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Abstract: This paper investigates rational solutions of an extended Camassa-Holm-Kadomtsev-
Petviashvili equation, which simulates dispersion’s role in the development of patterns in a liquid drop,
and describes left and right traveling waves like the Boussinesq equation. Through its bilinear form and
symbolic computation, we derive some multiple order rational and generalized rational solutions and
analyze their dynamic features, such as the connection between rational solution and bilinear equation,
scatter behavior, moving path, and exact location of the soliton. The obtained solutions demonstrate
two wave forms: multi-lump and multi-wave that consist of three, six and eight lump waves or two,
three and four line waves. Moreover, different from the multi-wave solitons, stationary multiple dark
waves are presented.
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1. Introduction

“A rogue wave” is a single wave that comes out in the ocean “from nowhere” with a much higher
amplitude than the average crests around it [1]. It was thought to be mystical until someone had a
similar experience [2]. Those who are involved in such a disaster surely will focus on saving lives
rather than recording evidence [3]. For such reason, there does not exist a clear understanding of this
occurrence until now [4]. The superposition principle based on linear theory is inadequate to explain
large amplitude, but nonlinear theory would be more helpful [5]. There are two main characteristics
of rogue waves: “appear from nowhere” and “disappear without a trace.” The first characteristic lies in
modulation instability as the solution encounters abnormal initial input that will increase exponentially
[6]. On the other hand, Bespalov-Talanov instability does not last long and will return the solution
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to its initial state [7]. As a result, in a conservative nonlinear system, each wave that “appears from
nowhere” must “disappear without a trace” [8]. In contrast to soliton solution, lump solution is a kind
of rational function solution that is localized in each direction [9]. A general rational solution was
presented for an integrable system such as the KdV equation, the Boussinesq equation, the Toda lattice
equation via the Wronskian and Casoratian determinant method.

Lately, Tian derived lump solution, multi-kink soliton and discussed the interaction between tripe
and lump soliton from a (3+1)-dimensional Kadomtsev-Petviashvili equation with the help of Hirota’s
bilinear method and the Bäcklund transformation [10]. Moreover, the mechanism and transition of
the solution have been investigated for the (2+1)-dimensional Sawada-Kotera equation using phase
shift analysis and characteristic line [11]. It is worth noting that the ∂̄-dressing method is proposed
by Tian to study the three-component couple Hirota(tcCH) equation [12]. The coupled Maxwell-
Bloch equations and the AKNS type integrable shallow water wave equation are studied by Darboux
transformation [13–15]. Other work that involves Darboux transformation and symmetry condition can
be seen in [16]. Recently, the consistent Riccati expansion method and the consistent tanh expansion
method are employed to investigate KdV equation [17, 18]. Bäcklund-transformation and symbolic
computation are also effective in dealing with nonlinear models [19–24].

In 1993, Camassa and Holm derived a completely integrable dispersive shallow water wave equation
via Hamiltonian methods, i.e.,

ut + 2kux − uxxt + auux = 2uxuxx + uuxxx, (1.1)

where u = u(x, t) is the height of the water’s free surface over a flat bottom, related to the spatial
coordinate x and time t; k is a constant that has to do with the shallow water wave speed; the
subscripts stand for the partial derivatives [25]. As a small amplitude expansion of incompressible
Euler’s equations for unidirectional wave motion at the free surface under the influence of gravity, the
higher order terms (the right-hand side) are usually neglected in the small amplitude, shallow water
limit [26]. Leaving those terms brings about the Benjamin-Bona-Mahony equation or the Korteweg-de
Vries equation in the same order [27]. Therefore, the Camassa-Holm(CH) equation can be treated as
an extension of the Benjamin-Bona-Mahony(BBM) equation [28, 29]. This extension renders solitons
whose limiting form(k → 0) is peak as their first derivative is discontinued(compared with the smooth
isolated waves) [30]. Such “peakons” dominate the solutions of the initial value problems under the
condition of k = 0, i.e.,

u(x, t) = ce−|x−ct|,

where c is the wave speed, which means u has slope discontinuities [31]. If a derivative discontinuity
occurs, we can limit a verticality at each inflection point to break a smooth initial condition into a
series of peakons. Moreover, multisolitons can be obtained by superimposing the single solitons and
solving as a completely integrable finite dimensional bi-Hamiltonian system, i.e., it can be written
in two different kinds of Hamiltonian forms [32]. It is this property modifies the CH equation as a
compatibility condition for a linear isospectral problem, such that the inverse scattering transformation
can solve the initial value problem. Boyd pointed out why CH equation is important: it is a shallow
water model like the KdV equation; two is it gives the peaked periodic waves with discontinuous
first derivatives [33]. The higher order terms will come small and disposable under a slowly varying
condition ξ = x − ct. Therefore, the soliton is given to the lowest order by the solutions of

ut + 2kux − uxxt + auux = 0. (1.2)
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According to Eq (1.2), Wazwaz proposed two modified forms of CH equation

ut + 2kux − uxxt + aunux = 0, (1.3)

and
ut + 2kux − uxxt + aun(un)x = 0, (1.4)

where a > 0, k ∈ R, n is the strength of the nonlinearity [34, 35]. Under this sense, Wazwaz further
presented two variants of (2+1)-dimensional Camassa-Holm-KP(CH-KP) equations

