−1 takes value in L2(Y,V)/KerW; there

exist Nb > 0and Nw > 0, such that ∥B∥ ≤ Nb and ∥W−1∥ ≤ Nw.
(ii) For q3 ∈ (0, η) and for every bounded subset F ∈ U,∃ l2 ∈ L

1
q3 (J,R+) such that R((W−1)(t)) ≤

l3(t)R(F). Here, li ∈ L
1

q3 (J,R+)and qi ∈ (0, η), i = 1, 2, 3.
(H3) The function g : Pn → P is continuous; there exists Li(g) > 0 such that

∥g(v1, v2, · · · , vn) − g(w1,w2, · · · ,wn)∥ ≤
m∑

i=1

Li(g)∥vi − wi∥Pg ,

for all vi,wi ∈ Pg and consider Ng = sup{∥g(v1, v2, · · · , vm)∥ : vi ∈ Pg}.
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Let us introduce

N1 = k1∥l1∥
L

1
q1

(Y,R+) ,N2 = k2∥l2∥
L

1
q2

(Y,R+) ,

N3 = k3∥l1∥
L

1
q3

(Y,R+) ,

ki =

[(
1−qi
η−qi

)
p
η−qi
1−qi

]1−qi

, i = 1, 2, 3,K = η−1
1−q ,

N∗ =
p(1+K)(1−q)

(1 + K)(1−q) , q, qi ∈ (0, η).

Theorem 3.1. Suppose (H0)–(H2) are satisfied;then, the H-FIDEs (1.1)–(1.3) are controllable on
[0, p] if

C∗
2NN2 p1−γ

Γ(η)

[
1 +

2NNbN3

Γ(η)

]
< 1 f orsome

1
2
< η < 1. (3.1)

Proof. By using (H2), we define the control vu(t) by

vu(t) =W−1

×

u1−S ζ,η[ϕ(0) + g(yt1 , yt2 , yt3 ,· · ·, ytm)−
∫ p

0
(p−ϱ)η−1Qη(p−ϱ)F(ϱ, uϱ)dϱ+

∑
0<ti<t

S ζ,η(t−ti)Ii(u(t−i ))

 (t).

Let α : Pg′ → Pg′ be defined by

αu(t) =


ϕ(t), t ∈ (−∞, 0]

S ζ,η(t)[ϕ(0) + g(yt1 , yt2 , yt3 , · · · , ytm)] +
∫ t

0
(t − ϱ)η−1Qη(t − ϱ)F(ϱ, uϱ)dϱ

+
∫ t

0
(t − ϱ)η−1Qη(t − ϱ)Bvu(ϱ)dϱ

+
∑

0<ti<t S ζ,η(t − ti)Ii(u(t−i )), t ∈ Y.

(3.2)

For ϕ ∈ Pg, we define ϕ by

ϕ̂(t) =

ϕ(t), t ∈ (−∞, 0]
S ζ,η(t)ϕ(0), t ∈ Y;

then ϕ ∈ Pg′. Let u(t) = t1−γ[w(t) + ϕ̂(t)], −∞ < t ≤ p. It can be easily shown that u from (2.1) iff w
satisfied w0 = 0 and

W(t) =
∫ t

0
(t − ϱ)η−1Qη(t − ϱ)F(ϱ, ϱ1−γ[wϱ + ϕ̂ϱ])dϱ

+

∫ t

0
(t − ϱ)η−1Qη(t − ϱ)Bvw(ϱ)dϱ

+
∑

0<ti<t

S ζ,η(t − ti)Ii(u(t−i )),
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where

vw(t) =W−1[u1 − S ζ,η(p)[ϕ(0) + g(yt1 , yt2 , yt3 , · · · , ytm)] −
∫ p

0
(p − ϱ)η−1Qη(p − ϱ)

× F(ϱ, ϱ1−γ[Wϱ + ϕ̂ϱ])dϱ +
∑

0<ti<t

S ζ,η(t − ti)Ii(u(t−i ))](t).

