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1. Introduction

The well-known disease malaria is one of the illnesses threatening human health that appears under
the influence of a parasitic infectious agent in female Anopheles mosquitoes. In fact, Plasmodium
parasites are the main cause of this infection, which causes disease by implanting in the red blood cells
of an infected person, and among the different types of these parasites, two of them are among the
most common pathogenic parasites: Plasmodium vivax and Plasmodium falciparum [1]. The malaria
parasite is transmitted to the human body and its bloodstream by biting infected female Anopheles
mosquitoes. Also, the process of transmitting the parasite can occur through blood transfusions or
even infection of the fetus through its pregnant mother who carries the infection [2].

Although this disease will not be dangerous if it is detected in time and treated properly, it has
negative effects on human health and social life. The disease is most commonly reported in the
tropical regions of Africa and Asia and imposes heavy financial burdens on families and governments.
According to extensive studies on the spread and control of the disease by various medical institutes and
associations, it still threatens public health and causes deaths in children under five in disadvantaged
and less developed countries [3]. Irregular vaccination or improper distribution of antimalarial drugs
can spread the disease. Even due to the nature of the parasites, sometimes, with widespread changes
in the climate and the surrounding environment, the drug resistance of the parasites is impaired and
causes the drugs to lose their effectiveness. Currently, the simplest advice for people in high-risk areas
is to use bedside nets and window sills, which, to a large extent, prevent the number of bites during
sleep or indoors. With widespread social and environmental changes and the effects of climate change
in recent years, there has been a need to study the biology of host parasites carefully. The study of
behaviors and dynamics of these parasites in the context of different methods of disease control and
treatment has been one of the important points in recent research studies that have attracted the attention
of researchers.

In this regard, various mathematical models came to the aid of researchers to simulate the exact
dynamic behaviors of the transmission and spread of different types of viruses and infectious parasites.
Also, by providing and designing different treatment and control methods, one can evaluate and predict
the amount of prevalence during a specific time period. In 2001, Yang [4] considered a mathematical
structure to model the transmission of malaria based on two factors, i.e., global warming and socio-
economic conditions; further, Yang completed the study by providing the sensitivity analysis. In 2008,
Chiyaka et al. [5] turned to control strategies on a deterministic model of malaria during two latent
periods and analyzed some qualitative criteria to calculate the vaccination rate. One year later, Rafikov
et al. [6] implemented some strategies on malaria to compute the optimal control index with the help
of some genetic modifications on vector mosquitoes. In 2011, Mandal et al. [7] published a review
paper on the different models of malaria disease. After that, in 2012, Agusto et al. [8] extended
control strategies on malaria by adding three indexes, including bed nets, treatment and the use of
the spray. In 2013, Abdullahi et al. [9] designed their mathematical model of malaria by investigating
the effectiveness of drugs. Recently, in 2017, Senthamarai et al. [10] gave a multi-compartmental
model of malaria and predicted the behavior of solutions based on numerical algorithms obtained by
the homotopy method.

However, for the sake of the existing limitations in the above methods and models, and due to
the locality of the integer-order operators, in recent years, the tools and operators in fractional calculus
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have begun to provide considerable simulation and prediction power for mathematicians and physicians
to be able to evaluate a variety of biological mathematical models in the form of finite-dimensional
systems of fractional differential equations. The extent and increasing efficiency of such mathematical
fractional modeling can be seen in the study of various types of diseases, and even in various fields of
engineering, such as the models presented for COVID-19 [11–14], HIV [15], anthrax [16], hepatitis
C [17], circuits of memristor type [18], hyperchaotic modeling [19], persistence of infections in
the environment [20], the Langevin systems [21], genetic networks [22], well-known viruses such
as mumps [23] and Zika [24, 25], mosaic disease [26], some models of viruses in computers [27],
thermostat control [28, 29], pantograph system [30, 31], canine virus [32], Q-fever [33], p-Laplacian
systems [34], the co-dynamics of diabetes and COVID-19 [35], the modeling of glucose [36], Navier
equations [37], etc.

Numerical methods and simulation techniques and the application of fractional calculus are not
limited to the above-mentioned cases. This fractionalization has also been used to design various
research models of malaria. For example, Badshah and Akbar [38] chose a region in Pakistan called
Khyber Pakhtunkhwa; they designed a four-compartmental fractional model of malaria based on the
given data in that city and investigated the qualitative properties of the model via the Routh-Hurwitz
condition. In the same year, Pawar et al. [39] gave another fractional model of malaria for two classes
of non-immune and semi-immune peoples; they analyzed it analytically and solved it numerically via
the generalized Euler criterion. In [40], ul Rehman et al. considered two factors of the temporary
immunity and relapse of disease. They then defined a new model of malaria in the context of the
fractional Caputo operator. Recently, in 2022, Cui et al. [41] presented an advanced fractional model
for malaria, entitled the delayed Ross-Macdonald model, and reviewed all properties of the solutions.
The role of insecticides and treatment was investigated in a new fractional Atangana-Baleanu model of
malaria designed by Sinan et al. [42] in 2022.

By studying the published manuscripts of the last few years, we found an article of Atangana [43]
in which a newly structured operator of generalized derivatives has been defined, i.e., fractal-fractional
derivatives, which is considered a junction between fractal calculus and fractional calculus. He also
discussed fractal-fractional integrals. These derivatives have the same form as the convolution of the
generalized Mittag-Leffler law, exponential law and power-law with fractal derivatives. Such operators
include two components, i.e., fractional order and fractal dimension. Taking into account the good
accuracy of operators in the simulation of fractal-fractional systems, most researchers have focused
on such fractal-fractional models. Gomez-Aguilar et al. [44] turned to a model of malaria using these
fractal-fractional derivatives. The behavior of the coronavirus was discussed in Pakistan by Shah and
his colleagues, who used fractal-fractional operators [45]. Ali et al. examined a fractal-fractional model
of COVID-19 based on some statistical data in Wuhan [46], as well as other manuscripts like [47–51].

In this paper, we aim to present a new model of malaria disease in the framework of the Atangana-
Baleanu fractal-fractional derivatives for two groups of populations, i.e., humans and mosquitoes. Our
model is a generalization of standard integer-order and fractional-order models to a (c1, c2)-fractal-
fractional-order structure for the first time. In our new model, the fractal dimension c2 and fractional
order c1 play considerable roles in the simulations of solutions. In addition, we use a new numerical
method to solve these generalized fractal-fractional operators. We use Newton polynomials to give
numerical solutions with two fractal and fractional parameters.

This forms the novelty of our model and method in consideration of the other models presented for
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malaria until now. In relation to our main contribution to the present study, it is necessary to emphasize
that we divide our target population into five different groups of humans and mosquitoes and then
provide parameters and rates for which we can measure the effects of vaccination, antimalarial drugs
and spraying on the control and reduction of this disease. Our model will be discussed from several
perspectives. Because our fractal-fractional model is newly structured, we investigate existence theory
via the Leray-Schauder alternative fixed-point theorem. Furthermore, the Banach contraction is utilized
to obtain a unique solution. Further, other types of stable solutions are studied here for the suggested
model. To simulate it, we use the new method of Newton polynomials in the fractal-fractional version.
The findings and effects of fractal-fractional orders on the dynamics of solutions are analyzed, and the
graphs are plotted using MATLAB.

2. Preliminaries

In the present section, we state some definitions of the generalized fractal-fractional operators. We
refer the readers to [43] for more information.

Let a continuous map z : (t0, b) → [0,∞) be fractal-differentiable of dimension c2. The (c1, c2)-
fractal-fractional derivative of the function z of the generalized Mittag-Leffler-type kernel in the
Riemann-Liouville (RL) sense is given by

FFMLD
(c1,c2)
t0,t z(t) =

AB(c1)
1 − c1

d
dtc2

∫ t

t0
Ec1

[
−

c1

1 − c1
(t − q)c1

]
z(q) dq, 0 < c1, c2 ≤ 1, (2.1)

with
dz(q)
dqc2

= lim
t→q

z(t) − z(q)
tc2 − qc2

,

which is the fractal derivative; also,

AB(c1) = 1 − c1 +
c1

Γ(c1)

and AB(0) = AB(1) = 1 [43].
Simply, we see that the fractal-fractional derivative FFMLD

(c1,c2)
t0,t is transformed into the standard

cth
1 -RL derivative RLD

c1
t0,t by assuming c2 = 1.

By considering such a function z with the above properties, the (c1, c2)-fractal-fractional integral
with the Mittag-Leffler-type kernel is defined by

FFMLI
(c1,c2)
t0,t z(t) =

c1c2

Γ(c1)AB(c1)

∫ t

t0
q

c2−1(t − q)c1−1z(q) dq +
(1 − c1)c2tc2−1

AB(c1)
z(t) (2.2)

if the integral is finite-valued, where c1, c2 > 0 [43].
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3. Description of (c1, c2)-fractal-fractional SIR-SI-model

In 2019, Kumar et al. [52] designed a new model of malaria with the operators involving the
exponential law. In fact, they were motivated by the standard system of differential equations given by



dHS(t)
dt

= ΘH + δH
R(t) − (ηa1H

I(t) + λa2M
I(t))HS(t) − (p + fH)HS(t),

dHI(t)
dt

= ϖHI(t) + (ηa1H
I(t) + λa2M

I(t))HS(t) − ( fH + ω + γβ)HI(t),

dHR(t)
dt

= γβHI(t) − ( fH + δ)HR(t) + pHS(t),

dMS(t)
dt

= ΘM − (κa3H
I(t) + fM + α)MS(t),

dMI(t)
dt

= κa3H
I(t)MS(t) − ( fM + α)MI(t),

(3.1)

where the total population of the humans and the total population of mosquitoes are divided into three
categories and two categories, respectively. Kumar et al. [52] generalized the standard model (3.1) to
a form of the fractional SIRS-SI model with the Caputo-Fabrizio derivative, which involves memory
effects, as



CFDc
0,tH

S(t) = ΘH + δHR(t) − (ηa1H
I(t) + λa2M

I(t))HS(t) − (p + fH)HS(t),

CFDc
0,tH

I(t) = ϖHI(t) + (ηa1H
I(t) + λa2M

I(t))HS(t) − ( fH + ω + γβ)HI(t),

CFDc
0,tH

R(t) = γβHI(t) − ( fH + δ)HR(t) + pHS(t),

CFDc
0,tM

S(t) = ΘM − (κa3H
I(t) + fM + α)MS(t),

CFDc
0,tM

I(t) = κa3H
I(t)MS(t) − ( fM + α)MI(t).

