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1 Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and
Technical Sciences, Chennai 602105, India

2 Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin
Abdulaziz University, ALkharj 11942, Saudi Arabia

3 Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and
Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India

4 Faculty of Science, University of Novi Sad, Trg Dositeja Obradovicá, 3, Novi Sad 21000, Serbia
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1. Introduction

The famous Banach Contraction Principle [1] of 1922 laid the foundation for the Metric Fixed
Point theory. Over the years, plenty of generalizations have been made by various researchers to the
Banach Contraction Principle using different types of contractive conditions in various topological
spaces which are both Hausdorff and non-Hausdorff in nature and presented analytical applications of
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the derived results. In the sequel, in 2012, [2] introduced F -contraction and established fixed point
results in the setting of complete metric spaces. In 2004, P. Dhivya et al. [3] analyzed the coupled fixed
point and best proximity points involving simulation functions. Later, in 2015, Khojasteh, Shukla and
Radenović [5], introduced the concept of simulation function and proved fixed point theorems using
these functions. Subsequently, various fixed point results have been proved using various contractive
conditions and simulation functions by numerous researchers in metric and metric-like spaces [4–14].

As the distance function for a pair of points is always nonnegative real, metric fixed point theory
has varied applications. The generalization of metric and metric-like spaces and the study of their
properties have always been a matter of interest to researchers. As a result, Gahler [15] adopted metrics
that are non-negative reals (i.e., [0,+∞)) and presented the idea of 2-metric spaces. In metric spaces,
different types of distance functions are considered. Still, we can see the distance arising between the
elements of two different sets where in distance between the same type of points is either unknown
or undefined due to the non-availability of information. The distance between points and lines of
Euclidean space, and the distance between sets and points of a metric space are these types of distances
to name a few.

Formalizing these types of distances, in the year 2016, Mutlu et al. [16] introduced the concept
of Bi-polar metric space and established fixed point theorems in these spaces but without analyzing
the topological structure in detail. In the recent past, many researchers have established various fixed
point results using various types of contractions in the setting of Bi-polar metric spaces. One can refer
to [17–26] and references there on for better understanding. The existence of fixed points of contraction
mappings in Bi-polar metric spaces is currently an important topic in fixed point theory, which can be
considered as a generalization of the Banach contraction principle.

Moreover, varied applications of metric fixed point theory have been reported in different areas such
as variational inequalities, differential, and integral equations, fractal calculus and dynamical systems
and space science, etc.

Inspired by the scope and its varied applications, the study is performed to examine the following:

• To analyze the existence of unique fixed point in the setting of Bi-polar metric spaces using F -
contraction.

• To analyze the existence of unique fixed point in the setting of Bi-polar metric spaces using
Simulation Functions.

• To apply the derived results to find solutions to integral equations.

Accordingly, the rest of the paper is organized as follows. In Section 2, we review some definitions
and concepts present in literature and some monograph. In Section 3, we establish fixed point results
using F -contraction and simulation functions in the setting of Bi-polar metric space and supplement
the derived results with examples. We have also applied the derived results to find the analytical
solution of integral equations.

Before proceeding further, we present a notation table listing the symbols and their meanings that
are frequently used in this manuscript (see Table 1):
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Table 1. List of symbols used in this article.

Symbols Description
Υ,Ω Sets
d Metric distance function
M Mapping
F Set of all functions F : (0,+∞)→ R
R Real Number
β Element of Ω
ℵ Element of Υ
σ Element of N
% Bi-polar distance function
ξ Simulation Function
Θ Set of all simulation functions

ξ : [0,+∞) × [0,+∞)→ R

2. Preliminaries

The following are required in the sequel. Let us begin with the concept of a F -contraction
introduced by Wardowski [2].

Definition 2.1. [2] Let (Υ, d) be a metric space. A mappingM : Υ → Υ is called an F -contraction if
there exist τ > 0 and F ∈ F such that

τ + F (d(Mℵ,Mℵ1)) ≤ F (d(ℵ,ℵ1))

holds for any ℵ,ℵ1 ∈ Υ with d(Mℵ,Mℵ1) > 0, where F is the set of all functions F : (0,+∞) → R
satisfying the following conditions:

(A1) F is strictly increasing;

(A2) For each sequence {ℵn} of positive numbers, we have

lim
n→+∞

ℵn = 0 iff lim
n→+∞

F (ℵn) = −∞;

(A3) There exists k ∈ (0, 1) such that lim
ℵ→0+

ℵkF (ℵ) = 0.

Definition 2.2. [16] Let Υ and Ω be non-void sets and % : Υ × Ω→ [0,+∞) be a function, such that

(a) %(ℵ, β) = 0 if and only if ℵ = β, for all (ℵ, β) ∈ Υ × Ω;

(b) %(ℵ, β) = %(β,ℵ), for all (ℵ, β) ∈ Υ ∩ Ω;

(c) %(ℵ, β) ≤ %(ℵ, γ) + %(ℵ1, γ) + %(ℵ1, β), for all ℵ,ℵ1 ∈ Υ and γ, β ∈ Ω.