(ut + 2kux − uxxt − aunux)x + uyy = 0, (1.5)

and
(ut + 2kux − uxxt + aun(un)x)x + uyy = 0. (1.6)

Since Eqs (1.5) and (1.6) are derived from the modified CH equations (1.3) and (1.4), which are similar
to the deduction of the Kadomtsev-Petviashvili equation, thus they are called the “Camassa-Holm-KP
equation” [36].

With the help of simulation method and dynamical system theory, Xie derived loops, periodic cusp
waves, kinks, and peakons of a generalized (2+1)-dimensional CH-KP equation [37]. Biswas obtained
analytic 1-soliton solution of two generalized CH-KP equations [38]. Tian investigated breathers,
rogue waves and other kinds of solitary waves of a generalized CH-KP equation, through bilinear
formalism and homoclinic breather limit approach [39]. Lai studied solitary patterns, periodic and
algebraic traveling wave solutions for two generalized (2+1)-dimensional CH-KP equations by direct
integration [40]. As for (3+1)-dimensional cases, a generalized (3+1)-dimensional time fractional
CH-KP equation was educed in the sense of Riemann-Liouville fractional derivatives with the help of
Agrawal’s method, Euler-Lagrange equation and semi-inverse method [41].

On the other hand, by adding utt to the KP equation, Wazwaz introduced a generalized KP-
Boussinesq equation

uxxxy + 3(uxuy)x + utx + uty + utt − uzz = 0,

which makes a significant impact on the phase shift and the dispersion relation [42]. In this paper,
following the same manners of Wazwaz, we propose an extension to the CH-KP equation:

(ut + αux + βuux + γuxxt)x + λutt + δuyy = 0, (1.7)

where u = u(x, y, t) is the height of the water’s free surface over a flat bottom; α, β, γ, λ, δ are nonzero
constants. Equation (1.7) simulates the dispersion’s role in the development of patterns in a liquid
drop, and describes left and right traveling waves like the Boussinesq equation.

To our knowledge, the rational and generalized rational solution has not been reported for Eq (1.7)
yet. Therefore, in this paper, we intend to find rational and generalized rational solutions of Eq (1.7)
with the help of bilinear form and symbolic computation. In Section 2, we derive the second order,
third order and fourth order rational solutions and explore the inner connections between the bilinear
equation and rational solution by discussing the relevance between the complex roots and the formation
of the waves. In Section 3, we obtain generalized rational solutions with two arbitrary parameters, that
can be used to modulate the evolution progress. The detailed dynamical behaviors for the generalized
rational solutions are discussed in Section 4, including the scatter behavior, exact locations where lump
waves space, and the moving path. In Section 5, we analyze the multiple dark wave solitons. Section 6
contains the summary of this paper.
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2. Rational solutions of Eq (1.7)

In this section, we will construct rational solutions of Eq (1.7) and assess the inner link between the
bilinear equation and rational solution. Taking ξ = x + t, Eq (1.7) will be translated to

(α + λ + 1)uξξ + β(u2
ξ + uuξξ) + γuξξξξ + δuyy = 0, (2.1)

where α, λ, β, γ, δ are real parameters. Using the transform u =
6γ
β

(ln f )ξξ, (2.1) becomes

(
δD2

y + (α + λ + 1)D2
ξ + γD4

ξ

)
F · F = 0,

which is equal to

δ(−2F2
y + 2FFyy) + (α + λ + 1)(−2F2

ξ + 2FFξξ) + γ(6F2
ξξ − 8FξFξξξ + 2FFξξξξ) = 0. (2.2)

As we can see, the bilinear equation (2.2) has three parts, and α, λ serve as the same effect in the
second part. Therefore, in order to facilitate the following computation, we treat α, λ as the same
parameter(setting α+λ = α). Of course, one can retrieves the original result by replacing α with α+λ.
With the help of bilinear form (2.2), the rational solution of Eq (1.7) can be obtained by the following
theorem.