(3.2)

In the above model, the authors introduced the categories HS(t), HI(t) and HR(t) as the number of
susceptible, infected and recovered persons, respectively, and also introduced two categories MS(t)
and MI(t) as the number of susceptible and infected mosquitoes, respectively, at the time t ∈ I :=
[0, τ], (τ > 0).

To achieve more accurate numerical results in an efficient manner, due to the important role
of two parameters of fractional order and dimension order in fractal-fractional operators for exact
simulations, and motivated by both the standard and fractional models (3.1) and (3.2), we design and
give a mathematical five-compartmental (c1, c2)-fractal-fractional SIR-SI-model of malaria disease
under antimalarial treatments with the generalized Mittag-Leffler-type kernel between two populations
of humans (H) and mosquitoes (M) (shortly, (H,M)-(c1, c2)-fractal-fractional SIR-SI-model of
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malaria), which takes a form

FFMLD
(c1,c2)
0,t HS(t) = ΘH + δHR(t) − (ηa1H

I(t) + λa2M
I(t))HS(t) − (p + fH)HS(t),

FFMLD
(c1,c2)
0,t HI(t) = ϖHI(t) + (ηa1H

I(t) + λa2M
I(t))HS(t) − ( fH + ω + γβ)HI(t),

FFMLD
(c1,c2)
0,t HR(t) = γβHI(t) − ( fH + δ)HR(t) + pHS(t),

FFMLD
(c1,c2)
0,t MS(t) = ΘM − (κa3H

I(t) + fM + α)MS(t),

FFMLD
(c1,c2)
0,t MI(t) = κa3H

I(t)MS(t) − ( fM + α)MI(t),

(3.3)

subject to
HS(0) = κ1, HI(0) = κ2, HR(0) = κ3, MS(0) = κ4, MI(0) = κ5,

where all the state functions HS(t),HI(t),HR(t),MS(t) and MI(t) are similar to those introduced in
the Caputo-Fabrizio model (3.2). Also, FFMLD

(c1,c2)
0,t is the (c1, c2)-fractal-fractional derivation operator

equipped with the fractional order c1 and fractal order c2 so that c1, c2 ∈ (0, 1]; and, the kernel of the
operator is of the generalized Mittag-Leffler type.

In the mentioned (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria, all parameters
are positive and the initial values κ1, . . . , κ5 are nonnegative. Also, p ∈ [0, 1], β ∈ [0.01, 1] and
α ∈ [0, 1]. The structure of the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria can
be described as follows.

The symbol η shows the average number of blood transfusions among the infected and susceptible
categories over a fixed period of time. The symbol κ states the average number of susceptible mosquito
bites to the infected individuals over a fixed period of time. Accordingly, λ shows the average number
of infected mosquito bites on a susceptible individual over a fixed period of time. Moreover, the newly
born individuals have belonged to the susceptible category HS via a constant rate ΘH per unit of time.
Similarly, newly born mosquitoes have belonged to the susceptible categoryMS via a constant rate ΘM
per unit of time.

The symbol a1 interprets the probability of transmission of the disease to susceptible individuals
through infected individuals, a2 is the probability of transmission of the disease from infected
mosquitoes to susceptible peoples and a3 stands for the probability of transmission of the disease
to susceptible mosquitoes through the infected population. The rate of personal healing is denoted by
γ, and the symbol β denotes the power of antimalarial medicines.

In this model, we see that the people belonging to the susceptible category HS are transferred to the
infected categories HI and MI by way of the blood exchanging via the rate ηa1, or due to an infected
mosquito bite via the rate λa2 for each unit of time, respectively. Also, due to vaccination at the rate p
for each unit of time, the people belonging to the susceptible category HS transfer into the recovered
category HR. The people belonging to the susceptible category HS die at the rate fH. Moreover, the
individuals belonging to the infected categoryHI die at the rate fH and expire due to the malaria disease
at the rate ω for each unit of time.

The people belonging to the recovered category HR also die at the rate fH for each unit of time. The
susceptible and infected mosquitoes die due to the exercise of spraying at the rate α for each unit of
time. The infected mosquitoes belonging toMI die at the rate fM for each unit of time.
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The newly born children are infected by malaria disease through the mother at the rate ϖ for each
unit of time. The individuals in the infected category HI can join the recovered category as a result
of using antimalarial drugs at the rate γβ for each unit of time. The mosquitoes belonging to the
susceptible category MS transfer to the infected category MI by being bitten by an infected mosquito
at the rate κa3 for each unit of time, or they die at the rate fM for each unit of time. The symbol δ is
used for the mean value per capita rate of loss of immunity for each unit of time.

4. Existence results

In this section, we get help from the well-known theorems of fixed-point theory to investigate the
existence property. Take the Banach space X = F5, and then assume F = C(I,R) with the supremum
norm

∥K∥X = ∥
(
HS,HI,HR,MS,MI

)
∥X = sup

{
|P(t)| : t ∈ I

}
for

|P| := |HS| + |HI| + |HR| + |MS| + |MI|.

Further, for simplicity, the right-hand side of the (H,M)-(c1, c2)-fractal-fractionalSIR-SI-model (3.3)
of malaria can be rewritten as

X1
(
t,HS(t)

)
= ΘH + δH

R(t) − (ηa1H
I(t) + λa2M

I(t))HS(t) − (p + fH)HS(t),

X2
(
t,HI(t)

)
= ϖHI(t) + (ηa1H

I(t) + λa2M
I(t))HS(t) − ( fH + ω + γβ)HI(t),

X3
(
t,HR(t)

)
= γβHI(t) − ( fH + δ)HR(t) + pHS(t),

X4
(
t,MS(t)

)
= ΘM − (κa3H

I(t) + fM + α)MS(t),

X5
(
t,MI(t)

)
= κa3H

I(t)MS(t) − ( fM + α)MI(t).

(4.1)

Accordingly, the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria is reformulated as

ABRD
c1
0,tH

S(t) = c2tc2−1X1
(
t,HS(t)

)
,

ABRD
c1
0,tH

I(t) = c2tc2−1X2
(
t,HI(t)

)
,

ABRD
c1
0,tH

R(t) = c2tc2−1X3
(
t,HR(t)

)
,

ABRD
c1
0,tM

S(t) = c2tc2−1X4
(
t,MS(t)

)
,

ABRD
c1
0,tM

I(t) = c2tc2−1X5
(
t,MI(t)

)
.

(4.2)

Here, take into account the system (4.2), and reconstruct it as a compact initial value problem, like
ABRD

c1
0,sK(t) = c2tc2−1X

(
t,K(t)

)
,

K(0) = K0,
(4.3)
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by assuming

K(t) =
(
HS(t),HI(t),HR(t),MS(t),MI(t)

)T
,

K0 =
(
κ1, κ2, κ3, κ4, κ5,

)T
, c1, c2 ∈ (0, 1], (4.4)

and

X
(
t,K(t)

)
=



X1
(
t,HS(t)

)
,

X2
(
t,HI(t)

)
,

X3
(
t,HR(t)

)
,

X4
(
t,MS(t)

)
,

X5
(
t,MI(t)

)
, t ∈ I.

(4.5)

The non-singular Atangana-Baleanu-Reimann-Liouville fractional derivative changes (4.3) to

AB(c1)
1 − c1

d
dt

∫ t

0
Ec1

[
−

c1

1 − c1
(t − q)c1

]
K(q) dq = c2tc2−1X

(
t,K(t)

)
. (4.6)

The Atangana-Baleanu fractal-fractional integral on (4.6) gives

K(t) = K(0) +
(1 − c1)c2tc2−1

AB(c1)
X(t,K(t)) +

c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X(q,K(q)) dq. (4.7)

The following extensions of the base system of fractal-fractional integral equations are given as

HS(t) = κ1 +
(1 − c1)c2tc2−1

AB(c1)
X1(t,HS(t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS(q)) dq,

HI(t) = κ2 +
(1 − c1)c2tc2−1

AB(c1)
X2(t,HI(t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X2(q,HI(q)) dq,

HR(t) = κ3 +
(1 − c1)c2tc2−1

AB(c1)
X3(t,HR(t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X3(q,HR(q)) dq,

MS(t) = κ4 +
(1 − c1)c2tc2−1

AB(c1)
X4(t,MS(t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X4(q,MS(q)) dq,

MI(t) = κ5 +
(1 − c1)c2tc2−1

AB(c1)
X5(t,MI(t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X5(q,MI(q)) dq.
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A new map, to make a fixed-point problem, is defined by T : X → X, which has been formulated as

T (K(t)) = K(0) +
(1 − c1)c2tc2−1

AB(c1)
X(t,K(t)) +

c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X(q,K(q)) dq. (4.8)

To study the existence of solutions of the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of
malaria, we use the following theorem:

Theorem 4.1 ( [53]). (Leray-Schauder theorem) Let X be a Banach space, A ⊂ X a convex closed
bounded set,G ⊂ A an open set and 0 ∈ G. Then, for the continuous and compact function T : Ḡ→ A,
we have one of the following:

(hy1) There is x ∈ Ḡ such that x = T (x), or
(hy2) There is x ∈ ∂G and 0 < µ < 1 such that x = µT (x).