The pair (Υ,Ω, %) is called a Bi-polar metric space.
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Example 2.3. Let Φ = [0, 1], Ψ = [−1, 1] and ϕ : Φ × Ψ → [0,+∞) be defined by

ϕ(η, σ) = |η − σ|

for all η ∈ Φ and σ ∈ Ψ . Then (Υ,Ω, %) is a Bi-polar metric space.

Definition 2.4. [16] LetM : Υ1 ∪ Ω1 → Υ2 ∪ Ω2 be a mapping, where (Υ1, Ω1) and (Υ2, Ω2) pairs of
sets.

(H1) IfM(Υ1) ⊆ Υ2 andM(Ω1) ⊆ Ω2, thenM is called a covariant map, or a map from (Υ1, Ω1, %1) to
(Υ2, Ω2, %2) and this is written asM : (Υ1, Ω1, %1)⇒ (Υ2, Ω2, %2).

(H2) If M(Υ1) ⊆ Ω2 and M(Ω1) ⊆ Υ2, then M is called a contravariant map from
(Υ1, Ω1, %1) to (Υ2, Ω2, %2) and this is denoted asM : (Υ1, Ω1, %1)� (Υ2, Ω2, %2).

Definition 2.5. [16] Let (Υ,Ω, %) be a Bi-polar metric space.

(B1) A point ℵ ∈ Υ ∪ Ω is said to be a left point if ℵ ∈ Υ, a right point if ℵ ∈ Ω and a central point if
both hold.

(B2) A sequence {ℵσ} ⊂ Υ is called a left sequence and a sequence {βσ} ⊂ Ω is called a right sequence.

(B3) A sequence {ησ} ⊂ Υ∪Ω is said to converge to a point η if and only if {ησ} is a left sequence, η is a
right point and lim

σ→+∞
%(ησ, η) = 0 or {ησ} is a right sequence, η is a left point and lim

σ→+∞
%(η, ησ) = 0.

(B4) A sequence {(ℵσ, βσ)} ⊂ Υ × Ω is called a bisequence. If the sequences {ℵσ} and {βσ} both
converge then the bisequence {(ℵσ, βσ)} is called convergent in Υ × Ω.

(B5) If {ℵσ} and {βσ} both converge to a point β ∈ Υ ∩ Ω then the bisequence {(ℵσ, βσ)} is called
biconvergent. A sequence {(ℵσ, βσ)} is a Cauchy bisequence if lim

σ,ζ→+∞
%(ℵσ, βζ) = 0.

(B6) A Bi-polar metric space is said to be complete if every Cauchy bisequence is convergent.

Definition 2.6. [5] Let ξ : [0,+∞)× [0,+∞)→ R be a mapping, then ξ is called a simulation function
if

(ξ1) ξ(0, 0) = 0;

(ξ2) ξ(δ, η) < η − δ for all δ, η > 0;

(ξ3) if {δσ}, {ησ} are sequences in (0,+∞) such that lim
σ→+∞

δσ = lim
σ→+∞

ησ > 0, then

lim
σ→+∞

sup ξ(δσ, ησ) < 0.

We denote the set of all simulation functions by Θ.

Example 2.7. [5] Let ξi : [0,+∞) × [0,+∞)→ R, i = 1, 2, 3 be defined by

(G1) ξ1(δ, η) = ψ(η) − φ(δ) for all δ, η ∈ [0,+∞), where φ, ψ : [0,+∞) → [0,+∞) are two continuous
functions such that ψ(δ) = φ(δ) = 0 if and only if δ = 0 and ψ(δ) < δ ≤ φ(δ) for all δ > 0.
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(G2) ξ2(δ, η) = η − f(δ,η)
g(δ,η)δ for all δ, η ∈ [0,+∞) where f, g : [0,+∞) → [0,+∞) are two continuous

functions with respect to each variable such that f(δ, η) > g(δ, η) for all δ, η > 0.

(G3) ξ3(δ, η) = η−φ(η)−δ for all δ, η ∈ [0,+∞), where φ : [0,+∞)→ [0,+∞) is a continuous function
such that φ(δ) = 0 if and only if δ = 0.

Then ξi for i = 1, 2, 3 are simulation functions.

Definition 2.8. Let (Υ,Ω, %) be a Bi-polar metric space, M : (Υ,Ω, %) ⇒ (Υ,Ω, %) a mapping and
ξ ∈ Θ. ThenM is called a Θ-contraction with respect to ξ if

ξ(%(Mℵ,Mβ), %(ℵ, β)) ≥ 0 for all ℵ ∈ Υ, β ∈ Ω.

Now we present our main results.

3. Main results

In 2016, Mutlu et al. [16], introduced the cocept of a contraction and proved the following theorem.