Theorem 2.1. The generalized CH-KP equation (1.7) has rational solution

un(ξ, y) =
6γ
β

∂2

∂ξ2 ln Fn(ξ, y), (2.3)

with

Fn(ξ, y) =

n(n+1)/2∑
j=0

j∑
i=0

ai, jξ
2iy2( j−i), (2.4)

where ai, j is real parameter, β, Fn , 0 in order to make un analytic [43].
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Using upon procedure one has

F2(ξ, y) = ξ6 −
25γ
α + 1

ξ4 −
125γ(αγ + γ)

(α + 1)3 ξ2 +
(α + 1)3

δ3 y6 +

3
(
α2 + 2α + 1

)
δ2 ξ2 −

17(αγ + γ)
δ2

 y4

+

(
3(α + 1)

δ
ξ4 −

90γ
δ
ξ2 +

475γ2

(α + 1)δ

)
y2 −

1875γ3

(α + 1)3 ,

F3(ξ, y) = ξ12 −
98γ
α + 1

ξ10 +
735γ2

(α + 1)2 ξ
8 −

75460γ3

3(α + 1)3 ξ
6 −

5187875γ4

3(α + 1)4 ξ4 −
159786550γ5

3(α + 1)5 ξ2

+
(α + 1)6

δ6 y12 +

(
6(α + 1)5

δ5 ξ2 −
58(α + 1)4γ

δ5

)
y10 +

(
15(α + 1)4

δ4 ξ4 −
570(α + 1)3γ

δ4 ξ2

+
4335(α + 1)2γ2

δ4

)
y8 +

20(α + 1)3

δ3 ξ6 −
1460(α + 1)2γ

δ3 ξ4 +
35420

(
αγ2 + γ2

)
δ3 ξ2

−
798980γ3

3δ3

)
y6 +

15
(
α2 + 2α + 1

)
δ2 ξ8 −

1540(αγ + γ)
δ2 ξ6 +

37450γ2

δ2 ξ4 +
14700γ3

(α + 1)δ2 ξ
2

+
16391725γ4

3(α + 1)2δ2

)
y4 +

(
6(α + 1)

δ
ξ10 −

690γ
δ

ξ8 +
18620γ2

(α + 1)δ
ξ6 −

220500γ3

(α + 1)2δ
ξ4 +

565950γ4

(α + 1)3δ
ξ2

−
300896750γ5

3(α + 1)4δ

)
y2 +

878826025γ6

9(α + 1)6 ,

F4(ξ, y) = ξ20 + 270γξ18 + 16605γ2ξ16 + 351000γ3ξ14 − 18877950γ4ξ12 + 2094264900γ5ξ10

−178095030750γ6ξ8 + 6967194507000γ7ξ6 + 190578711448125γ8ξ4 − 696163557521250γ9ξ2

+y20 +
(
10ξ2 + 150γ

)
y18 +

(
45ξ4 + 2190γξ2 + 23085γ2

)
y16 +

(
120ξ6 + 11400γξ4

+354600γ2ξ2 + 3299400γ3
)

y14 +
(
210ξ8 + 31080γξ6 + 1619100γ2ξ4 + 35645400γ3ξ2

+360709650γ4
)

y12 +
(
252ξ10 + 50820γξ8 + 3601080γ2ξ6 + 94613400γ3ξ4 + 671510700γ4ξ2

+21813668100γ5
)

y10 +
(
210ξ12 + 52500γξ10 + 4513950γ2ξ8 + 151237800γ3ξ6 + 2667498750γ4ξ4

+31477666500γ5ξ2 + 1200881855250γ6
)

y8 +
(
120ξ14 + 34440γξ12 + 3308760γ2ξ10 + 135286200γ3ξ8

+3824793000γ4ξ6 + 45237339000γ5ξ4 + 1982064357000γ6ξ2 + 43199536653000γ7
)

y6

+
(
45ξ16 + 13800γξ14 + 1367100γ2ξ12 + 56586600γ3ξ10 + 1071960750γ4ξ8 + 636363000γ5ξ6

−405853402500γ6ξ4 + 90898176915000γ7ξ2 + 348683786758125γ8
)

y4 +
(
10ξ18 + 3030γξ16

+275400γ2ξ14 + 10621800γ3ξ12 + 107534700γ4ξ10 + 4871002500γ5ξ8 − 521628471000γ6ξ6

+33286514625000γ7ξ4 + 870343420196250γ8ξ2 + 3474517664913750γ9
)

y2 + 5917390238930625γ10.

Remark 2.1. The solutions plotted in Figure 1 can be thought of as bound states of individual solitons,
namely, two-, three- and four-humped multisolitons [44].
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We can derive two kinds of waves by choosing different coordinates. For instance, choosing
(ξ, y), we can derive multi-lump soliton and (x, t) for multi-wave soliton. Firstly, let us consider the
multi-lump soliton. The second order, third order and fourth order rational solutions are illustrated
in Figure 1, showing two, three, four lumps under the conditions: α = δ = −γ = 1, β = −6 for
Figure 1(a) and (b); α = −2, δ = −1, γ = 1, β = 6 for Figure 1(c). Second order rational solution u2

has two separated peaks while there is one shaper peak in the middle surrounded by two shorter peaks
for u3. As for u4, it has four divided peaks, two in the middle and two guarding around. Apparently,
we can conclude that the nth order rational solution un has n separated peaks and the maximum value
locates at y = 0 with n maximum values of un. On the other hand, multi-wave solitons are shown in
Figures 2–4. According to the evolutional plots, these waves stem from a plain wave background and
hit the maximum amplitude at y = 0. Then, they disappear with time. Interestingly, we find that higher
order multi-wave solitons may contain lower ones. For example, the two-wave soliton does exist in the
evolution progress of the three-wave soliton (see Figure 3(a)) and the three-wave soliton does exist in
the evolution progress of the four-wave soliton (see Figure 4(a)).