Theorem 4.2. Let X ∈ C(I × X,X), and we have the following:

(g1) There are F ∈ L1(I,R+) and a nondecreasing function Ψ ∈ C([0,∞), (0,∞)) such that, for each
t ∈ I and K ∈ X, ∣∣∣X(t,K(t))

∣∣∣ ≤ F (t)Ψ(|K(t)|);

(g2) There is R > 0 such that

R[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
F ∗0Ψ(R) +K0

> 1, (4.9)

with F ∗0 = supt∈I |F (t)|.

Then, for the FF-system (4.3) and the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of
malaria, at least one solution exists on I.

Proof. Consider T : X → X defined by (4.8) and

NR =
{
K ∈ X : ∥K∥X ≤ R

}
, R > 0.

The continuity of X implies the same property for T . The existing inequality in (g1) gives

∣∣∣T (K(t))
∣∣∣ ≤ ∣∣∣K(0)

∣∣∣ + (1 − c1)c2tc2−1

AB(c1)

∣∣∣X(t,K(t))
∣∣∣

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1
∣∣∣X(q,K(q))

∣∣∣ dq
≤ K0 +

(1 − c1)c2tc2−1

AB(c1)
F (t)Ψ(|K(t)|)

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1F (q)Ψ(|K(q)|) dq
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≤ K0 +
(1 − c1)c2τ

c2−1

AB(c1)
F ∗0Ψ(R) +

c1c2τ
c1+c2−1B(c1, c2)
Γ(c1)AB(c1)

F ∗0Ψ(R)

= K0 +
(1 − c1)c2τ

c2−1

AB(c1)
F ∗0Ψ(R) +

c1c2τ
c1+c2−1Γ(c2)

AB(c1)Γ(c1 + c2)
F ∗0Ψ(R)

for K ∈ NR. We get

∥TK∥X ≤ K0 +
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

AB(c1)Γ(c1 + c2)

]
F ∗0Ψ(R) < ∞. (4.10)

So, ∥TK∥X < ∞ and T is uniformly bounded on X. Let t, z ∈ [0, τ] with t < z and K ∈ NR. Let

sup
(t,K)∈I×NR

|X(t,K(t))| = X∗ < ∞.

Then,

∣∣∣T (K(z)) − T (K(t))
∣∣∣ ≤ ∣∣∣∣∣∣ (1 − c1)c2zc2−1

AB(c1)
X(z,K(z)) −

(1 − c1)c2tc2−1

AB(c1)
X(t,K(t))

+
c1c2

Γ(c1)AB(c1)

∫ z

0
q

c2−1(z − q)c1−1X(q,K(q)) dq

−
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X(q,K(q)) dq

∣∣∣∣∣∣
≤

(1 − c1)c2X∗

AB(c1)
(zc2−1 − tc2−1) (4.11)

+
c1c2X∗

Γ(c1)AB(c1)

∣∣∣∣ ∫ z

0
q

c2−1(z − q)c1−1 dq −
∫ t

0
q

c2−1(t − q)c1−1 dq
∣∣∣∣

≤
(1 − c1)c2X∗

AB(c1)
(zc2−1 − tc2−1) +

c1c2X∗B(c1, c2)
Γ(c1)AB(c1)

[
zc1+c2−1 − tc1+c2−1]

=
(1 − c1)c2X∗

AB(c1)
(zc2−1 − tc2−1) +

c1c2X∗Γ(c2)
Γ(c1 + c2)AB(c1)

[
zc1+c2−1 − tc1+c2−1],

where (independent of K) (4.11) converges to 0 if z→ t. So,

lim
z→t
∥T (K(z)) − T (K(t))∥X = 0,

and T is equicontinuous and compact on NR by the Arzelá–Ascoli thoerem. By Theorem 4.1, either
(hy1) or (hy2) is to be held. From (g2), take

Φ :=
{
K ∈ X : ∥K∥X < R

}
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for some R > 0, with K0 +
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
F ∗0Ψ(R) < R. With the help of (g1)

and by (4.10), we estimate

∥TK∥X ≤ K0 +
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
F ∗0Ψ(∥K∥X). (4.12)

By taking into account the existence of K ∈ ∂Φ and 0 < µ < 1 with K = µT (K), for these choices of
K and µ, and by (4.12), we have

R = ∥K∥X = µ∥TK∥X < K0 +
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
F ∗0Ψ(∥K∥X)

< K0 +
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
F ∗0Ψ(R) < R,

which is impossible. Thus, the item (hy2) is not fulfilled and T has a fixed point in Φ̄ (from
Theorem 4.1), which is the solution of the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of
malaria. □

5. Uniqueness result

To establish the uniqueness of the solution of the given (H,M)-(c1, c2)-fractal-fractional SIR-SI-
model (3.3) of malaria, we investigate the Lipschitz property for the functions X ȷ, ( ȷ = 1, . . . , 5) defined
in (4.1).

Lemma 5.1. Let HS,HI,HR,MS,MI,HS∗ ,H
I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗ ∈ F := C(I,R) and

(G3) ∥HS∥ ≤ v1, ∥HI∥ ≤ v2, ∥HR∥ ≤ v3, ∥MS∥ ≤ v4 and ∥MI∥ ≤ v5 for some real constants
v1, v2, v3, v4, v5 > 0.

Then, the functions X1,X2,X3,X4 and X5 defined by (4.1) are Lipschitz if L1, L2, L3, L4, L5 > 0, with

L1 = ηa1v2 + λa2v5 + p + fH, L2 = ϖ + ηa1v1 + ( fH + ω + γβ),

L3 = fH + δ, L4 = κa3v4 + fM + α, (5.1)

L5 = fM + α.

Proof. For the function X1, we choose HS,HS∗ ∈ F := C(I,R) arbitrarily. Then,

∥X1
(
t,HS(t)

)
− X1

(
t,HS∗ (t)

)
∥

=
∥∥∥(ΘH + δHR(t) − (ηa1H

I(t) + λa2M
I(t))HS(t) − (p + fH)HS(t)

)
−

(
ΘH + δH

R(t) − (ηa1H
I(t) + λa2M

I(t))HS∗ (t) − (p + fH)HS∗ (t)
)∥∥∥

≤
[
ηa1∥H

I(t)∥ + λa2∥M
I(t)∥ + p + fH

]
∥HS(t) − HS∗ (t)∥

AIMS Mathematics Volume 8, Issue 2, 3120–3162.



3131

≤
[
ηa1v2 + λa2v5 + p + fH

]
∥HS(t) − HS∗ (t)∥

= L1∥H
S(t) − HS∗ (t)∥.

This states that X1 is Lipschitz with respect to HS with the Lipschitz constant L1 > 0. Regarding X2,
for each HI,HI∗ ∈ F := C(I,R), we have

∥X2
(
t,HI(t)

)
− X2

(
t,HI∗ (t)

)
∥

=
∥∥∥(ϖHI(t) + (ηa1H

I(t) + λa2M
I(t))HS(t) − ( fH + ω + γβ)HI(t)

)
−

(
ϖHI∗ (t) + (ηa1H

I
∗ (t) + λa2M

I(t))HS(t) − ( fH + ω + γβ)HI∗ (t)
)∥∥∥

≤
[
ϖ + ηa1∥H

S(t)∥ + ( fH + ω + γβ)
]
∥HI(t) − HI∗ (t)∥

≤
[
ϖ + ηa1v1 + ( fH + ω + γβ)

]
∥HI(t) − HI∗ (t)∥

= L2∥H
I(t) − HI∗ (t)∥.

This means that X2 is Lipschitz with respect to HI with the Lipschitz constant L2 > 0. Now, for each
HR,HR∗ ∈ F := C(I,R), we estimate

∥X3
(
t,HR(t)

)
− X3

(
t,HR∗ (t)

)
∥

=
∥∥∥(γβHI(t) − ( fH + δ)HR(t) + pHS(t)

)
−

(
γβHI(t) − ( fH + δ)HR∗ (t) + pHS(t)

)∥∥∥
≤

[
fH + δ

]
∥HR(t) − HR∗ (t)∥

= L3∥H
R(t) − HR∗ (t)∥.

Thus, X3 is Lipschitz with respect to HR with the Lipschitz constant L3 > 0. For each MS,MS∗ ∈ F :=
C(I,R), we have

∥X4
(
t,MS(t)

)
− X4

(
t,MS∗ (t)

)
∥

=
∥∥∥(ΘM − (κa3H

I(t) + fM + α)MS(t)
)

−
(
ΘM − (κa3H

I(t) + fM + α)MS∗ (t)
)∥∥∥

≤
[
κa3∥H

I∥ + fM + α
]
∥MS(t) −MS∗ (t)∥

≤
[
κa3v4 + fM + α

]
∥MS(t) −MS∗ (t)∥

= L4∥M
S(t) −MS∗ (t)∥,
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which implies that X4 is Lipschitz with respect to MS with the Lipschitz constant L4 > 0. Lastly, for
eachMI,MI∗ ∈ F := C(I,R), we have

∥X5
(
t,MI(t)

)
− X5

(
t,MI∗ (t)

)
∥

=
∥∥∥(κa3H

I(t)MS(t) − ( fM + α)MI(t)
)

−
(
κa3H

I(t)MS(t) − ( fM + α)MI∗ (t)
)∥∥∥

≤
[
fM + α

]
∥MI(t) −MI∗ (t)∥

= L5∥M
I(t) −MI∗ (t)∥.

Therefore, X5 is Lipschitz with respect to MI with the Lipschitz constant L5 > 0; the proof is
completed. □

Theorem 5.2. Let (G3) be held. Then, the given (H,M)-(c1, c2)-fractal-fractional SIR-SI-model
(3.3) of malaria has a unique solution if[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L ȷ < 1, ( ȷ ∈ {1, 2, 3, 4, 5}), (5.2)

where L ȷ is introduced in (5.1).