Definition 3.1. Let (Υ1, Ω1, %1) to (Υ2, Ω2, %2) be bipolar metric spaces and λ > 0. A covariant map
M: (Υ1, Ω1, %1) ⇒ (Υ2, Ω2, %2) such that %2(M(ℵ),M(β)) ≤ λ%1(ℵ, β) for all ℵ ∈ Υ1, β ∈ Ω1, or
a contravariant map M : (Υ1, Ω1, %1) � (Υ2, Ω2, %2) such that %2(M(ℵ),M(β)) ≤ λ%1(ℵ, β) for all
ℵ ∈ Υ1, β ∈ Ω1 is called Lipschitz continuous. If λ = 1, then this covariant or contravariant map is said
to be non-expansive, and if λ ∈ (0, 1), it is called a contraction.

Theorem 3.2. Let (Υ,Ω, %) be a complete Bi-polar metric space and given a contraction M:
(Υ,Ω, %)⇒ (Υ,Ω, %). Then the functionM: Υ ∪ Ω→ Υ ∪ Ω has a unique fixed point.

Motivated by the above theorem, we prove fixed point theorems on Bi-polar metric space using
F -contraction and simulation functions.

Now we present our first fixed point theorem on Bi-polar metric space usingF -contraction function.

Theorem 3.3. Let (Υ,Ω, %) be a complete Bi-polar metric space. SupposeM: (Υ,Ω, %) ⇒ (Υ,Ω, %) is
a covariant mapping and there exists τ > 0 such that

τ + F (%(M(ℵ),M(β))) ≤ F (%(ℵ, β)) for all ℵ ∈ Υ, β ∈ Ω,

holds for any ℵ ∈ Υ, β ∈ Ω with %(M(ℵ),M(β)) > 0. Then the functionM: Υ ∪ Ω → Υ ∪ Ω has a
unique fixed point.

Proof. Let ℵ0∈ Υ and β0∈Ω. For each σ ∈ N, defineM(ℵσ) = ℵσ+1 andM(βσ) = βσ+1. Then ({ℵσ},
{βσ}) is a bisequence on (Υ,Ω, %) and ℵσ , βσ. By hypothesis of the theorem, we have

F (%(ℵσ, βσ)) = F (%(M(ℵσ−1),M(βσ−1)))
≤ F (%(ℵσ−1, βσ−1)) − τ
...

≤ F (%(ℵ0, β0)) − στ. (3.1)
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As σ→ +∞, we have

lim
σ→+∞

F (%(ℵσ, βσ)) = −∞.

Using (A2), we derive that

lim
σ→+∞

%(ℵσ, βσ) = 0. (3.2)

Using (A3), there exists k ∈ (0, 1) such that

lim
σ→+∞

%(ℵσ, βσ)kF (%(ℵσ, βσ)) = 0. (3.3)

Using (3.1), for all σ ∈ N

%(ℵσ, βσ)kF (%(ℵσ, βσ)) − %(ℵσ, βσ)kF (%(ℵ0, β0))
≤ %(ℵσ, βσ)k(F (%(ℵ0, β0)) − στ) − %(ℵσ, βσ)kF (%(ℵ0, β0))
= −%(ℵσ, βσ)kστ
≤ 0. (3.4)

As σ→ +∞ in (3.4), and using (3.2) and (3.3), we derive that

lim
σ→+∞

σ%(ℵσ, βσ)k = 0. (3.5)

Now, let us observe that from (3.5) there exists σ1 such that σ%(ℵσ, βσ)k ≤ 1 for all σ ≥ σ1.
Consequently we have

%(ℵσ, βσ) ≤
1

σ
1
k

, for all σ ≥ σ1.

Also,

F (%(ℵσ, βσ+1)) = F (%(M(ℵσ−1),M(βσ)))
≤ F (%(ℵσ−1, βσ)) − τ
...

≤ F (%(ℵ0, β1)) − στ. (3.6)

As σ→ +∞, we have

lim
σ→+∞

F (%(ℵσ, βσ+1)) = −∞.

Using (A2), we derive that

lim
σ→+∞

%(ℵσ, βσ+1) = 0. (3.7)

Using (A3), there exists k ∈ (0, 1) such that

lim
σ→+∞

%(ℵσ, βσ+1)kF (%(ℵσ, βσ+1)) = 0. (3.8)
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Using (3.6), for all σ ∈ N

%(ℵσ, βσ+1)kF (%(ℵσ, βσ+1)) − %(ℵσ, βσ)kF (%(ℵ0, β1))
≤ %(ℵσ, βσ+1)k(F (%(ℵ0, β1)) − στ) − %(ℵσ, βσ+1)kF (%(ℵ0, β1))
= −%(ℵσ, βσ+1)kστ
≤ 0. (3.9)

As σ→ +∞ in (3.9), and using (3.7) and (3.8), we derive that

lim
σ→+∞

σ%(ℵσ, βσ+1)k = 0. (3.10)

Now, let us observe that from (3.10) there exists σ2 such that σ%(ℵσ, βσ+1)k ≤ 1 for all σ ≥ σ2.
Consequently we have

%(ℵσ, βσ+1) ≤
1

σ
1
k

, for all σ ≥ σ2.