(a) (b) (c)

Figure 1. Rational solutions un in (ξ, y)-plane for n = 2, 3, 4 of Eq (1.7).

(a) y=−2 (b) y=0 (c) y=0.5 (d) y=5

Figure 2. Evolutional plots of the second order rational solution u2 in (x, t)-plane with α =

1, β = −6, γ = −1, σ = 1.
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(a) y=−1.5 (b) y=0 (c) y=0.5 (d) y=4

Figure 3. Evolutional plots of the third order rational solution u3 in (x, t)-plane with α =

1, β = −6, γ = −1, σ = 1.

(a) y=−2 (b) y=0 (c) y=1 (d) y=10

Figure 4. Evolutional plots of the fourth order rational solution u4 in (x, t)-plane with α =

−2, β = 6, γ = 1, σ = −1.

Remark 2.2. Here, the solitons are plotted in (ξ, t)-plane and (x, t)-plane, and they are evolutionary of
variable y. For some other models that transformed by ξ = x + y in (2.1), the corresponding solutions
will be evolutionary of t.

In this part, we will look into the connection between polynomial Fn and rational solution un,
through discussing the relevance between the complex roots and the formation of the waves. In
Figure 5, each picture gives the complex root of Fn = 0 on the complex field, for y = 0, y = 3n(n =

2, 3, 4) of x, i.e., F2(ξ, 0) = 0
F2(ξ, 6) = 0,

F3(ξ, 0) = 0
F3(ξ, 9) = 0,

F4(ξ, 0) = 0
F4(ξ, 12) = 0.

As shown in Figure 5, the red points are closer to the real axis than the blue points, which means the
complex roots of Fn = 0 will leave the real axis when y grows. This result also accords with Figure 6.
Above pictures demonstrate a “triangular pattern” for y = 0, y = 3n. For instance, the complex roots of
F2(ξ, 0) = 0 construct two adjacent triangles, and the complex roots of F2(ξ, 6) = 0 form two divided
triangles.
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(c) F4(ξ, y)

Figure 5. Complex roots of Fn(ξ, y) for n = 2, 3, 4 with y = 0(red) and y = 3n(blue).

(a) F2(ξ, y) (b) F3(ξ, y) (c) F4(ξ, y)

Figure 6. Loci of the complex roots of Fn(ξ, y) for n = 2, 3, 4 as y varies.

We overlay the sectional view of u4 on the map of the complex roots of F4(ξ, y) = 0 in Figure 7.
Unlike Figures 5 and 6, we choose six different values of y, that is y = −15,−2, 0, 1, 4, 15. As shown
in Figure 7, the roots move to the real axis as y increases and y = 0 is the moment that those roots
cluster together near the base point most closely. Next, they move away from the base point and form
as isolated triangles like the initial condition. Together with the sectional view of u4, we come to the
conclusion that more complex roots around the base point, higher amplitude the wave has.
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(e) y=4
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(f) y=15

Figure 7. Plots of the loci of the complex roots of F4(ξ, y) and u4(ξ, y).

3. Generalized rational solutions of Eq (1.7)

Above, we have investigated the rational solutions of Eq (1.7) and assessed the inner link between
the bilinear equation and the rational solution. Next, we are going to construct the generalized rational
solutions of Eq (1.7) by introducing two free parameters µ, ν, which possess more complex mechanisms
than their counterpart. In this case, the generalized rational solution also has two kinds of waves, multi-
lump soliton and dark-multi-wave soliton (compare with the bright-multi-wave soliton in Section 2).
With the help of bilinear form (2.2), the generalized rational solution of Eq (1.7) can be obtained by
the following theorem.

Theorem 3.1. The extended CH-KP equation (1.7) has generalized rational solution

ūn(ξ, y, µ, ν) =
6γ
β

∂2

∂ξ2 ln F̄n(ξ, y, µ, ν), (3.1)

with
F̄n+1(ξ, y, µ, ν) = Fn+1(ξ, y) + 2µyPn(ξ, y) + 2νξQn(ξ, y) + (µ2 + ν2)Fn−1(ξ, y), (3.2)

and

Pn(ξ, y) =

n(n+1)/2∑
j=0

j∑
i=0

bi, jξ
2iy2( j−i), Qn(ξ, y) =

n(n+1)/2∑
j=0

j∑
i=0

ci, jξ
2iy2( j−i),

where F̄n , 0 and µ, ν, bi, j, ci, j are real parameters [43].
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3.1. Second order generalized rational solution