Proof. We consider this fact that the theorem is not true. Hence, there exists another solution
for the given (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria. Assume that(
HS∗ (t),HI∗ (t),H

R
∗ (t),MS∗ (t),MI∗ (t)

)
is another solution with the conditions(

HS∗ (0),HI∗ (0),HR∗ (0),MS∗ (0),MI∗ (0)
)
=

(
κ1, κ2, κ3, κ4, κ5

)
.

Then, by (4.8), we have

HS∗ (t) = κ1 +
(1 − c1)c2tc2−1

AB(c1)
X1(t,HS∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS∗ (q)) dq,

and

HI∗ (t) = κ2 +
(1 − c1)c2tc2−1

AB(c1)
X2(t,HI∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X2(q,HI∗ (q)) dq,
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and

HR∗ (t) = κ3 +
(1 − c1)c2tc2−1

AB(c1)
X3(t,HR∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X3(q,HR∗ (q)) dq,

and

MS∗ (t) = κ4 +
(1 − c1)c2tc2−1

AB(c1)
X4(t,MS∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X4(q,MS∗ (q)) dq,

and

MI∗ (t) = κ5 +
(1 − c1)c2tc2−1

AB(c1)
X5(t,MI∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X5(q,MI∗ (q)) dq.

Now, we can estimate

|HS(t) − HS∗ (t)| ≤
(1 − c1)c2tc2−1

AB(c1)

∣∣∣∣X1(t,HS(t)) − X1(t,HS∗ (t))
∣∣∣∣

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1
∣∣∣∣X1(w,HS(w)) − X1(w,HS∗ (w))

∣∣∣∣ dw
≤

(1 − c1)c2tc2−1

AB(c1)
L1∥H

S − HS∗ ∥ +
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1L1∥H
S − HS∗ ∥ dw

≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L1∥H

S − HS∗ ∥,

and so (
1 −

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L1

)
∥HS − HS∗ ∥ ≤ 0.

The above inequality holds when ∥HS − HS∗ ∥ = 0 or HS = HS∗ . From the inequality

∥HI − HI∗ ∥ ≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L2∥H

I − HI∗ ∥,

we reach (
1 −

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L2

)
∥HI − HI∗ ∥ ≤ 0.
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This is true when ∥HI − HI∗ ∥ = 0 or HI = HI∗ . Moreover, the inequality

∥HR − HR∗ ∥ ≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L3∥H

R − HR∗ ∥

yields (
1 −

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L3

)
∥HR − HR∗ ∥ ≤ 0.

Hence, HI = HI∗ . Accordingly, we getMS = MS∗ andMI = MI∗ . In consequence, we get(
HS(t),HI(t),HR(t),MS(t),MI(t)

)
=

(
HS∗ (t),HI∗ (t),H

R
∗ (t),MS∗ (t),MI∗ (t)

)
.

This means that the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria has a unique
solution if (5.2) is satisfied. □

6. Ulam-Hyers-Rassias stability

In the sequel, we investigate the stability notion of four types including the Ulam-Hyers, Ulam-
Hyers-Rassias and their generalized versions in relation to the system of the (H,M)-(c1, c2)-fractal-
fractional SIR-SI-model (3.3) of malaria.

Definition 6.1. The (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria is Ulam-Hyers-
stable if there are the constants 0 < QX ȷ

∈ R, ȷ ∈ {1, . . . , 5} such that, for each R ȷ > 0, and for each(
HS∗ ,H

I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗

)
∈ X satisfying

∣∣∣∣FFMLD
(c1,c2)
0,t HS∗ (t) − X1

(
t,HS∗ (t)

)∣∣∣∣ < R1,∣∣∣∣FFMLD
(c1,c2)
0,t HI∗ (t) − X2

(
t,HI∗ (t)

)∣∣∣∣ < R2,∣∣∣∣FFMLD
(c1,c2)
0,t HR∗ (t) − X3

(
t,HR∗ (t)

)∣∣∣∣ < R3,∣∣∣∣FFMLD
(c1,c2)
0,t MS∗ (t) − X4

(
t,MS∗ (t)

)∣∣∣∣ < R4,∣∣∣∣FFMLD
(c1,c2)
0,t MI∗ (t) − X5

(
t,MI∗ (t)

)∣∣∣∣ < R5,

(6.1)

there is
(
HS,HI,HR,MS,MI

)
∈ X satisfying the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model

(3.3) of malaria with 

∣∣∣HS∗ (t) − HS(t)
∣∣∣ ≤ QX1R1,∣∣∣HI∗ (t) − HI(t)∣∣∣ ≤ QX2R2,∣∣∣HR∗ (t) − HR(t)
∣∣∣ ≤ QX3R3,∣∣∣MS∗ (t) −MS(t)
∣∣∣ ≤ QX4R4,∣∣∣MI∗ (t) −MI(t)∣∣∣ ≤ QX5R5.
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Definition 6.2. The given (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria is
generalized Ulam-Hyers-stable if there are the functions QX ȷ

∈ C(R+,R+), ( ȷ ∈ {1, . . . , 5}), with
QX ȷ

(0) = 0, so that, for each R ȷ > 0 and each
(
HS∗ ,H

I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗

)
∈ X satisfying (6.1), there is(

HS,HI,HR,MS,MI
)
∈ X as a solution of the given (H,M)-(c1, c2)-fractal-fractional SIR-SI-model

(3.3) of malaria with 

∣∣∣HS∗ (t) − HS(t)
∣∣∣ ≤ QX1(R1),∣∣∣HI∗ (t) − HI(t)∣∣∣ ≤ QX2(R2),∣∣∣HR∗ (t) − HR(t)
∣∣∣ ≤ QX3(R3),∣∣∣MS∗ (t) −MS(t)
∣∣∣ ≤ QX4(R4),∣∣∣MI∗ (t) −MI(t)∣∣∣ ≤ QX5(R5).

Notice that Definition 6.2 is obtained from Definition 6.1.

Remark 1.
(
HS∗ ,H

I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗

)
∈ X is a solution of (6.1) if and only if there are G1,G2,G3,G4,G5 ∈

C([0, τ],R) (depending on HS∗ ,H
I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗ , respectively) such that, for each t ∈ I,

(i) |G ȷ(t)| < R ȷ,

(ii) we have 

FFMLD
(c1,c2)
0,t HS∗ (t) = X1

(
t,HS∗ (t)

)
+ G1(t),

FFMLD
(c1,c2)
0,t HI∗ (t) = X2

(
t,HI∗ (t)

)
+ G2(t),

FFMLD
(c1,c2)
0,t HR∗ (t) = X3

(
t,HR∗ (t)

)
+ G3(t),

FFMLD
(c1,c2)
0,t MS∗ (t) = X4

(
t,MS∗ (t)

)
+ G4(t),

FFMLD
(c1,c2)
0,t MI∗ (t) = X5

(
t,MI∗ (t)

)
+ G5(t).

Definition 6.3. The (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria is Ulam-Hyers-
Rassias-stable with respect to the functions χ ȷ, ( ȷ ∈ {1, . . . , 5}) if there are the constants 0 < Q(X ȷ,χ ȷ) ∈ R

such that, for each R ȷ > 0 and each
(
HS∗ ,H

I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗

)
∈ X satisfying

∣∣∣∣FFMLD
(c1,c2)
0,t HS∗ (t) − X1

(
t,HS∗ (t)

)∣∣∣∣ < R1χ1(t),∣∣∣∣FFMLD
(c1,c2)
0,t HI∗ (t) − X2

(
t,HI∗ (t)

)∣∣∣∣ < R2χ2(t),∣∣∣∣FFMLD
(c1,c2)
0,t HR∗ (t) − X3

(
t,HR∗ (t)

)∣∣∣∣ < R3χ3(t),∣∣∣∣FFMLD
(c1,c2)
0,t MS∗ (t) − X4

(
t,MS∗ (t)

)∣∣∣∣ < R4χ4(t),∣∣∣∣FFMLD
(c1,c2)
0,t MI∗ (t) − X5

(
t,MI∗ (t)

)∣∣∣∣ < R5χ5(t),

(6.2)
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there is
(
HS,HI,HR,MS,MI

)
∈ X as a solution of the (H,M)-(c1, c2)-fractal-fractional SIR-SI-

model (3.3) of malaria with

∣∣∣HS∗ (t) − HS(t)
∣∣∣ ≤ R1Q(X1,χ1)χ1(t), ∀ t ∈ I,∣∣∣HI∗ (t) − HI(t)∣∣∣ ≤ R2Q(X2,χ2)χ2(t), ∀ t ∈ I,∣∣∣HR∗ (t) − HR(t)
∣∣∣ ≤ R3Q(X3,χ3)χ3(t), ∀ t ∈ I,∣∣∣MS∗ (t) −MS(t)
∣∣∣ ≤ R4Q(X4,χ4)χ4(t), ∀ t ∈ I,∣∣∣MI∗ (t) −MI(t)∣∣∣ ≤ R5Q(X5,χ5)χ5(t), ∀ t ∈ I,

where χ1, χ2, χ3, χ4, χ5 ∈ C([0, τ],R+).

Definition 6.4. The (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria is generalized
Ulam-Hyers-Rassias-stable with respect to the function χ ȷ if there is 0 < Q(X ȷ,χ ȷ) ∈ R provided that, for
each

(
HS∗ ,H

I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗

)
∈ X satisfying

∣∣∣∣FFMLD
(c1,c2)
0,t HS∗ (t) − X1

(
t,HS∗ (t)

)∣∣∣∣ < χ1(t),∣∣∣∣FFMLD
(c1,c2)
0,t HI∗ (t) − X2

(
t,HI∗ (t)

)∣∣∣∣ < χ2(t),∣∣∣∣FFMLD
(c1,c2)
0,t HR∗ (t) − X3

(
t,HR∗ (t)

)∣∣∣∣ < χ3(t),∣∣∣∣FFMLD
(c1,c2)
0,t MS∗ (t) − X4

(
t,MS∗ (t)

)∣∣∣∣ < χ4(t),∣∣∣∣FFMLD
(c1,c2)
0,t MI∗ (t) − X5

(
t,MI∗ (t)

)∣∣∣∣ < χ5(t),

there is
(
HS,HI,HR,MS,MI

)
∈ X as a solution of the (H,M)-(c1, c2)-fractal-fractional SIR-SI-

model (3.3) of malaria with 

∣∣∣HS∗ (t) − HS(t)
∣∣∣ ≤ Q(X1,χ1)χ1(t),∣∣∣HI∗ (t) − HI(t)∣∣∣ ≤ Q(X2,χ2)χ2(t),∣∣∣HR∗ (t) − HR(t)
∣∣∣ ≤ Q(X3,χ3)χ3(t),∣∣∣MS∗ (t) −MS(t)
∣∣∣ ≤ Q(X4,χ4)χ4(t),∣∣∣MI∗ (t) −MI(t)∣∣∣ ≤ Q(X5,χ5)χ5(t).