Let σ = max{σ1, σ2}.

%(ℵσ+p, βσ) ≤ %(ℵσ+p, βσ+1) + %(ℵσ, βσ+1) + %(ℵσ, βσ)
≤ %(ℵσ+p, βσ+2) + %(ℵσ+1, βσ+2) + %(ℵσ+1, βσ+1) + %(ℵσ, βσ+1) + %(ℵσ, βσ)
...

≤ %(ℵσ+p, βσ+p) + · · · + %(ℵσ, βσ+1) + %(ℵσ, βσ)

≤

+∞∑
i=σ

1

i
1
k

.

Since k ∈ (0, 1), the series
∑+∞
i=σ

1

i
1
k

is convergent. Therefore, ({ℵσ}, {βσ})) is a Cauchy bisequence.
Since (Υ,Ω, %) is complete, then {ℵσ} → u and {βσ} → u, where u ∈ Υ ∩ Ω and

{M(βσ)} = {βσ+1} → u ∈ Υ ∩ Ω.

SinceM is continuousM(βσ) → M(u), soM(u) = u. Hence u is a fixed point ofM. If v is any
fixed point ofM, thenM(v) = v implies that v ∈ Υ ∩ Ω and

τ ≤ F (%(M(u),M(v)) − F (%(u, v)) = 0,

which is absurd. Hence u = v. �

Remark 3.4. If we take Υ = Ω, then our result is reduced to Theorem 2.1 in [2].

Theorem 3.5. Let (Υ,Ω, %) be a complete Bi-polar metric space. SupposeM: (Υ,Ω, %) � (Υ,Ω, %) is
a contravariant mapping and there exists τ > 0 such that

τ + F (%(M($),M(ℵ))) ≤ F (%(ℵ, $)) for all ℵ ∈ Υ,$ ∈ Ω,

holds for any ℵ ∈ Υ, β ∈ Ω with %(M(ℵ),M(β)) > 0. Then the functionM: Υ ∪ Ω → Υ ∪ Ω has a
unique fixed point.
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Proof. Let ℵ0 ∈ Υ. For each σ ∈ N, define M(ℵσ) = βσ and M(βσ) = ℵσ+1. Then ({ℵσ}, {βσ}) is a
bisequence on (Υ,Ω, %) and ℵσ , βσ. Then

F (%(ℵσ, βσ)) = F (%(M(βσ−1),M(ℵσ)))
≤ F (%(ℵσ, βσ−1)) − τ
= F (%(M(βσ−1),M(ℵσ−1))) − τ
≤ F (%(ℵσ−1, βσ−1) − 2τ
...

≤ F (%(ℵ0, β0)) − 2στ. (3.11)

As σ→ +∞, we have

lim
σ→+∞

F (%(ℵσ, βσ)) = −∞.

Using (A2), we derive that

lim
σ→+∞

%(ℵσ, βσ) = 0. (3.12)

Using (A3), there exists k ∈ (0, 1) such that

lim
σ→+∞

%(ℵσ, βσ)kF (%(ℵσ, βσ)) = 0. (3.13)

Using (3.11), for all σ ∈ N

%(ℵσ, βσ)kF (%(ℵσ, βσ)) − %(ℵσ, βσ)kF (%(ℵ0, β0))
≤ %(ℵσ, βσ)k(F (%(ℵ0, β0)) − 2στ) − %(ℵσ, βσ)kF (%(ℵ0, β0))
= −%(ℵσ, βσ)k2στ
≤ 0. (3.14)

As σ→ +∞ in (3.14), and using (3.12) and (3.13), we derive that

lim
σ→+∞

2σ%(ℵσ, βσ)k = 0. (3.15)

Now, let us observe that from (3.15) there exists σ1 such that 2σ%(ℵσ, βσ)k ≤ 1 for all σ ≥ σ1.
Consequently we have

%(ℵσ, βσ) ≤
1

(2σ)
1
k

, for all σ ≥ σ1.

Also,

F (%(ℵσ+1, βσ)) = F (%(M(βσ),M(ℵσ)))
≤ F (%(ℵσ, βσ)) − τ
≤ F (%(ℵ0, β0)) − (2σ + 1)τ. (3.16)
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As σ→ +∞, we have

lim
σ→+∞

F (%(ℵσ+1, βσ)) = −∞.