Substituting F̄2 into (2.2) and equating the coefficients of all powers of ξ, y to zero, we have

a0.0 = −
1875γ3a3.3

(α + 1)3 +
δµ2b2

1.1 + 9(α + 1)ν2c2
1.1

9(α + 1)a3.3
− µ2 − ν2, a0.1 =

475γ2a3.3

(α + 1)δ
, a0.2 = −

17(α + 1)γa3.3

δ2 ,

a0.3 =
(α + 1)3a3.3

δ3 , a1.1 = −
125γ2a3.3

(α + 1)2 , a1.2 = −
90γa3.3

δ
, a1.3 =

3(α + 1)2a3.3

δ2 , a2.2 = −
25γa3.3

α + 1
,

a2.3 =
3(α + 1)a3.3

δ
, b0.0 = −

5γb1.1

3(α + 1)
, b0.1 = −

(α + 1)b1.1

3δ
, c0.0 =

γc1.1

α + 1
, c0.1 = −

3(α + 1)c1.1

δ
,

(3.3)

where a3.3, b1.1, c1.1 are arbitrary constants. Substituting into (3.1) and using u =
6γ
β

(ln f )ξξ, the solution
of Eq (1.7) can be written as

ū2 =
6γ
β

(
ln F̄2(ξ, y, µ, ν)

)
ξξ.

Here, α = −γ = σ = a3.3 = b1.1 = c1.1 = 1, β = −6. Starting from the rational soliton u2(ξ, y)
(see Figure 1(a)), the evolution plots of the generalized rational soliton ū2(ξ, y, µ, ν) are displayed in
Figure 8. Numerical simulation indicates that there are two peaks for ū2(ξ, y, µ, ν) when µ, ν are small.
One of the peaks shrinks, and divides into two small hills as µ, ν increase. After that, those tiny hills
will rise up if µ, ν continue increase. Eventually ū2(ξ, y, µ, ν) contains three separated lump waves and
organizes a triangle (see Figure 9).

(a) µ = ν = 10 (b) µ = ν = 20 (c) µ = ν = 40

Figure 8. Evolutional plots of the generalized rational solution ū2 in (ξ, y)-plane with α =

1, β = −6, γ = −1, δ = 1, a3.3 = b1.1 = c1.1 = 1 of Eq (1.7).
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(a) Three-dimensional plot (b) Density plot

-5 0 5
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5

ξ

y

(c) Contour plot

Figure 9. Generalized rational solution ū2 in (ξ, y)-plane with α = 1, β = −6, γ = −1, δ =

1, a3.3 = b1.1 = c1.1 = 1 of Eq (1.7).

3.2. Third order generalized rational solution

Substituting F̄3 into (2.2) and equating the coefficients of all powers of ξ, y to zero, we have

a0.0 =
878826025(α + 1)2γ6 − 27γ

(
(α + 1)7ν2 + δ7µ2

)
9(α + 1)8 (

µ2 + ν2 + 1
) , a0.2 =

16391725γ4

3(α + 1)2δ2 , a0.3 = −
798980γ3

3δ3 ,

a0.1 =
3
(
(α + 1)7ν2 + δ7µ2

)
− 300896750(α + 1)2γ5

3(α + 1)6δ
(
µ2 + ν2 + 1

) , a0.4 =
4335(α + 1)2γ2

δ4 , a0.5 = −
58(α + 1)4γ

δ5 ,

a1.1 =
3
(
(α + 1)7ν2 + δ7µ2

)
− 159786550(α + 1)2γ5

3(α + 1)7 (
µ2 + ν2 + 1

) , a0.6 =
(α + 1)6

δ6 , a1.2 =
565950γ4

(α + 1)3δ
,

a1.3 =
14700γ3

(α + 1)δ2 , a1.4 =
35420

(
αγ2 + γ2

)
δ3 , a1.5 = −

570(α + 1)3γ

δ4 , a1.6 =
6(α + 1)5

δ5 ,

a2.2 = −
5187875γ4

3(α + 1)4 , a2.3 = −
220500γ3

(α + 1)2δ
, a2.4 =

37450γ2

δ2 , a2.5 = −
1460(α + 1)2γ

δ3 ,

a2.6 =
15(α + 1)4

δ4 , a3.3 = −
75460γ3

3(α + 1)3 , a3.4 =
18620γ2

(α + 1)δ
, a3.5 = −

1540(αγ + γ)
δ2 , a3.6 =

20(α + 1)3

δ3 ,

a4.4 =
735γ2

(α + 1)2 , a4.5 = −
690γ
δ

, a4.6 =
15

(
α2 + 2α + 1

)
δ2 , a5.5 = −

98γ
α + 1

, a5.6 =
6(α + 1)