Remark 2.
(
HS∗ ,H

I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗

)
∈ X is a solution of (6.2) if and only if there are G1,G2,G3,G4,G5 ∈

C([0, τ],R) (depending on HS∗ ,H
I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗ ) such that, for each t ∈ I,

(i) |G ȷ(t)| < R ȷχ ȷ(t),
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(ii) we have 

FFMLD
(c1,c2)
0,t HS∗ (t) = X1

(
t,HS∗ (t)

)
+ G1(t),

FFMLD
(c1,c2)
0,t HI∗ (t) = X2

(
t,HI∗ (t)

)
+ G2(t),

FFMLD
(c1,c2)
0,t HR∗ (t) = X3

(
t,HR∗ (t)

)
+ G3(t),

FFMLD
(c1,c2)
0,t MS∗ (t) = X4

(
t,MS∗ (t)

)
+ G4(t),

FFMLD
(c1,c2)
0,t MI∗ (t) = X5

(
t,MI∗ (t)

)
+ G5(t).

The following lemmas are useful for our main theorems.

Lemma 6.5. For every R1,R2,R3,R4,R5 > 0, suppose that
(
HS∗ ,H

I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗

)
∈ X is a solution

of (6.1). Then, HS∗ ,H
I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗ ∈ F satisfy the inequalities∣∣∣∣∣∣HS∗ (t) −
(
κ1 +

(1 − c1)c2tc2−1

AB(c1)
X1(t,HS∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS∗ (q)) dq
)∣∣∣∣∣∣

≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R1, (6.3)

and ∣∣∣∣∣∣HI∗ (t) −
(
κ2 +

(1 − c1)c2tc2−1

AB(c1)
X2(t,HI∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X2(q,HI∗ (q)) dq
)∣∣∣∣∣∣

≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R2, (6.4)

and ∣∣∣∣∣∣HR∗ (t) −
(
κ3 +

(1 − c1)c2tc2−1

AB(c1)
X3(t,HR∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X3(q,HR∗ (q)) dq
)∣∣∣∣∣∣

≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R3, (6.5)
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and ∣∣∣∣∣∣MS∗ (t) −
(
κ4 +

(1 − c1)c2tc2−1

AB(c1)
X4(t,MS∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X4(q,MS∗ (q)) dq
)∣∣∣∣∣∣

≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R4, (6.6)

and ∣∣∣∣∣∣MI∗ (t) −
(
κ5 +

(1 − c1)c2tc2−1

AB(c1)
X5(t,MI∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X5(q,MI∗ (q)) dq
)∣∣∣∣∣∣

≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R5. (6.7)

Proof. Let R1 > 0 be arbitrary. Since HS∗ ∈ F satisfies∣∣∣∣FFMLD
(c1,c2)
0,t HS∗ (t) − X1

(
t,HS∗ (t)

)∣∣∣∣ < R1,

via Remark 1, we are allowed to select G1(t) such that

FFMLD
(c1,c2)
0,t HS∗ (t) = X1

(
t,HS∗ (t)

)
+ G1(t)

and |G1(t)| ≤ R1. It follows that

HS∗ (t) = κ1 +
(1 − c1)c2tc2−1

AB(c1)

[
X1(t,HS∗ (t)) + G1(t)

]
+

c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1
[
X1(q,HS∗ (q)) + G1(q)

]
dq.

Then, we estimate∣∣∣∣∣∣HS∗ (t) −
(
κ1 +

(1 − c1)c2tc2−1

AB(c1)
X1(t,HS∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS∗ (q)) dq
)∣∣∣∣∣∣

≤
(1 − c1)c2tc2−1

AB(c1)
|G1(t)| +

c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1|G1(q)| dq

≤
(1 − c1)c2τ

c2−1

AB(c1)
R1 +

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)
R1
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=
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R1.

It is found that the inequality (6.3) is obtained. We get the inequalities (6.4) and (6.5) similarly. □

To prove the next result, we regard the following:

(G4) There are increasing functions χ ȷ ∈ C([0, τ],R+), ( ȷ ∈ {1, . . . , 5}) and there is ∆χ ȷ > 0 such that

FFMLI
(c1,c2)
0,t χ ȷ(t) < ∆χ ȷχ ȷ(t), ( ȷ ∈ {1, . . . , 5}),∀ t ∈ I. (6.8)

Lemma 6.6. Let (G4) be held. For each R1,R2,R3,R4,R5 > 0, suppose that(
HS∗ ,H

I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗

)
∈ X

satisfies (6.2). Then, the functions HS∗ ,H
I
∗ ,H

R
∗ ,M

S
∗ ,M

I
∗ ∈ F fulfill the inequalities∣∣∣∣HS∗ (t) −

(
κ1 +

FFMLI
(c1,c2)
0,t X1(t,HS∗ (t))

)∣∣∣∣ ≤ R1∆χ1χ1(t),∣∣∣∣HI∗ (t) − (
κ2 +

FFMLI
(c1,c2)
0,t X2(t,HI∗ (t))

)∣∣∣∣ ≤ R2∆χ2χ2(t),∣∣∣∣HR∗ (t) −
(
κ3 +

FFMLI
(c1,c2)
0,t X3(t,HR∗ (t))

)∣∣∣∣ ≤ R3∆χ3χ3(t),∣∣∣∣MS∗ (t) −
(
κ4 +

FFMLI
(c1,c2)
0,t X4(t,MS∗ (t))

)∣∣∣∣ ≤ R4∆χ4χ4(t),∣∣∣∣MI∗ (t) − (
κ5 +

FFMLI
(c1,c2)
0,t X5(t,MI∗ (t))

)∣∣∣∣ ≤ R5∆χ5χ5(t).

Proof. Let R1 > 0 be arbitrary. Since HS∗ ∈ F satisfies∣∣∣∣FFMLD
(c1,c2)
0,t HS∗ (t) − X1

(
t,HS∗ (t)

)∣∣∣∣ < R1χ1(t),

by Remark 2, we are allowed to select a function G1(t) so that

FFMLD
(c1,c2)
0,t HS∗ (t) = X1

(
t,HS∗ (t)

)
+ G1(t)

and |G1(t)| ≤ R1χ1(t). It follows that

HS∗ (t) = κ1 +
(1 − c1)c2tc2−1

AB(c1)

[
X1(t,HS∗ (t)) + G1(t)

]
+

c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1
[
X1(q,HS∗ (q)) + G1(q)

]
dq.
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Then, we estimate∣∣∣∣HS∗ (t) −
(
κ1 +

FFMLI
(c1,c2)
0,t X1(t,HS∗ (t))

)∣∣∣∣
=

∣∣∣∣∣∣HS∗ (t) −
(
κ1 +

(1 − c1)c2tc2−1

AB(c1)
X1(t,HS∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS∗ (q)) dq
)∣∣∣∣∣∣

≤
(1 − c1)c2tc2−1

AB(c1)
|G1(t)| +

c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1|G1(q)| dq

= FFMLI
(c1,c2)
0,t |G1(t)|

≤ FFMLI
(c1,c2)
0,t R1χ1(t)

≤ R1∆χ1χ1(t).

Similarly, we can obtain the remaining inequalities. □

The Ulam-Hyers stability is checked for the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3)
of malaria.

Theorem 6.7. Let (G3) be fulfilled. Then, the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3)
of malaria is Ulam-Hyers-stable on I := [0, τ] and is also generalized Ulam-Hyers-stable such that[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L ȷ < 1, ȷ ∈ {1, . . . , 5}.

Proof. Let R1 > 0 and HS∗ ∈ F be an arbitrary solution of (6.1). By Theorem 5.2, we take HS ∈ F as a
unique solution of the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria. Then, HS(t)
is defined as

HS(t) = κ1 +
(1 − c1)c2tc2−1

AB(c1)
X1(t,HS(t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS(q)) dq.

Via the triangle inequality, and by Lemma 6.5, estimate

∣∣∣HS∗ (t) − HS(t)
∣∣∣ ≤ ∣∣∣∣HS∗ (t) − κ1 −

(1 − c1)c2tc2−1

AB(c1)
X1(t,HS(t))

−
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS(q)) dq
∣∣∣∣

≤

∣∣∣∣∣∣HS∗ (t) −
(
κ1 +

(1 − c1)c2tc2−1

AB(c1)
X1(t,HS∗ (t))
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+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS∗ (q)) dq
)∣∣∣∣∣∣

+
(1 − c1)c2tc2−1

AB(c1)

∣∣∣X1(t,HS∗ (t)) − X1(t,HS(t))
∣∣∣

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1
∣∣∣X1(q,HS∗ (q)) − X1(q,HS(q))

∣∣∣ dw
≤

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R1 +

(1 − c1)c2τ
c2−1

AB(c1)
L1∥H

S
∗ − H

S∥

+
c1c2τ

c1+c2−1Γ(c2)
Γ(c1 + c2)AB(c1)

L1∥H
S
∗ − H

S∥

≤
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R1

+
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L1∥H

S
∗ − H

S∥.

Hence, we get

∥HS∗ − H
S∥ ≤

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R1

1 −
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L1

.