Using (A2), we derive that

lim
σ→+∞

%(ℵσ+1, βσ) = 0. (3.17)

Using (A3), there exists k ∈ (0, 1) such that

lim
σ→+∞

%(ℵσ+1, βσ)kF (%(ℵσ+1, βσ)) = 0. (3.18)

Using (3.16), for all σ ∈ N

%(ℵσ+1, βσ)kF (%(ℵσ+1, βσ)) − %(ℵσ+1, βσ)kF (%(ℵ0, β0))
≤ %(ℵσ+1, βσ)k(F (%(ℵ0, β0) − (2σ + 1)τ)
− %(ℵσ+1, βσ)kF (%(ℵ0, β0))
= −%(ℵσ+1, βσ)k(2σ + 1)τ
≤ 0. (3.19)

As σ→ +∞ in (3.19), and using (3.17) and (3.18), we derive that

lim
σ→+∞

(2σ + 1)%(ℵσ+1, βσ)k = 0. (3.20)

Now, let us observe that from (3.20) there exists σ1 such that (2σ+1)%(ℵσ+1, βσ)k ≤ 1 for all σ ≥ σ1.
Consequently we have

%(ℵσ+1, βσ) ≤
1

(2σ + 1)
1
k

, for all σ ≥ σ1.

Now,

%(ℵσ+p, βσ) ≤ %(ℵσ+p, βσ+1) + %(ℵσ+1, βσ+1) + %(ℵσ+1, βσ)

≤ %(ℵσ+p, βσ+1) +
1

(2(σ + 1))
1
k

+
1

(2σ + 1)
1
k

≤ %(ℵσ+p, βσ+2) + %(ℵσ+2, βσ+2) + %(ℵσ+2, βσ+1)

+
1

(2(σ + 1))
1
k

+
1

(2σ + 1)
1
k

≤ %(ℵσ+p, βσ+2) +
1

(2(σ + 2))
1
k

+
1

(2σ + 3)
1
k

+
1

(2(σ + 1))
1
k

+
1

(2σ + 1)
1
k

...

≤

+∞∑
i=2σ+1

1

i
1
k

.
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Since k ∈ (0, 1), the series
∑+∞
i=σ

1

i
1
k

is convergent. Therefore, ({ℵσ}, {βσ})) is a Cauchy bisequence.

Since (Υ,Ω, %) is complete, then {ℵσ} → u and {βσ} → u where u ∈ Υ ∩ Ω and

{M(βσ)} = {βσ+1} → u ∈ Υ ∩ Ω.

SinceM is continuousM(βσ) → M(u), soM(u) = u. Hence u is a fixed point ofM. If v is any
fixed point ofM, thenM(v) = v implies that v ∈ Υ ∩ Ω and

τ ≤ F (%(M(u),M(v)) − F (%(u, v)) = 0,

which is absurd. Hence u = v. �

Example 3.6. Let Υ = [0, 1] and Ω = [1, 2] be equipped with %(ℵ, β) = |ℵ−β| for all ℵ ∈ Υ and β ∈ Ω.
Then, (Υ,Ω, %) is a complete Bi-polar metric space. DefineM : Υ ∪ Ω⇒ Υ ∪ Ω by

M(ℵ) =
ℵ + 4

5
,

for all ℵ ∈ Υ ∪ Ω. Let ℵ ∈ Υ and β ∈ Ω. Now, let us consider the mapping F defined by F (δ) = ln δ.
Let τ > 0. Note that if %(Mℵ,Mβ) > 0 implies

τ + F (%(Mℵ,Mβ)) ≤ F (%(ℵ, β)), ∀ℵ ∈ Υ and β ∈ Ω,

is equivalent to

%(Mℵ,Mβ) ≤ e−τ(%(ℵ, β)), ∀ℵ ∈ Υ and β ∈ Ω.

Then

%(Mℵ,Mβ) = %
(
ℵ + 4

5
,
β + 4

5

)
=

∣∣∣∣∣ℵ5 − β5
∣∣∣∣∣ ≤ 1

3
%(ℵ, β),

which implies that

%(Mℵ,Mβ) ≤ e−τ(%(ℵ, β)), ∀ℵ ∈ Υ and β ∈ Ω. (3.21)

Therefore, all the conditions of Theorem 3.8 are satisfied. Hence we can conclude that M has a
unique fixed point, which is ℵ = 1.

Now we examine the existence and unique solution to an integral equation as an application of
Theorem 3.3.

Theorem 3.7. Let us consider the integral equation

ℵ(δ) = b(δ) +

∫
E1E2

G(δ, η,ℵ(η))dη, δ ∈ E1 ∪ E2,

where E1 ∪ E2 is a Lebesgue measurable set. Suppose
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(T1) M : (E2
1 ∪ E

2
2) × [0,+∞)→ [0,+∞) and b ∈ L∞(E1) ∪ L∞(E2);

(T2) There is a continuous function θ : E2
1 ∪ E

2
2 → [0,+∞) and τ > 0 such that

|G(δ, η,ℵ(η)) − G(δ, η, β(η)| ≤ e−τ|θ(δ, η)|(|ℵ(η) − β(η)|,

for δ, η ∈ E2
1 ∪ E

2
2;

(T3) ||
∫
E1∪E2

θ(δ, η)dη||∞ ≤ 1 i.e supδ∈E1∪E2

∫
E1∪E2

|θ(δ, η)|dη ≤ 1.