δ
,

b0.0 = −
18865γ3δ3

3(α + 1)6 , b0.1 = −
245γ2δ2

(α + 1)4 , b0.2 =
7γδ

(α + 1)2 , b1.1 = −
665γ2δ3

(α + 1)5 , b1.2 =
190γδ2

(α + 1)3 ,

b1.3 = −
9δ
α + 1

, b2.2 = −
105γδ3

(α + 1)4 , b2.3 = −
5δ2

(α + 1)2 , b3.3 =
5δ3

(α + 1)3 , c0.0 = −
12005γ3

3(α + 1)3 ,

c0.1 =
535γ2

(α + 1)δ
, c0.2 = −

45(αγ + γ)
δ2 , c0.3 =

5(α + 1)3

δ3 , c1.1 = −
245γ2

(α + 1)2 , c1.2 =
230γ
δ

,

c1.3 = −
5
(
α2 + 2α + 1

)
δ2 , c2.2 = −

13γ
α + 1

, c2.3 = −
9(α + 1)

δ
.
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Substituting into (3.1) and using u =
6γ
β

(ln f )ξξ, the solution of Eq (1.7) can be written as

ū3 =
6γ
β

(
ln F̄3(ξ, y, µ, ν)

)
ξξ.

Here, α = −γ = σ = 1, β = −6. From Figure 1(b), we know that the rational solution u3(ξ, y) only
has three peaks, with one in the middle and two guarding around. As µ, ν increases, two bilateral peaks
start to split. To be specific, the left side peak divides into three, while the right side peak divides into
two(see Figure 10). For sufficient large µ, ν, ū3(ξ, y, µ, ν) organizes a pentagon with one peak in the
middle and five around it(see Figure 11).

(a) µ = ν = 400 (b) µ = ν = 1000 (c) µ = ν = 5000

Figure 10. Evolutional plots of the generalized rational solution ū3 in (ξ, y)-plane with α =

1, β = −6, γ = −1, δ = 1 of Eq (1.7).

(a) Three-dimensional plot (b) Density plot
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y

(c) Contour plot

Figure 11. Generalized rational solution ū3 in (ξ, y)-plane with α = 1, β = −6, γ = −1, δ = 1
of Eq (1.7).
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3.3. Fourth order generalized rational solution

Substituting F̄4 into (2.2) and equating the coefficients of all powers of ξ, y to zero, we have

a9.9 = 270γ, a9.10 = 10, a8.8 = 16605γ2, a8.9 = 3030γ, a8.10 = 45, a7.7 = 351000γ3,

a7.8 = 275400γ2, a7.9 = 13800γ, a7.10 = 120, a6.6 = −18877950γ4, a6.7 = 10621800γ3,

a6.8 = 1367100γ2, a6.9 = 34440γ, a6.10 = 210, a5.5 = 2094264900γ5, a5.6 = 107534700γ4,

a5.7 = 56586600γ3, a5.8 = 3308760γ2, a5.9 = 52500γ, a5.10 = 252, a4.4 = −178095030750γ6,

a4.5 = 4871002500γ5, a4.6 = 1071960750γ4, a4.7 = 135286200γ3, a4.8 = 4513950γ2,

a4.9 = 50820γ, a4.10 = 210, a3.3 = 6967194507000γ7, a3.4 = −521628471000γ6,

a3.5 = 636363000γ5, a3.6 = 3824793000γ4, a3.7 = 151237800γ3, a3.8 = 3601080γ2,

a3.9 = 31080γ, a3.10 = 120, a2.2 = 190578711448125γ8, a2.3 = 33286514625000γ7,

a2.4 = −405853402500γ6, a2.5 = 45237339000γ5, a2.6 = 2667498750γ4, a2.7 = 94613400γ3,

a2.8 = 1619100γ2, a2.9 = 11400γ, a2.10 = 45, a1.1 = −696163557521250γ9,

a1.2 = 870343420196250γ8, a1.3 = 90898176915000γ7, a1.4 = 1982064357000γ6,

a1.5 = 31477666500γ5, a1.6 = 671510700γ4, a1.7 = 35645400γ3, a1.8 = 354600γ2,

a1.9 = 2190γ, a1.10 = 10, a0.0 = 5917390238930625γ10, a0.1 = 3474517664913750γ9,

a0.2 = 348683786758125γ8, a0.3 = 43199536653000γ7, a0.4 = 1200881855250γ6,

a0.5 = 21813668100γ5, a0.6 = 360709650γ4, a0.7 = 3299400γ3, a0.8 = 23085γ2, a0.9 = 150γ,

b0.6 =

√
−c2

4.6ν
2 + 625µ2 + 625ν2

25µ
, b0.5 =

2γ
√
−c2

4.6ν
2 + 625µ2 + 625ν2

5µ
,

b1.6 = −
18

√
−c2

4.6ν
2 + 625µ2 + 625ν2

25µ
, b0.4 = −

9γ2
√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
,

b1.5 = −
262γ

√
−c2

4.6ν
2 + 625µ2 + 625ν2

5µ
, b2.6 = −

√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
,

b0.3 =
684γ3

√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
, b1.4 = −

15684γ2
√
−c2

4.6ν
2 + 625µ2 + 625ν2

5µ
,

b2.5 = −
156γ

√
−c2

4.6ν
2 + 625µ2 + 625ν2

5µ
, b3.6 =

36
√
−c2

4.6ν
2 + 625µ2 + 625ν2

25µ
,

b0.2 =
443079γ4

√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
, b1.3 = −

52668γ3
√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
,
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b2.4 =
4746γ2