If we let QX1 =

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
1 −

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L1

, then ∥HS∗ − H
S∥ ≤ QX1R1. Similarly, we

have
∥HI∗ − H

I∥ ≤ QX2R2,

∥HR∗ − H
R∥ ≤ QX3R3,

∥MS∗ −M
S∥ ≤ QX4R4,

∥MI∗ −M
I∥ ≤ QX5R5,

where

QX ȷ
=

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
1 −

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L ȷ

, ( ȷ ∈ {2, 3, 4, 5}).

Hence, the Ulam-Hyers stability of the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of
malaria is fulfilled. Next, by assuming

QX ȷ
(R ȷ) =

[ (1 − c1)c2τ
c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
R ȷ

1 −
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L ȷ

, ( ȷ ∈ {1, . . . , 5}),
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with QX ȷ
(0) = 0, clearly, the generalized Ulam

-Hyers stability is confirmed. □

The Ulam-Hyers-Rassias stability is checked for the (H,M)-(c1, c2)-fractal-fractional SIR-SI-
model (3.3) of malaria in the next theorem.

Theorem 6.8. The hypotheses (G3) and (G4) are considered to be held. Then, the given (H,M)-
(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria is Ulam-Hyers-Rassias- and generalized
Ulam-Hyers-Rassias-stable.

Proof. Let R1 > 0 and HS∗ ∈ F satisfy (6.2). By Theorem 5.2, let HS ∈ F be the unique solution of the
given (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria. Then, HS(t) becomes

HS(t) = κ1 +
(1 − c1)c2tc2−1

AB(c1)
X1(t,HS(t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS(q)) dq.

Via the triangle inequality, and by Lemma 6.6, estimate

∣∣∣HS∗ (t) − HS(t)
∣∣∣ ≤ ∣∣∣∣HS∗ (t) − κ1 −

(1 − c1)c2tc2−1

AB(c1)
X1(t,HS(t))

−
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS(q)) dq
∣∣∣∣

≤

∣∣∣∣∣∣HS∗ (t) −
(
κ1 +

(1 − c1)c2tc2−1

AB(c1)
X1(t,HS∗ (t))

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X1(q,HS∗ (q)) dq
)∣∣∣∣∣∣

+
(1 − c1)c2tc2−1

AB(c1)

∣∣∣X1(t,HS∗ (t)) − X1(t,HS(t))
∣∣∣

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1
∣∣∣X1(q,HS∗ (q)) − X1(q,HS(q))

∣∣∣ dw
≤

∣∣∣∣HS∗ (t) −
(
κ1 +

FFMLI
(c1,c2)
0,t X1(t,HS∗ (t))

)∣∣∣∣
+

(1 − c1)c2tc2−1

AB(c1)

∣∣∣X1(t,HS∗ (t)) − X1(t,HS(t))
∣∣∣

+
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1
∣∣∣X1(q,HS∗ (q)) − X1(q,HS(q))

∣∣∣ dw
≤ R1∆χ1χ1(t) +

(1 − c1)c2τ
c2−1

AB(c1)
L1∥H

S
∗ − H

S∥ +
c1c2τ

c1+c2−1Γ(c2)
Γ(c1 + c2)AB(c1)

L1∥H
S
∗ − H

S∥

≤ R1∆χ1χ1(t) +
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L1∥H

S
∗ − H

S∥.
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Accordingly, it gives

∥HS∗ − H
S∥ ≤

R1∆χ1χ1(t)

1 −
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L1

.

If we let

Q(X1,χ1) =
∆χ1

1 −
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L1

,

then ∥HS∗ − H
S∥ ≤ R1Q(X1,χ1)χ1(t). Similarly, we have

∥HI∗ − H
I∥ ≤ R2Q(X2,χ2)χ2(t),

∥HR∗ − H
R∥ ≤ R3Q(X3,χ3)χ3(t),

∥MS∗ −M
S∥ ≤ R4Q(X4,χ4)χ4(t),

∥MI∗ −M
I∥ ≤ R5Q(X5,χ5)χ5(t),

where

Q(X ȷ,χ ȷ) =
∆χ ȷ

1 −
[ (1 − c1)c2τ

c2−1

AB(c1)
+

c1c2τ
c1+c2−1Γ(c2)

Γ(c1 + c2)AB(c1)

]
L ȷ

, ( ȷ ∈ {2, 3, 4, 5}).

Hence, the given (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria is stable (Ulam-
Hyers-Rassias). By setting R ȷ = 1, ( ȷ ∈ {1, . . . , 5}), the mentioned (H,M)-(c1, c2)-fractal-fractional
SIR-SI-model (3.3) of malaria is generalized Ulam-Hyers-Rassias-stable. □

7. Numerical scheme via the Newton polynomial method

In this section, we give a numerical scheme for solutions of our (H,M)-(c1, c2)-fractal-fractional
SIR-SI-model (3.3) of malaria which was presented by Atangana and Araz in their book [54] in
2021. For this purpose, we need the compact form of the initial value problem (4.3) again under the
conditions (4.4). Thus,

K(t) −K(0) =
c1c2

Γ(c1)AB(c1)

∫ t

0
q

c2−1(t − q)c1−1X(q,K(q)) dq +
(1 − c1)c2tc2−1

AB(c1)
X(t,K(t)).

Take X∗(t,K(t)) = c2tc2−1X(t,K(t)). Then,

K(t) −K(0) =
c1

Γ(c1)AB(c1)

∫ t

0
(t − q)c1−1X∗(q,K(q)) dq +

(1 − c1)
AB(c1)

X∗(t,K(t)).

By discretizing the above equation at t = tk+1 = (k + 1)h, we get

K(tk+1) −K(0) =
c1

Γ(c1)AB(c1)

∫ tk+1

0
(tk+1 − q)c1−1X∗(q,K(q)) dq +

(1 − c1)
AB(c1)

X∗(tk,K(tk)).
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If we approximate the above integral, then it becomes

K(tk+1) = K0 +
(1 − c1)
AB(c1)

X∗(tk,K(tk))

+
c1

Γ(c1)AB(c1)

k∑
ℓ=2

∫ tℓ+1

tℓ
(tk+1 − q)c1−1X∗(q,K(q)) dq. (7.1)

In this step, the function X∗(t,K(t)) is approximated by the Newton polynomial as

P∗k(q) = X∗(tk−2,K(tk−2)) +
X∗(tk−1,K(tk−1)) − X∗(tk−2,K(tk−2))

h
(q − tk−2) (7.2)

+
X∗(tk,K(tk)) − 2X∗(tk−1,K(tk−1)) + X∗(tk−2,K(tk−2))

2h2 (q − tk−2)(q − tk−1).

Substitute (7.2) into (7.1):

Kk+1 = K0 +
(1 − c1)
AB(c1)

X∗(tk,K(tk)) +
c1

Γ(c1)AB(c1)

k∑
ℓ=2

∫ tℓ+1

tℓ

[
X∗(tℓ−2,Kℓ−2)

+
X∗(tℓ−1,Kℓ−1) − X∗(tℓ−2,Kℓ−2)

h
(q − tℓ−2)

+
X∗(tℓ,Kℓ) − 2X∗(tℓ−1,Kℓ−1) + X∗(tℓ−2,Kℓ−2)

2h2 (q − tℓ−2)(q − tℓ−1)
]

× (tk+1 − q)c1−1 dq.

We simplify the above relations, and we get

Kk+1 = K0 +
(1 − c1)
AB(c1)

X∗(tk,K(tk))

+
c1

Γ(c1)AB(c1)

k∑
ℓ=2

[ ∫ tℓ+1

tℓ
X∗(tℓ−2,Kℓ−2)(tk+1 − q)c1−1 dq

+

∫ tℓ+1

tℓ

X∗(tℓ−1,Kℓ−1) − X∗(tℓ−2,Kℓ−2)
h

(q − tℓ−2)(tk+1 − q)c1−1 dq

+

∫ tℓ+1

tℓ

X∗(tℓ,Kℓ) − 2X∗(tℓ−1,Kℓ−1) + X∗(tℓ−2,Kℓ−2)
2h2 (q − tℓ−2)(q − tℓ−1)

× (tk+1 − q)c1−1 dq
]
.

AIMS Mathematics Volume 8, Issue 2, 3120–3162.



3145

In consequence,

Kk+1 = K0 +
(1 − c1)
AB(c1)

X∗(tk,K(tk))

+
c1

Γ(c1)AB(c1)

k∑
ℓ=2

X∗(tℓ−2,Kℓ−2)
∫ tℓ+1

tℓ
(tk+1 − q)c1−1 dq

+
c1

Γ(c1)AB(c1)

k∑
ℓ=2

X∗(tℓ−1,Kℓ−1) − X∗(tℓ−2,Kℓ−2)
h

∫ tℓ+1

tℓ
(q − tℓ−2)(tk+1 − q)c1−1 dq

+
c1

Γ(c1)AB(c1)

k∑
ℓ=2

X∗(tℓ,Kℓ) − 2X∗(tℓ−1,Kℓ−1) + X∗(tℓ−2,Kℓ−2)
2h2

×

∫ tℓ+1

tℓ
(q − tℓ−2)(q − tℓ−1) × (tk+1 − q)c1−1 dq

]
. (7.3)

On the other hand, we compute the above three integrals separately, and we get∫ tℓ+1

tℓ
(tk+1 − q)c1−1 dq =

hc1

c1

[
(k − ℓ + 1)c1 − (k − ℓ)c1

]
, (7.4)

and ∫ tℓ+1

tℓ
(q − tℓ−2)(tk+1 − q)c1−1 dq =

hc1+1

c1(c1 + 1)
[
(k − ℓ + 1)c1(k − ℓ + 3 + 2c1)

− (k − ℓ + 1)c1(k − ℓ + 3 + 3c1)
]
, (7.5)

and ∫ tℓ+1

tℓ
(q − tℓ−2)(q − tℓ−1)(tk+1 − q)c1−1 dq

=
hc1+2

c1(c1 + 1)(c1 + 2)