Let P′′g = {w ∈ Pg
′ : w0 = 0 ∈ Pg}. For any w ∈ P′′g ,

∥w∥p = ∥w0∥Pg + sup{∥w(ϱ)∥} : 0 ≤ ϱ ≤ p}

= sup{∥w(ϱ)∥ : 0 ≤ ϱ ≤ p}.

Hence, (Pg′′, ∥.∥p) is a Banach space. Now, q > 0; choose Gq = {w ∈ Pg′′ : ∥w∥p ≤ q}; then, Gq ⊆ Pg
′′

is uniformly bounded, and for w ∈ Gq, in view of Lemma 2.6,

∥wt + ∥ϕ̂t∥Pg ≤ ∥wt∥Pg + ∥ϕ̂t∥Pg ≤ j
(
q +

M|ϕ|
Γ(ζ(1 − η) + η)

)
+ ∥ϕ∥Pg = q′. (3.3)

Let us introduce an operator Φ̃ : P′′g → P
′′
g , defined by

Φ̃w(t) =


0, t ∈ (−∞, 0],∫ t

0
(t − ϱ)η−1Qη(t − ϱ)F(ϱ, ϱ1−γ[wϱ + ϕ̂ϱ])dϱ

+
∫ t

0
(t − ϱ)ϱ−1Qη(t − ϱ)Bvw(ϱ)dϱ+∑

0<ti<t S ζ,η(t − ti)Ii(u(t−i )), t ∈ Y.

(3.4)

Next, to prove that Φ̃ has a fixed point, our proof contains the subsequent four steps.

Step 1. Let us prove that there exists a q > 0 such that Φ̃(Gq) ⊆ Gq. If not, then ∃wq ∈ Gq. But
Φ̃(wq) < Gq that is ∥(Φ̃wq)(t)∥ > q for all t ∈ Y.

Choose q > 0, and let {Gq = u ∈ C : ∥u∥γ ≤ q}. Obviously, Gq is a closed, bounded and convex set
of C. Therefore,

∥Φ̃(uq)∥γ ≡ sup{t1−γ∥Φ̃(uq)(t)∥, t ∈ Y : ∥Φ̃(uq)(t)∥ > q}.

By using Hölder’s-inequality, Lemma 2.12, (H1) and (H2), we get

q < sup
t∈F

t
1−γ∥Φ̃(ωq)(t)∥

≤ p1−γ

∥∥∥∥∥∥
∫ t

0
(t − ϱ)η−1Qη(t − ϱ)F(ϱ, ϱ1−γ[wϱ

q + ϕ̂ϱ])dϱ

∥∥∥∥∥∥
+ p1−γ

∥∥∥∥∥∥
∫ t

0
(t − ϱ)η−1Qη(t − ϱ)Bvωq(ϱ)dϱ

∥∥∥∥∥∥
+ p1−γ

∑
0<tk<t

∥S ζ,η(t)Ii(u(t−i ))∥

≤
N p1−γ

Γ(η)

∥∥∥∥∥∥
∫ t

0
(t − ϱ)η−1

F(ϱ, ϱ1−γ[ωϱ
q + ϕ̃ϱ])dϱ

∥∥∥∥∥∥
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+
N p1−γ

Γ(η)

∥∥∥∥∥∥
∫ t

0
(t − ϱ)η−1Bvωq(ϱ)dϱ

∥∥∥∥∥∥
+

Ntβ−1 p1−γ

Γ(ζ(1 − η) + η)

∑
0<ti<t

∥Ii(u(t−i ))∥

≤
N p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1l1Φ(q′)dϱ

+
N p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1∥BW−1(×)[u(p) − S ζ,η(t)[ϕ(0) + g(yt1 , yt2 , yt3 , · · · , ytm)]