Then the integral equation has a unique solution in L∞(E1) ∪ L∞(E2).

Proof. Let Υ = L∞(E1) and Ω = L∞(E2) be two normed linear spaces, where E1,E2 are Lebesgue
measurable sets and m(E1 ∪ E2) < ∞.

Consider %: Υ × Ω → [0,+∞) to be defined by %(ℵ, β) = ||ℵ − β||∞ for all (ℵ, β) ∈ Υ × Ω. Then
(Υ,Ω, %) is a complete Bi-polar metric space.

Define the covariant mappingM : L∞(E1) ∪ L∞(E2)→ L∞(E1) ∪ L∞(E2) by

M(ℵ(δ)) = b(δ) +

∫
E1∪E2

G(δ, η,ℵ(η))dη, δ ∈ E1 ∪ E2.

Now, we have

%(Mℵ(δ),Mβ(δ)) = ||Mℵ(δ) −Mβ(δ)||

=

∣∣∣∣∣b(δ) +

∫
E1∪E2

G(δ, η,ℵ(η))dη −
(
b(δ) +

∫
E1∪E2

G(δ, η,ℵ(η))dη
)∣∣∣∣∣

≤

∫
E1∪E2

|G(δ, η,ℵ(η)) − G(δ, η, β(η))|dη

≤

∫
E1∪E2

e−τ|θ(δ, η)|(|ℵ(η) − β(η)|)dη

≤ e−τ(||ℵ(η) − β(η)||)
∫
E1∪E2

|θ(δ, η)|dη

≤ e−τ(||ℵ(η) − β(η)||) sup
δ∈E1∪E2

∫
E1∪E2

|θ(δ, η)|dη

≤ e−τ(||ℵ(η) − β(η)||)
= e−τ%(ℵ, β).

Hence, all the hypothesis of a Theorem 3.3 are satisfied with F (δ) = ln δ and consequently, the
integral equation has a unique solution. �

Here we present a fixed point theorem on Bi-polar metric space using simulation function.

Theorem 3.8. Let (Υ,Ω, %) be a complete Bi-polar metric space and given a Θ-contraction M:
(Υ,Ω, %)⇒ (Υ,Ω, %). Then the functionM: Υ ∪ Ω→ Υ ∪ Ω has a unique fixed point.

Proof. Let ℵ0∈ Υ and β0∈Ω. For each σ ∈ N, defineM(ℵσ) = ℵσ+1 andM(βσ) = βσ+1. Then ({ℵσ},
{βσ}) is a bisequence on (Υ,Ω, %). SinceM is a Θ-contraction, we have
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0 ≤ ξ(%(Mℵσ−1,Mβσ−1), %(ℵσ−1, βσ−1))
= ξ(%(ℵσ, βσ), %(ℵσ−1, βσ−1))
< %(ℵσ−1, βσ−1) − %(ℵσ, βσ),

which implies that

%(ℵσ, βσ) < %(ℵσ−1, βσ−1), for all σ ∈ N.

Therefore, the sequence {%(ℵσ−1, βσ−1)} is nonincreasing bisequence and so we can find r ≥ 0
satisfying lim

σ→+∞
%(ℵσ−1, βσ−1) = r. Assume that r , 0. Let δσ = %(ℵσ, βσ) and ησ = %(ℵσ−1, βσ−1), then

lim
σ→+∞

δσ = lim
σ→+∞

ησ = r > 0 and δσ < ησ, for all σ ∈ N. Therefore,

0 ≤ lim
σ→+∞

sup ξ(δσ, ησ) < 0,

which is a contradiction. Thus,

lim
σ→+∞

%(ℵσ−1, βσ−1) = 0.

SinceM is a Θ-contraction, we have

0 ≤ ξ(%(Mℵζ−1,Mβσ−1), %(ℵζ−1, βσ−1))
= ξ(%(ℵζ , βσ), %(ℵζ−1, βσ−1))
< %(ℵζ−1, βσ−1) − %(ℵζ , βσ),

which implies that

%(ℵζ , βσ) < %(ℵζ−1, βσ−1), for all σ ∈ N.

Therefore, the sequence {%(ℵζ−1, βσ−1)} is nonincreasing bisequence and so we can find r ≥ 0
satisfying lim

σ→+∞
%(ℵζ−1, βσ−1) = r. Assume that r , 0. Let δσ = %(ℵζ , βσ) and ησ = %(ℵζ−1, βσ−1), then

lim
σ→+∞

δσ = lim
σ→+∞

ησ = r > 0 and δσ < ησ, for all σ ∈ N. Therefore,

0 ≤ lim
σ→+∞

sup ξ(δσ, ησ) < 0,

which is a contradiction. Thus,

lim
σ→+∞

%(ℵζ−1, βσ−1) = 0.