(
(k − ℓ + 1)c1

[
2(k − ℓ)2

+ (3c1 + 10)(k − ℓ) + 2c2
1 + 9c1 + 12

]
− (k − ℓ)c1

[
2(k − ℓ)2

+ (5c1 + 10)(k − ℓ) + 6c2
1 + 18c1 + 12

])
. (7.6)

By putting (7.4)–(7.6) in (7.3), we obtain

Kk+1 = K0 +
(1 − c1)
AB(c1)

X∗(tk,K(tk))

+
c1hc1

Γ(c1 + 1)AB(c1)

k∑
ℓ=2

X∗(tℓ−2,Kℓ−2)
[
(k − ℓ + 1)c1 − (k − ℓ)c1

]
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+
c1hc1

Γ(c1 + 2)AB(c1)

k∑
ℓ=2

[
X∗(tℓ−1,Kℓ−1) − X∗(tℓ−2,Kℓ−2)

]
×

[
(k − ℓ + 1)c1(k − ℓ + 3 + 2c1) − (k − ℓ + 1)c1(k − ℓ + 3 + 3c1)

]
+

c1hc1

2Γ(c1 + 3)AB(c1)

k∑
ℓ=2

[
X∗(tℓ,Kℓ) − 2X∗(tℓ−1,Kℓ−1) + X∗(tℓ−2,Kℓ−2)

]
×

[
(k − ℓ + 1)c1

[
2(k − ℓ)2 + (3c1 + 10)(k − ℓ) + 2c2

1 + 9c1 + 12
]
− (k − ℓ)c1

[
2(k − ℓ)2

+ (5c1 + 10)(k − ℓ) + 6c2
1 + 18c1 + 12

]]
. (7.7)

Finally, we replace X∗(t,K(t)) = c2tc2−1X(t,K(t)) in (7.7), and we get

Kk+1 = K0 +
(1 − c1)c2tc2−1

k

AB(c1)
X(tk,K(tk))

+
c1c2hc1

Γ(c1 + 1)AB(c1)

k∑
ℓ=2

tc2−1
ℓ−2 X(tℓ−2,Kℓ−2)Â1(k, ℓ, c1) (7.8)

+
c1c2hc1

Γ(c1 + 2)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ−1 X(tℓ−1,Kℓ−1) − tc2−1

ℓ−2 X(tℓ−2,Kℓ−2)
]
Â2(k, ℓ, c1)

+
c1c2hc1

2Γ(c1 + 3)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ X(tℓ,Kℓ) − 2tc2−1

ℓ−1 X(tℓ−1,Kℓ−1) + tc2−1
ℓ−2 X(tℓ−2,Kℓ−2)

]
Â3(k, ℓ, c1),

where

Â1(k, ℓ, c1) = (k − ℓ + 1)c1 − (k − ℓ)c1 ,

Â2(k, ℓ, c1) = (k − ℓ + 1)c1(k − ℓ + 3 + 2c1) − (k − ℓ + 1)c1(k − ℓ + 3 + 3c1),

Â3(k, ℓ, c1) = (k − ℓ + 1)c1
[
2(k − ℓ)2 + (3c1 + 10)(k − ℓ) + 2c2

1 + 9c1 + 12
]

− (k − ℓ)c1
[
2(k − ℓ)2 + (5c1 + 10)(k − ℓ) + 6c2

1 + 18c1 + 12
]
. (7.9)

Based on the numerical scheme obtained in (7.8), and based on (4.1), by assuming

X
(
t,K(t)

)
:=



X1
(
t,HS(t)

)
:= X1

(
t,HS(t),HI(t),HR(t),MS(t),MI(t)

)
,

X2
(
t,HI(t)

)
:= X2

(
t,HS(t),HI(t),HR(t),MS(t),MI(t)

)
,

X3
(
t,HR(t)

)
:= X3

(
t,HS(t),HI(t),HR(t),MS(t),MI(t)

)
,

X4
(
t,MS(t)

)
:= X4

(
t,HS(t),HI(t),HR(t),MS(t),MI(t)

)
,

X5
(
t,MI(t)

)
:= X5

(
t,HS(t),HI(t),HR(t),MS(t),MI(t)

)
,
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numerical solutions of the (H,M)-(c1, c2)-fractal-fractional SIR-SI-model (3.3) of malaria are
given by

HSk+1 = κ1 +
(1 − c1)c2tc2−1

k

AB(c1)
X1(tk,H

S(tk),HI(tk),HR(tk),MS(tk),MI(tk))

+
c1c2hc1

Γ(c1 + 1)AB(c1)

k∑
ℓ=2

tc2−1
ℓ−2 X1(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)Â1(k, ℓ, c1)

+
c1c2hc1

Γ(c1 + 2)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ−1 X1(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

− tc2−1
ℓ−2 X1(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â2(k, ℓ, c1)

+
c1c2hc1

2Γ(c1 + 3)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ X1(tℓ,HSℓ ,H

I
ℓ ,H

R
ℓ ,M

S
ℓ ,M

I
ℓ )

− 2tc2−1
ℓ−1 X1(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

+ tc2−1
ℓ−2 X1(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â3(k, ℓ, c1), (7.10)

and

HIk+1 = κ2 +
(1 − c1)c2tc2−1

k

AB(c1)
X2(tk,H

S(tk),HI(tk),HR(tk),MS(tk),MI(tk))

+
c1c2hc1

Γ(c1 + 1)AB(c1)

k∑
ℓ=2

tc2−1
ℓ−2 X2(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)Â1(k, ℓ, c1)

+
c1c2hc1

Γ(c1 + 2)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ−1 X2(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

− tc2−1
ℓ−2 X2(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â2(k, ℓ, c1)

+
c1c2hc1

2Γ(c1 + 3)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ X2(tℓ,HSℓ ,H

I
ℓ ,H

R
ℓ ,M

S
ℓ ,M

I
ℓ )

− 2tc2−1
ℓ−1 X2(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

+ tc2−1
ℓ−2 X2(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â3(k, ℓ, c1), (7.11)
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and

HRk+1 = κ3 +
(1 − c1)c2tc2−1

k

AB(c1)
X3(tk,H

S(tk),HI(tk),HR(tk),MS(tk),MI(tk))

+
c1c2hc1

Γ(c1 + 1)AB(c1)

k∑
ℓ=2

tc2−1
ℓ−2 X3(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)Â1(k, ℓ, c1)

+
c1c2hc1

Γ(c1 + 2)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ−1 X3(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

− tc2−1
ℓ−2 X3(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â2(k, ℓ, c1)

+
c1c2hc1

2Γ(c1 + 3)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ X3(tℓ,HSℓ ,H

I
ℓ ,H

R
ℓ ,M

S
ℓ ,M

I
ℓ )

− 2tc2−1
ℓ−1 X3(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

+ tc2−1
ℓ−2 X3(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â3(k, ℓ, c1), (7.12)

and

MSk+1 = κ4 +
(1 − c1)c2tc2−1

k

AB(c1)
X4(tk,H

S(tk),HI(tk),HR(tk),MS(tk),MI(tk))

+
c1c2hc1

Γ(c1 + 1)AB(c1)

k∑
ℓ=2

tc2−1
ℓ−2 X4(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)Â1(k, ℓ, c1)

+
c1c2hc1

Γ(c1 + 2)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ−1 X4(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

− tc2−1
ℓ−2 X4(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â2(k, ℓ, c1)

+
c1c2hc1

2Γ(c1 + 3)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ X4(tℓ,HSℓ ,H

I
ℓ ,H

R
ℓ ,M

S
ℓ ,M

I
ℓ )

− 2tc2−1
ℓ−1 X4(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

+ tc2−1
ℓ−2 X4(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â3(k, ℓ, c1), (7.13)
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and

MIk+1 = κ5 +
(1 − c1)c2tc2−1

k

AB(c1)
X5(tk,H

S(tk),HI(tk),HR(tk),MS(tk),MI(tk))

+
c1c2hc1

Γ(c1 + 1)AB(c1)

k∑
ℓ=2

tc2−1
ℓ−2 X5(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)Â1(k, ℓ, c1)

+
c1c2hc1

Γ(c1 + 2)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ−1 X5(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

− tc2−1
ℓ−2 X5(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â2(k, ℓ, c1)

+
c1c2hc1

2Γ(c1 + 3)AB(c1)

k∑
ℓ=2

[
tc2−1
ℓ X5(tℓ,HSℓ ,H

I
ℓ ,H

R
ℓ ,M

S
ℓ ,M

I
ℓ )

− 2tc2−1
ℓ−1 X5(tℓ−1,H

S
ℓ−1,H

I
ℓ−1,H

R
ℓ−1,M

S
ℓ−1,M

I
ℓ−1)

+ tc2−1
ℓ−2 X5(tℓ−2,H

S
ℓ−2,H

I
ℓ−2,H

R
ℓ−2,M

S
ℓ−2,M

I
ℓ−2)

]
Â3(k, ℓ, c1), (7.14)

where the constants Â ȷ(k, ℓ, c1) are introduced in (7.9) for ȷ = 1, 2, 3.