−

∫ p

0
(p − ϱ)η−1Qη(p − ϱ)F(ϱ, ϱ1−γ[Wq

ϱ + ϕ̂ϱ])dϱ∥](ϱ)dϱ +
NN

′

tβ−1 p1−γ

Γ(ζ(1 − η) + η)
∥u∥

≤
N p1−γ

Γ(η)
∥

∫ t

0
(t − ϱ)η−1l1ψ(q′)dϱ +

NNbNω[p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1∥u1∥

+
N pγ−1

Γ(ζ(1 − η) + η)
∥ϕ(0)∥ +

N
Γ(η)

∫ d

0
(d − ϱ)η−1l1Φ(q′)dϱ]dϱ +

NN
′

tβ−1 p1−γ

Γ(ζ(1 − η) + η)
∥u∥

≤
NN1 p1−γ

Γ(η)
Φ(q′) +

NNbMω

Γ(η)
N∗

[
p1−η∥u1∥

+
N

Γ(ζ(1 − η) + η)
∥ϕ)(0)∥ +

NN1 p1−γ

Γ(η)
Φ(q′)

]
+

NN
′

tβ−1 p1−γ

Γ(ζ(1 − η) + η)
∥u∥t ∈ Y. (3.5)

Divide (3.5) by q, and letting q→ ∞, we have

1 ≤
NN1 p1−γ

Γ(η)
Φ(q′)

(
1 +

NNbNω

Γ(η)
N∗

)
, t ∈ Y. (3.6)

and then by (H1)(ii), (3.6) is a contradiction. Hence, Φ̃(Gq) ⊆ Gq

Step 2. Φ̃ is continuous on Gq. For any ωm, ω ∈ Gq(Y), m = 0, 1, 2, · · · with limm→∞ ω
m = ω, then

we have limm→∞ ω
m = ω(t) and

lim
m→∞
t
1−γωm(t) = t1−γω(t).

Let u(t) = t1−γ[ω(t)+ ϕ̂(t)]; then, {ωm + ϕ̂} ⊂ Gq with ωm + ϕ̂→ ω+ ϕ̂ in Gq as m→ ∞. Then, we have

F(t, um(t)) = F(t, t1−γ[wm(t) + ϕ̂(t)])→
F(t, t1−γ[w(t) + ϕ̂(t)]) = F(t, u(t)), as,m→ ∞,

where F(t, t1−γ[ωm(t)+ ϕ̂(t)]) = Gm(ϱ) and F(t, t1−γ[ω(t)+ ϕ̂(t)]) = G(ϱ). Then, by using the hypotheses
(H1) and Lebesgue’s dominated convergence theorem, we have∫ t

0
(t − ϱ)η−1∥Gm(ϱ) −G(ϱ)∥dϱ→ 0 as m→ ∞, t ∈ Y. (3.7)

Now, by (H1),
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∥Φ̃ωm − Φ̃w∥C ≤ p1−γ∥

∫ t

0
(t − ϱ)η−1Qη(t − ϱ)[F(ϱ, ϱ1−γ[ωm

ϱ + ϕ̂ϱ]) − F(ϱ, ϱ1−γ[ωϱ + ϕ̂ϱ])]dϱ∥

+p1−γ∥B∥∥
∫ t

0
(t − ϱ)η−1Qη(t − ϱ)B[vωm(ϱ) − vω(ϱ)]dϱ∥

+p1−γ∥S ζ,η(t)∥
∑

0<ti<t

∥Ii(um(t−i )) − Ii(u(t−i ))∥

≤
N p1−γ

Γ(η)