SinceM is a Θ-contraction, we have

0 ≤ ξ(%(Mℵζ−1,Mβσ), %(ℵζ−1, βσ))
= ξ(%(ℵζ , βσ+1), %(ℵζ−1, βσ))
< %(ℵζ−1, βσ) − %(ℵζ , βσ+1),
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which implies that

%(ℵζ , βσ+1) < %(ℵζ−1, βσ), for all σ ∈ N.

Therefore, the sequence {%(ℵζ−1, βσ)} is nonincreasing bisequence and so we can find r ≥ 0
satisfying lim

σ→+∞
%(ℵζ−1, βσ) = r. Assume that r , 0. Let δσ = %(ℵζ , βσ+1) and ησ = %(ℵζ−1, βσ), then

lim
σ→+∞

δσ = lim
σ→+∞

ησ = r > 0 and δσ < ησ, for all σ ∈ N. Therefore,

0 ≤ lim
σ→+∞

sup ξ(δσ, ησ) < 0,

which is a contradiction. Thus,

lim
σ→+∞

%(ℵζ−1, βσ) = 0.

Now, we show that ({ℵσ}, {βσ}) is a Cauchy bisequence. On the contrary, assume that ({ℵσ}, {βσ}) is
not a Cauchy bisequence. Then, there exists an ε > 0 for which we can find two subsequences {ℵσk} of
{ℵσ} and {βζk} of {βζ} such that σk > ζk > k, for all k ∈ N and

%(ℵζk , βσk) ≥ ε. (3.22)

Suppose that σk is the least integer exceeding ζk satisfying inequality (3.22). Then,

%(ℵζk , βσk−1) < ε. (3.23)

Using (3.22),(3.23) and (c), we obtain

ε ≤ %(ℵζk , βσk)
≤ %(ℵζk , βσk−1) + %(ℵζk−1, βσk−1) + %(ℵζk−1, βσk).

As k→ +∞, we obtain

lim
k→+∞

%(ℵζk , βσk) = ε.

SinceM is a Θ-contraction, we have

0 ≤ ξ(%(Mℵζk−1,Mβσk−1), %(ℵζk−1, βσk−1))
= ξ(%(ℵζk , βσk), %(ℵζk−1, βσk−1))
< %(ℵζk−1, βσk−1) − %(ℵζk , βσk),

which implies that

%(ℵζk , βσk) < %(ℵζk−1, βσk−1), for all σk ∈ N.

As σ→ +∞, we obtain

ε < 0.

AIMS Mathematics Volume 8, Issue 2, 3269–3285.



3282

Therefore ({ℵσ}, {βσ}) is a Cauchy bisequence. Since (Υ,Ω, %) is complete, then {ℵσ} → ρ and
{βσ} → ρ where ρ ∈ Υ ∩ Ω. SinceM is continuous,M(βσ)→M(ρ), soM(ρ) = ρ. Hence ρ is a fixed
point ofM. Next, we prove thatM has a unique fixed point. Suppose not, assume that there are two
fixed points such that %(ρ, υ) = %(M(ρ),M(υ)) > 0. SinceM is a Θ-contraction, we have

0 ≤ ξ(%(M(ρ),M(υ)), %(ρ, υ))
= ξ(%(ρ, υ), %(ρ, υ))
< %(ρ, υ) − %(ρ, υ).

Therefore,M has a unique fixed point. �

Example 3.9. Let Υ = [0, 1] and Ω = [1, 2] be equipped with %(ℵ, β) = |ℵ−β| for all ℵ ∈ Υ and β ∈ Ω.
Then, (Υ,Ω, %) is a complete Bi-polar metric space. DefineM : Υ ∪ Ω⇒ Υ ∪ Ω by

M(ℵ) =
ℵ + 4

5
,

for all ℵ ∈ Υ ∪ Ω. We now show that Θ-contraction with respect to ξ ∈ Θ, where

ξ(δ, η) =
η

η + 1
− δ,

for all δ, η ∈ [0,+∞). Then

ξ(%(Mℵ,Mβ), %(ℵ, β)) =
%(ℵ, β)

1 + %(ℵ, β)
− %(Mℵ,Mβ)

=
|ℵ − β|

5 + |ℵ − β|
−

∣∣∣∣∣ℵ5 − β5
∣∣∣∣∣ ≥ 0.

Therefore, conditions of Theorem 3.8 are fulfilled andM has a unique fixed point ℵ = 1.

Now we examine the application of the derived result in Theorem 3.8.