√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
, b3.5 =

6132γ
√
−c2

4.6ν
2 + 625µ2 + 625ν2

25µ
,

b4.6 =
63

√
−c2

4.6ν
2 + 625µ2 + 625ν2

25µ
, b0.1 =

6707610γ5
√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
,

b1.2 = −
660618γ4

√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
, b2.3 =

33012γ3
√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
,

b5.6 =
14

√
−c2

4.6ν
2 + 625µ2 + 625ν2

25µ
, b0.0 = −

11764935γ6
√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
,

b1.1 = −
11755926γ5

√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
, b2.2 =

384111γ4
√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
,

b3.3 = −
5796γ3

√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
, b4.4 = −

105γ2
√
−c2

4.6ν
2 + 625µ2 + 625ν2

µ
,

b5.5 = −
126γ

√
−c2

4.6ν
2 + 625µ2 + 625ν2

5µ
, b6.6 = −

7
√
−c2

4.6ν
2 + 625µ2 + 625ν2

25µ
,

c6.6 = −
c4.6

25
, c5.5 =

−74
25

γc4.6, c5.6 =
18c4.6

25
, c4.4 = 33γ2c4.6, c4.5 =

374
5
γc4.6,

c3.3 = −1692γ3c4.6, c3.4 =
5316

5
γ2c4.6, c3.5 =

348
5
γc4.6, c3.6 = −

36c4.6

25
, c2.2 = 89145γ4c4.6,

c2.3 = 13356γ3c4.6, c2.4 = 294γ2c4.6, c2.5 =
−1092

5
γc4.6, c2.6 = −

63c4.6

25
, c1.1 = −3130218γ5c4.6,

c1.2 = −675990γ4c4.6, c1.3 = −52164γ3c4.6, c1.4 = −5964γ2c4.6, c1.5 =
−378

5
γc4.6,

c1.6 = −
14c4.6

25
, c0.0 = 1799343γ6c4.6, c0.1 = 15804054γ5c4.6, c0.2 = 758961γ4c4.6,

c0.3 = 24948γ3c4.6, c0.4 = 609γ2c4.6, c0.5 =
294
25

γc4.6, c0.6 =
7c4.6

25
.

where c4,6 is an arbitrary constant. Substituting into (3.1) and using u =
6γ
β

(ln f )ξξ, the solution of
Eq (1.7) can be written as

ū4 =
6γ
β

(
ln F̄4(ξ, y, µ, ν)

)
ξξ.

Here, α = −2, β = 6, γ = 1, σ = −1. The evolution of ū4(ξ, y, µ, ν) is a bit more complicated than the
lower order ones. In Figure 12, two guarding peaks divide into four separated peaks, as another three
tiny hills rise nearby the central peaks. For sufficient large µ, ν, ū4(ξ, y, µ, ν) possesses one double-peak
wave in the middle and seven in a ring around it, composing a heptagram(see Figure 13).
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(a) µ = ν = 1 × 105 (b) µ = ν = 1 × 106 (c) µ = ν = 5 × 106

Figure 12. Evolutional plots of the generalized rational solution ū4 in (ξ, y)-plane with α =

−2, β = 6, γ = 1, δ = −1 of Eq (1.7).

(a) Three-dimensional plot (b) Density plot
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(c) Contour plot

Figure 13. Generalized rational solution ū4 in (ξ, y)-plane with α = −2, β = 6, γ = 1, δ = −1
of Eq (1.7).

Remark 3.1. The multi-breather soliton that has similar structure such as forming a triangle, a
pentagon and a heptagram can be seen in a generalized KP-BBM equation [45].

4. Scatter of the lumps

Next, we will study the scatter behavior of the multi-lump soliton by selecting different µ, ν.
Based on previous discussion, we know that ūn is capable of scattering to three-, six- and eight-lump
waves as µ, ν increases. It is natural to wonder, what will happen if these parameters continue to
increase? Therefore, we choose three different values of µ, ν for each solution to analyze their behavior.
According to Figures 14–16, ū2, ū3, ū4 own homologous character: if µ, ν continue to rise, the lumps
will maintain their shape and expand the clearance to a larger picture.
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(a) µ = ν = 1000 (b) µ = ν = 2000 (c) µ = ν = 5000

Figure 14. Plots for the generalized rational solution ū2 for various values of µ, ν.

(a) µ = ν = 4 × 104 (b) µ = ν = 1 × 105 (c) µ = ν = 4 × 105

Figure 15. Plots for the generalized rational solution ū3 for various values of µ, ν.

(a) µ = ν = 2 × 108 (b) µ = ν = 1 × 109 (c) µ = ν = 5 × 109

Figure 16. Plots for the generalized rational solution ū4 for various values of µ, ν.