8. Simulations

We discuss the behavior of the model on different plotted simulations by assuming the numerical
data for the parameters computed in [52]. According to this source, we take ΘH = 0.027, δ = 1/730,
η = 0.038, a1 = 0.02, λ = 0.13, a2 = 0.01, p = 0.05, fH = 0.0004, ϖ = 0.005, ω = 0.05, γ = 0.611,
β = 0.25, ΘM = 0.13, κ = 0.022, a3 = 0.072, fM = 0.04 and α = 0.05. The initial values are
HS(0) = κ1 = 100,HI(0) = κ2 = 2,HR(0) = κ3 = 0,MS(0) = κ4 = 800 andMI(0) = κ5 = 10. In some
figures, we shall illustrate the behaviors of five state functions HS,HI,HR,MS andMI by considering
some values for the fractal dimensions and fractional orders c1 = c2 = 1.00, 0.98, 0.96, 0.94, 0.92, 0.90
based on numerical algorithms given by (7.10)–(7.14). The compartmental trajectories of the human
and vector populations are depicted in Figures 1–7 with the time step h = 0.01 and an initial time of
t = 0.000001 in weeks. Figure 1a shows that, when the fractal-fractional order is 1, the number of
susceptible humans decreases rapidly, but not when the fractal-fractional order is 0.5 or less. It also
suggests that, when the fractal-fractional order is 0.95, a change in dynamical behavior in the infected
and recovered individuals reduces the number of recoveries after week 5, resulting in an increase in the
total number of infected humans after week 25. Similarly, we notice in Figure 1b that the susceptibility
of mosquitoes decreases rapidly when the fractal and fractional order is 1, as opposed to when the
fractal and fractional order is 0.95. In contrast, the fractal-fractional dynamical behavior of the infected
mosquitoes increases above the integer order after week 17.
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(a) Humans (b) Mosquitoes population

Figure 1. Effects of the fractal and fractional orders c1 = c2 = 1.00, 0.95 for all five state
functions HS(t),HI(t),HR(t),MS(t),MI(t) in one graph.

Figure 2a through 2e depict the fractal-fractional behaviors of susceptible humans, infected humans,
recovered humans, susceptible mosquitoes and infected mosquitoes when the fractal-fractional
derivative is 1 and the fractal-fractional order is 0.98, 0.96, 0.94, 0.92 or 0.90, respectively. In Figure 2a,
2d, you see that the number of susceptible humans and susceptible mosquitoes increases as the fractal-
fractional order reduces. In Figure 2b, 2e, you see that the number of infected humans decreases
as the fractal-fractional order decreases for 13 weeks; it then surpasses the integer order from week
14 onwards. In Figure 2c, you see that the number of recovered individuals reduces as the fractal-
fractional order reduces. Figure 3a through 3e show the effect of antimalarial drugs on the human
population, and that on the mosquito population. Figure 3b, 3e show that antimalarial drugs have a
greater effect on the number of infected humans and mosquitos than the other compartmental classes.
Figure 3a shows that an increase in the efficacy of antimalarial drug increases the number of susceptible
humans after week 8 when the fractal-fractional order is 0.99. Figure 3c shows that an increase in the
efficacy of antimalarial drugs increases the number of recovered humans after week 5 when the fractal-
fractional order is 0.99. Figure 3d shows that an increase in the efficacy of antimalarial drugs increases
the number of susceptible mosquitoes after week 9 when the fractal-fractional order is 0.99.

Figure 4a through 4e show the effects of vaccination on all five state functions. Figure 4b, 4e
show that vaccination has a weaker effect on the numbers of infected humans and mosquitos than the
other compartmental classes as compared to antimalarial drugs. Figure 4a shows that an increase in
vaccination increases the number of susceptible humans for 20 weeks more than antimalarial drugs
when the fractal-fractional order is 0.99. Still, after 20 weeks, the antimalarial drugs increase the
number of susceptible humans more than vaccination. Figure 4c shows that an increase in vaccination
increases the number of recovered humans after week 2 when the fractal-fractional order is 0.99. Figure
4d shows that an increase in vaccination does not produce any significant change in the number of
susceptible mosquitoes when the fractal-fractional order is 0.99. Figure 5a through 5e show the effects
of spraying on all five state functions.
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(a) Susceptible humans (b) Infected humans

(c) Recovered humans (d) Susceptible mosquitoes

(e) Infected mosquitoes

Figure 2. Effects of the fractal and fractional orders c1 = c2 =

1.00, 0.98, 0.96, 0.94, 0.92, 0.90 for all five state functions HS(t),HI(t),HR(t),MS(t),MI(t),
based on Figure 1.
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(a) Susceptible humans (b) Infected humans

(c) Recovered humans (d) Susceptible mosquitoes

(e) Infected mosquitoes

Figure 3. Effects of antimalarial drugs on all five state functions
HS(t),HI(t),HR(t),MS(t),MI(t) in five distinct graphs when c1 = c2 = 0.99,
β = 0.15, 0.25, 0.35 and p = α = 0.05.
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(a) Susceptible humans (b) Infected humans

(c) Recovered humans (d) Susceptible mosquitoes

(e) Infected mosquitoes

Figure 4. Effects of vaccination on all five state functions HS(t),HI(t),HR(t),MS(t),MI(t)
in five distinct graphs when c1 = c2 = 0.99, p = 0.05, 0.07, 0.09 and β = α = 0.05.

Figure 5b, 5e show that spraying has a more significant effect on the number of infected mosquitoes
than that of infected humans; hence, it suggests that an increase in spraying potentially reduces the
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number of malarial incidence more significantly than antimalarial drugs. Figure 5a shows that an
increase in spraying increases the number of susceptible humans more significantly than antimalarial
drugs and vaccination when the fractal-fractional order is 0.99. Figure 5c shows that an increase in
spraying produces fewer recovered humans as compared to antimalarial drugs and vaccination when
the fractal-fractional order is 0.99. Figure 5d shows that an increase in spraying reduces the number of
susceptible mosquitoes when the fractal-fractional order is 0.99. The relative importance of fractional
order only and fractal dimension only on the epidemic model is shown in Figures 6 and 7, with the
corresponding numerical values shown in Table 1.

Table 1. Numerical comparison of fractional order only and fractal dimension only
at the end of the simulation time with c1 = 1.00, 0.98, 0.96, 0.94, 0.92, 0.90 and c2 =

1.00, 0.98, 0.96, 0.94, 0.92, 0.90, based on Figures 6 and 7.
Compartment Order Only fractional order: c1 Only fractal order: c2∑25

0.000001 H
S(t) 1.00 100876 100876∑25

0.000001 H
S(t) 0.98 105146 104622∑25

0.000001 H
S(t) 0.96 109424 108513∑25

0.000001 H
S(t) 0.94 113707 112537∑25

0.000001 H
S(t) 0.92 117995 116681∑25

0.000001 H
S(t) 0.90 122287 120924∑25

0.000001 H
I(t) 1.00 20084 20084∑25

0.000001 H
I(t) 0.98 20692 20742∑25

0.000001 H
I(t) 0.96 21238 21333∑25

0.000001 H
I(t) 0.94 21718 21840∑25

0.000001 H
I(t) 0.92 22125 22252∑25

0.000001 H
I(t) 0.90 22456 22559∑25

0.000001 H
R(t) 1.00 122498 122498∑25

0.000001 H
R(t) 0.98 118128 118719∑25

0.000001 H
R(t) 0.96 113809 114868∑25

0.000001 H
R(t) 0.94 109546 110964∑25

0.000001 H
R(t) 0.92 105345 107029∑25

0.000001 H
R(t) 0.90 101210 103088∑25

0.000001M
S(t) 1.00 729906 729906∑25

0.000001M
S(t) 0.98 765866 757474∑25

0.000001M
S(t) 0.96 801813 785906∑25

0.000001M
S(t) 0.94 837703 815126∑25

0.000001M
S(t) 0.92 873500 845048∑25

0.000001M
S(t) 0.90 909164 875565∑25

0.000001M
I(t) 1.00 79304 79304∑25

0.000001M
I(t) 0.98 80724 80688∑25

0.000001M
I(t) 0.96 81923 81751∑25

0.000001M
I(t) 0.94 82890 82469∑25

0.000001M
I(t) 0.92 83612 82828∑25

0.000001M
I(t) 0.90 84084 82825

AIMS Mathematics Volume 8, Issue 2, 3120–3162.



3155

(a) Susceptible humans (b) Infected humans

(c) Recovered humans (d) Susceptible mosquitoes

(e) Infected mosquitoes

Figure 5. Effects of spraying on all five state functions HS(t),HI(t),HR(t),MS(t),MI(t) in
five distinct graphs when c1 = c2 = 0.99, α = 0.05, 0.10, 0.15 and p = β = 0.05.
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(a) Susceptible humans (b) Infected humans

(c) Recovered humans (d) Susceptible mosquitoes

(e) Infected mosquitoes

Figure 6. Effects of the fractional orders c1 = 1.00, 0.98, 0.96, 0.94, 0.92, 0.90 for all five
state functions HS(t),HI(t),HR(t),MS(t),MI(t) when the fractal order is kept constant at
c2 = 1.
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(a) Susceptible humans (b) Infected humans

(c) Recovered humans (d) Susceptible mosquitoes

(e) Infected mosquitoes

Figure 7. Effects of the fractal orders c1 = 1.00, 0.98, 0.96, 0.94, 0.92, 0.90 for all five state
functions HS(t),HI(t),HR(t),MS(t),MI(t) when the fractional order is kept constant at c1 =

1.
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9. Conclusions

In this paper, we analyzed an SIR-SI-model of malaria disease analytically and numerically in
the context of a five-dimensional system of the Atangana-Baleanu (c1, c2)-fractal-fractional differential
equations. We introduced all parameters of the model and then derived an equivalent compact fractal-
fractional IVP. Then, in order, we examined some properties of the solutions of this system in detail,
including the existence, Lipschitz property and uniqueness criterion. Also, stable solutions were
defined and proved in the sense of Hyers-Ulam and Hyers-Ulam-Rassias. The Newton polynomials
were applied for the first time to derive numerical solutions to the given system in the context of the
fractal-fractional version of the malaria disease. Using the simulations, we have studied the role and
impact of the fractal dimension c2 and the fractional order c1 on the behavior of the system. The
effects of some parameters and fractal-fractional orders on the vaccination rates, antimalaria drugs and
spraying were analyzed in all graphs. Therefore, if we can consider these processes, then the rate of
disease outbreaks will be largely controlled. In subsequent studies, we can implement other simulations
with the help of different newly defined numerical methods and compare the results together.
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