∥∥∥∥ ∫ t

0
(t − ϱ)η−1[F(ϱ, ϱ1−γ[ωm

ϱ + ϕ̃ϱ])] − F(ϱ, ϱ1−γ[wϱ + ϕ̃)]dϱ
∥∥∥∥

+
NNb p1−γ

Γη

∥∥∥∥ ∫ t

0
(t − ϱ)η−1[vωm(ϱ) − vω(ϱ)]dϱ∥

+
NN

′

tβ−1 p1−γ

Γ(ζ(1 − η) + η)
∥um(t−i ) − u(t−i )∥

≤
N p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1[Gm(ϱ) −G(ϱ)]dϱ

+
N2NbNωp1−η

Γ(η)2

∫ t

0
(t − ϱ)η−1

(×)(
∫ p

0
(p − ϱ)η−1)|Gm(ϱ) −G(ϱ)]dϱ)dϱ +

NN
′

tβ−1 p1−γ

Γ(ζ(1 − η) + η)
∥um(ϱ) − u(ϱ)∥. (3.8)

Observing (3.7) and (3.8), we have ∥Φ̃ωn−Φ̃ω∥C → 0, m→ ∞, Therefore, Φ̃ ∈ Φ(Gq) is continuous
on Gq.

Step 3. Φ̃(Gq) is equi-continuous on Y. for all α ∈ Φ̃(Gq) such that ∥α(t2) − α(t1)∥ → 0 as t2 → t1.

α(t) = S ζ,η(t)[ϕ0 + g(yt1 , yt2 , yt3 , · · · , ytm)] +
∫ t

0
(t − ϱ)µ−1Qη(t − ϱ)G(ϱ)dϱ

+

∫ t

0
(t − ϱ)µ−1Qη(t − ϱ)Bvω(ϱ)dϱ

+
∑

0<tk<t

S ζ,η(t − tk)Ii(u(t−i )).

Let 0 < ϵ < t and 0 < t1 < t2 < p. Then, Φ̃(Gq) is equicontinuous on Y.

∥α(t2) − α(t1)∥ = ∥t1−γ2

∫ t2

0
(t2 − ϱ)η−1Qη(t2 − ϱ)[G(ϱ) + Bvω(ϱ)]dϱ

−t
1−γ
1

∫ t1

0
(t1 − ϱ)η−1Qη(t1 − ϱ)[G(ϱ) + Bvω(ϱ)]dϱ∥

+
∑

0<ti<t2−t1

∥S ζ,η(t2) − S ζ,η(t1)∥∥Iiu(t−i )∥

≤ t
1−γ
2 ∥

∫ t2

t1

(t2 − ϱ)η−1Qη(t2 − ϱ)[G(ϱ) + Bvω(ϱ)]dϱ∥
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+∥

∫ t1

t1−ϵ

t
1−γ
2 (t2 − ϱ)η−1[Qη

×(t2 − ϱ) − Qη(t1 − ϱ)][G(ϱ) + Bvω(ϱ)]dϱ∥

+∥

∫ t1

t1−ϵ

[t1−γ2 (t2 − ϱ)η−1 − t
1−γ
1 (t1 − ϱ)η−1]

×Qη(t1 − ϱ)[G(ϱ) + Bvω(ϱ)]dϱ∥

+∥

∫ t1−ϵ

0
t
1−γ
2 (t2 − ϱ)η−1[Qη(t2 − ϱ) − Qη(t1 − ϱ)]

×[G(ϱ) + Bvω(ϱ)]dϱ∥ + ∥
∫ t1−ϵ

0
[t1−γ2 (t2 − ϱ)η−1 − t

1−γ
1

×(t1 − ϱ)η−1)[Qη(t1 − ϱ)[G(ϱ) + Bvω(ϱ)]dϱ∥ + +
NN

′

Γ(ζ(1 − η) + η)
(tγ−1

2 − tγ−1
1 )∥u∥.

∥α(t2)−α(t1)∥ becomes zero as t2− t1 → 0 by using absolute continuity of the Lebesgue dominance
theorem. Hence, Φ̃(Gq) is equicontinuous on Y.