According to above analysis, we know that if µ, ν continues to increase, these separated lumps will
keep their formation and extend over a wider space. Obviously, the propagation observes a specific
pattern. For this purpose, we will calculate the exact locations where extremum are and discuss their
features. Under the same parametric conditions in Section 3, solve ∂ūn/∂ξ = 0, ∂ūn/∂y = 0 and
omit extra point, we can obtain the location of extremum. Consequently, one has the following three
circumcircles (see Figure 17)

(ξ − 0.029)2 + (y + 0.038)2 = 762.511,

(ξ + 0.030)2 + (y − 0.122)2 = 837.548,

(ξ − 0.052)2 + (y + 0.191)2 = 946.623,
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where the lump waves locate, for ū2(ξ, y, 104, 104), ū3(ξ, y, 107, 107), ū4(ξ, y, 1010, 1010), severally. It is
noteworthy that during our calculation, the selection of the point is processed in a random order, and
we find that other extremum accords with the same path.

We select several alternative values of µ, ν for each circumstance and overlay them in one picture.
In Figure 18(a), we set µ = ν = 6 × 104, 2 × 105, 5 × 105, 1 × 106. In Figure 18(b), we set µ = ν =

1× 107, 1× 108, 5× 108, 1.6× 109. In Figure 18(c), we set µ = ν = 5× 1010, 4× 1011, 2× 1012, 7× 1012.

Based on above superimposed contour plots, as µ, ν grows, the space between each other turns bigger,
and the lump waves all move along a straight line in three, five, or seven different paths (red lines),
respectively. Furthermore, except for ū2, the higher order generalized rational solution has one stable
solitary wave in the middle of the picture. Therefore, we have answered the query proposed at the
beginning of Section 4: “what will happen if these parameters continue to increase?”.
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(a) ū2(ξ, y, 2 × 104, 2 × 104)
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Figure 17. Contour plots of ūn.
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Figure 18. Superimposed contour plots of ūn.

5. Dark wave dynamics

For the generalized rational solution ūn, it also has two appearances: multi-lump and multi-wave.
Above, we have established the multi-lump soliton and studied its mechanism. Further, we will analyze
the dark-multi-waves. Different from the bright-multi-waves obtained in Section 2, the dark-multi-
waves do not come from a plain wave background and do not disappear with time. In Figure 19, there
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is one stripe soliton hidden in the valley at the initial input y = −0.2. It starts to shrink at first, then
rises up and forms two gullies. As for the second order generalized rational solution ū2, there are three
stripe solitons in the valley at the initial datum. Then, these stripe solitons converge into one and rise
up above the surface (see Figure 20). The evolution of the third order generalized rational solution ū3

is more complicated than the others. As is shown in Figure 21, there are three hidden stripe solitons
in the middle at the beginning. Then, they converge into two and divide into three and finally leave us
four gullies.

(a) y=-0.2 (b) y=0 (c) y=0.5 (d) y=1

Figure 19. Evolutional plots for the generalized rational solution ū1 in (x, t)-plane with
α = 10, β = −6, γ = −1, σ = −1.

(a) y=-0.3 (b) y=0 (c) y=0.2 (d) y=0.4

Figure 20. Evolutional plots for the generalized rational solution ū2 in (x, t)-plane with
α = 10, β = −6, γ = −1, σ = −1, a3.3 = b1.1 = c1.1 = 1.

(a) y=-0.2 (b) y=0 (c) y=0.3 (d) y=1

Figure 21. Evolutional plots for the generalized rational solution ū3 in (x, t)-plane with
α = 10, β = −6, γ = −1, σ = −1.
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6. Conclusions

This paper proposes a new extension to the Camassa-Holm-Kadomtsev-Petviashvili (CH-KP)
equation by adding an additional term utt, which simulates the dispersions role in the development
of patterns in a liquid drop and describes left and right traveling waves like the Boussinesq equation.
We have derived the rational and generalized rational solutions for this equation through its bilinear
form and symbolic computation. By plotting them in different planes, two waveforms exist: multi-
lump and multi-wave. Two-, three- and four-lump solitons are demonstrated in Figure 1. Except for
the multi-lump soliton, we have plotted the multi-wave solitons in Figures 2–4, showing as multiple
order line rogue waves. According to our numerical simulations, these waves stem from a plain wave
background and hit the maximum amplitude at y = 0. Then, they disappear with time. Furthermore,
we have explored the inner link between Fn and un by discussing the relevance between complex roots
of Fn = 0 and the formation of waves. As for the generalized rational solution ūn with two free
parameters µ, ν, we have systematically analyzed its scatter behavior by setting different µ, ν. The
multiple order dark waves are introduced in Section 5, and they are different from the multi-wave
solitons in Section 2. We believe these results may aid in explaining the progress of rogue waves, as
they not only provide a complete picture of how a rogue wave can “come out of nowhere and disappear
without a trace”, but also makes it realistic in the actual world. Moreover, multi-component and higher
order rational solutions demonstrating diverse interesting phenomena, particularly in fully discrete and
(3+1)-dimensional cases, would be very interesting topics in future research.
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