Theorem 3.10. Let

ℵ(δ) = b(δ) +

∫
A1∪A2

H(δ, η,ℵ(η))dη, δ ∈ A1 ∪A2,

whereA1 ∪A2 is a Lebesgue measurable set. Suppose

(T1) H : (A2
1 ∪A

2
2) × [0,+∞)→ [0,+∞) and b ∈ L∞(A1) ∪ L∞(A2);

(T2) There is a continuous function θ : A2
1 ∪A

2
2 → [0,+∞) and λ ∈ (0, 1) such that

|H(δ, η,ℵ(η)) −H(δ, η, β(η)| ≤ λ|θ(δ, η)|(|ℵ(η) − β(η)|,

for δ, η ∈ A2
1 ∪A

2
2;

(T3) ||
∫
A1∪A2

θ(δ, η)dη||∞ ≤ 1 i.e supδ∈A1∪A2

∫
A1∪A2

|θ(δ, η)|dη ≤ 1.
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Then the integral equation has a unique solution in L∞(A1) ∪ L∞(A2).

Proof. Let Υ = L∞(A1) and Ω = L∞(A2) be two normed linear spaces, where A1,A2 are Lebesgue
measurable sets and m(A1 ∪A2) < ∞.

Consider % : Υ × Ω → [0,+∞) defined by %(ℵ, β) = ||ℵ − β||∞ = supδ∈A1∪A2
|ℵ(δ) − β(δ)| for all

(ℵ, β) ∈ Υ × Ω. Then (Υ,Ω, %) is a complete Bi-polar metric space.
DefineM : L∞(A1) ∪ L∞(A2)⇒ L∞(A1) ∪ L∞(A2) by

M(ℵ(δ)) = b(δ) +

∫
A1∪A2

H(δ, η,ℵ(η))dη, δ ∈ A1 ∪A2.

Now,

%(Mℵ(δ),Mβ(δ)) = ||Mℵ(δ) −Mβ(δ)||

=

∣∣∣∣∣b(δ) +

∫
A1∪A2

H(δ, η,ℵ(η))dη −
(
b(δ) +

∫
A1∪A2

H(δ, η,ℵ(η))dη
)∣∣∣∣∣

≤

∫
A1∪A2

|H(δ, η,ℵ(η)) −H(δ, η, β(η))|dη

≤

∫
A1∪A2

λ|θ(δ, η)|(|ℵ(η) − β(η)|)dη

≤ λ(||ℵ(η) − β(η)||)
∫
A1∪A2

|θ(δ, η)|dη

≤ λ(||ℵ(η) − β(η)||) sup
δ∈A1∪A2

∫
A1∪A2

|θ(δ, η)|dη

≤ λ||ℵ(η) − β(η)||
= λ%(ℵ, β),

which implies that

λ%(ℵ, β) − %(Mℵ(δ),Mβ(δ)) ≥ 0.

We consider the simulation function as ξ(δ, η) = λη − δ. Then

ξ(%(Mℵ(δ),Mβ(δ)), %(ℵ, β)) ≥ 0.

Therefore, all the hypothesis of a Theorem 3.8 are fulfilled. Hence, the integral equation has a
unique solution. �

4. Conclusions

In the present work, we established fixed point results using F -contraction and simulation
functions. The derived results have been supported with suitable example and application to find
analytical solution of integral equation. Our results are extensions/generalisation of some proven
results in the past. Readers can explore extending the results in the setting of Bi-polar p-metric space,
complex metric space etc.
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12. K. Zoto, Z. D. Mitrović, S. N. Radenović, Unified setting of generalized contractions by extending
simulation mappings in b-metric-like spaces, Acta Math. Univ. Comenianae, 9 (2022), 247–258.

AIMS Mathematics Volume 8, Issue 2, 3269–3285.

http://dx.doi.org/https://doi.org/10.4064/FM-3-1-133-181
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-94
http://dx.doi.org/https://doi.org/10.1155/2014/269286
http://dx.doi.org/https://doi.org/10.2298/FIL1506189K
http://dx.doi.org/https://doi.org/10.1515/dema-2017-0022
http://dx.doi.org/https://doi.org/10.1515/dema-2017-0022
http://dx.doi.org/https://doi.org/10.2298/FIL1801141R
http://dx.doi.org/https://doi.org/10.1007/S13398-018-0580-2
http://dx.doi.org/https://doi.org/10.3934/math.2019.4.1034
http://dx.doi.org/https://doi.org/10.1016/j.aml.2011.07.021
http://dx.doi.org/https://doi.org/10.2298/FIL2101201K


3285

13. H. A. Hammad, P. Agarwal, J. L. G. Guirao, Applications to boundary value problems and
homotopy theory via tripled fixed point techniques in partially metric spaces, Mathematics, 9
(2012), 247–258. https://doi.org/10.3390/math9162012

14. H. A. Hammad, M. Da la Sen, H. Aydi, Analytical solution for differential and nonlinear integral
equations via F$e-Suzuki contractions in modified $e−metric-like spaces, J. Func. Spaces, 2021
(2021), 6128586, https://doi.org/10.1155/2021/6128586
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23. U. Gürdal, A. Mutlu, K. Özkan, Fixed point results for α− φ ontractive mappings in bipolar metric
spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75.
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