Step 4. Let us verify Mönch’s condition.
Let ω0(t) + ϕ̂(t) = t1−γS ζ,η(t)ϕ̂0 for all t ∈ Y and wn+1 + ϕ̂(t) = Φ̃[wn + ˆϕ(t)], n = 0, 1, 2, 3, · · · and Φ̃

be relatively compact.
Assume H ⊂ Pq is countable and H ⊆ conv{0} ∪ ψ̃(H). Our aim here is to show that R(H) = 0,

where R is the Hausdroff measure of non compactness. Suppose H = {ωn + {ϕ}∞n=1}. Now we have to
show that Φ̃(H)(t) is relatively compact in Y, for all t ∈ Y. From Theorem 2.17

R(H(t)) = R({(wn + ϕ)(t)}∞n=0)
= R({(w0 + ϕ)(t)} ∪ {(wn + ϕ)(t)}∞n=1)
= R({wn(t) + ϕ(t)}∞n=1),

and

R({ψ̃wn(t)}∞n=1) = R({t1−γ
∫ t

0
(t − ϱ)η−1

×Qη(t − ϱ)[Gn(ϱ) + Bvun(ϱ)]dϱ}∞n=1)
= I1 + I2,

where

I1 =
2Nd1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1R({Gn(ϱ)}∞n=1)dϱ

≤
2N p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1R({F(ϱ, ϱ1−γ[wn

ϱ + ϕ̂ϱ])}
∞
n=1dϱ

≤
2N p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1l2(ϱ) sup

−∞<θ≤0
R({F(ϱ1−γ[ωn(ϱ + φ) + ϕ̂(ϱ + φ)])}∞n ))dϱ

≤
2N p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1l2(ϱ) sup

0≤ψ≤ϱ
R(H(ψ))dϱ,
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I2 =
2NNb p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1R({vun(ϱ)}∞n=1)dϱ

≤
2NNb p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1[

2N
Γ(η)

×

∫ p

0
(p − ϱ)η−1R({F(ϱ, ϱ1−γ))[ωn

ϱ + {(ϕ̂)}∞n=1}dϱ]dϱ

≤
4N2Nb p1−γ

Γ(η)

∫ t

0
(t − ϱ)η−1l3(ϱ)

×

∫ t

0
(t − ϱ)η−1l2(ϱ) sup

0<ψ≤ϱ
R(H(ψ))dϱ]dϱ,

I1 + I2 = [
2NN2 p1−γ

Γ(η)
+

4N2NbN2N3 p1−γ

Γ(η)2 ] sup
0<θ≤ϱ
R(H(ψ))

≤
2NN2 p1−γ

Γ(η)

[
1 +

2NN3Nb p1−γ

Γ(η)

]
× sup

0<ψ≤ϱ
R(H(ψ)).

From Lemma 2.16, R(Φ̃(H)) ≤ C∗R(H), where C∗ is defined in 3.1. Then, from Mönch’s condition,

R(H) ≤ (conv{0}
⋃

(Φ̃)))

= R(Φ̃)
≤ C∗R(H),

R(H) = 0 and then H is relatively compact. From Lemma 2.18, Φ̃ has a fixed point ω in Gq. Therefore,
u = ω + ϕ̂ is a mild solution of the H-FIDEs (1.1–1.3) satisfying u(p) = u1. Hence, the systems
(1.1–1.3) is controllable on Y, and the proof is completed. □

4. Example

Now, analyze the following problem:

Dζ, 2
3

0+ u(t, µ) =
∂2

∂µ2 u(t, µ) +Wϑ(t, µ) + ϑ(t,
∫ t

−∞

ϑ1(σ − t)u(σ, µ)dσ), (4.1)

∆u|t=ti = Ii(u(t−i )), i = 1, 2, · · · n, (4.2)

I(1−ζ) 1
3 [u(t, µ)]|µ=0 = u0(µ), µ ∈ [0, π], (4.3)

u(t, 0) = u(t, π) = 0, t ≥ 0, (4.4)

u(0, µ) = ϕ(t, µ), 0 ≤ µ ≤ π. (4.5)

From previous equations, Dζ, 2
3

0+ denotes the Hilfer FD of order η = 2
3 , and type ζ, I(1−ζ) 1

3 is the (R-
L) integral of order (1 − ζ)1

3 , ϕ ∈ Ph and ϑ : J × [0, 1] is continuous. To change this frame-work
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into the abstract structure (1.1) and (1.2), let U = L2[0, π] be endowed with the norm ∥ · ∥L2 and
A : D(A) ⊂ U → U be given by AE = E′′ along with

D(A) = {E,E′′ ∈ Y : E,E′′are absolutely continous,E′′ ∈ Y,+E(0) = E(π) = 0}. (4.6)

Here, A is an infinitesimal generator of a semigroup {T (t), t ≥ 0} in where Y and it is given by
T (t)ω(σ) = w(t + σ); for ω ∈ U, T (t) is not compact on U and R(T (t)H) ≤ R(H), where R is the
Hausdorff MNC, and there exists N ≥ 1 such that supt∈Y ∥T (t)∥ ≤ N. Furthermore, t → ω(t

2
3 + σ)u is

equicontinuous for t ≥ 0 and µ ∈ (0,∞). Let F : [0, π] × U → U by

F(t, π)(µ) = ϑ(t,
∫ t

−∞

ϑ1(σ − t)u(σ, µ)dσ),

and

Dζ, 2
3

0+ u(t)(µ) =
∂

2
3

∂µ
2
3

u(t, µ), u(t)(µ) = u(t, µ).

Let B : V → V be defined by (Bv)(t)(µ) = Wϑ(t, µ), 0 < µ < 1. By assuming the suitable choices of
A,B and F, the H-FIDEs (4.1)–(4.4) can be rewritten as

Dζ,η
0+ u(t) = Au(t) + F(t, ut) + Bv(t), t ∈ R = (0, p], (4.7)

∆u|t=ti = Ii(u(t−i )), i = 1, 2, · · · n, (4.8)

I(1−ζ)(1−η)
0+ u(t)|t=0 = ϕ(t), t ∈ (−∞, 0]. (4.9)

For µ ∈ (0, π),W is given by

Wv(µ) =
∫ 1

0
(1 − t)

−1
3 Qη(1 − t)Fϑ(t, µ)dt,

where

Q 2
3
=

2
3

∫ −∞

0
µχ 2

3
(µ)W(t

2
3 + µ)dµ,

and

χ
2
3 (µ) =

3
2
µ−1− 3

2 w̄ 2
3
(µ
−3
2 ),

w 2
3
(µ) =

1
π

∞∑
n=1

(−1)n−1
t
− 2

3 n−1Γ(
2
3n + 1)

n!
sin

(
2nπ

3

)
.

In the above, χ 2
3

is defined on (0,∞), that is,

χ 2
3
(µ) ≥ 0, µ ∈ (0,∞) and

∫ ∞
0
χ 2

3
(µ)dµ = 1.

We take ϑ(t,
∫ t
−∞
ϑ1(σ− t)u(σ, µ)dσ) = C0 sin(y(σ)), where C0 is a constant. Then, F andW satisfy the

hypotheses (H1)–(H3). This completes the example.

AIMS Mathematics Volume 8, Issue 2, 4202–4219.



4216

5. Conclusions

In our study, we used non-compactness measures to investigate the controllability of Hilfer
fractional impulsive differential systems with infinite delay. We started with the Hilfer fractional
impulsive differential systems with controllability and applied Mönch’s fixed point theorem for
indefinite delay; then, extended our results to the concept of non-local conditions. Finally, an example
case was provided to demonstrate the significance of our major findings. In the future, we will use the
MNC to investigate the existence and controllability of Sobolov-type Hilfer fractional implusive
differential systems with indefinite delay. In addition to this, we can extend our results with integro or
implicit terms and we can use integral boundary conditions which has real life applications. Also we
can provide some numerical approximations for this considered system.
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