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In spite of this, convex theory turns to Godunova-Levin functions because they are more efficient at
determining inequality terms than other convexity classes. Our application of these new definitions has
led to many classical and novel special cases that illustrate the key findings of the paper. Using total
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1. Introduction

The field of interval analysis is a subfield of set-valued analysis, which focuses on sets in
mathematics and topology. Historically, Archimede’s method included calculating the circumference
of a circle, which is an example of interval enclosure. By focusing on interval variables instead of
point variables, and expressing computation results as intervals, this method eliminates errors that
cause misleading conclusions. An initial objective of the interval-valued analysis was to estimate error
estimates for numerical solutions to finite state machines. In 1966, Moore [2], published the first book
on interval analysis, which is credited with being the first to use intervals in computer mathematics
in order to improve calculation results. There are many situations where the interval analysis can
be used to solve uncertain problems because it can be expressed in terms of uncertain variables.
In spite of this, interval analysis remains one of the best approaches to solving interval uncertain
structural systems and has been used for over fifty years in mathematical modeling such as computer
graphics [3], decision-making analysis [4], multi-objective optimization, [5], error analysis [40]. In
summary, interval analysis research has yielded numerous excellent results, and readers can consult
Refs. [7-9], for additional information.

Convexity has been recognized for many years as a significant factor in such fields as probability
theory, economics, optimal control theory, and fuzzy analysis. On the other hand, generalized
convexity of mappings is a powerful tool for solving numerous nonlinear analysis and applied
analysis problems, including a wide range of mathematical physics problems. A number of rigorous
generalizations of convex functions have recently been investigated, see Refs. [10-13]. An interesting
topic in mathematical analysis is integral inequalities. Convexity plays a significant role in inequality
theory. During the last few decades, generalized convexity has played a prominent role in many
disciplines and applications of 7VFS, see Refs. [14—-19]. Several recent applications have addressed
these inequalities, see Refs. [20-22]. First, Breckner describes the idea of continuity for 7 VF'S, see
Ref. [23]. Using the generalized Hukuhara derivative, Chalco-Cano et al. [24], and Costa et al. [25],
derived some Ostrowski and Opial type inequality for 7VF S, respectively. Bai et al. [26], formulated
an interval-based Jensen inequality. First, Zhao [27], and co-authors established (H.H) and Jensen
inequality using h-convexity for 7VF S. In general, the traditional (.H) inequality has the following

definition:
® Oh 1 h h
&)+ 00 f omdy > 042, (1.1)
2 h-gJ, 2

Because of the nature of its definition, it is the first geometrical interpretation of convex mappings
in elementary mathematics, and has attracted a large amount of attention. Several generalizations
of this inequality are presented here, see Refs. [28—-31]. Initially, Awan et al. explored (hy, h;)-
convex functions and proved the following inequality [32]. Several authors have developed H.H
and Jensen-type inequalities utilizing (%, h,)-convexity. Ruonan Liu [33] developed H.H inequalities
for harmonically (A, hy)-convex functions. Wengui Yang [34] developed H.H inequalities on the
coordinates for (py, h1)-(p2, hy)-convex functions. Shi et al. [35] developed H.H inequalities for
(m, hy, hy)-convex functions via Riemann Liouville fractional integrals. Sahoo et al. [36] established
H.H and Jensen-type inequalities for harmonically (h;, h,)-Godunova-Levin functions. Afzal et
al. [37] developed these inequalities for a generalized class of Godunova-Levin functions using
inclusion relation. An et al. [38] developed H.H type inequalities for interval-valued (A, h,)-convex
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functions. Results are now influenced by less accurate inclusion relation and interval LU-order relation.
For some recent developments using the inclusion relation for the generalized class of Godunova-Levin
functions, see Refs. [39,40,44]. It is clear from comparing the examples presented in this literature
that the inequalities obtained using these old partial order relations are not as precise as those obtained
by using CR-order relation. As a result, it is critically important that we are able to study inequalities
and convexity by using a total order relation. Therefore, we use Bhunia’s [41], CR-order, which is
total interval order relation. The notions of CR-convexity and CR-order relation were used by several
authors in 2022, in an attempt to prove a number of recent developments in these inequalities, see
Refs. [42,43]. Afzal et al. using the notion of the h-GL function, proves the following result [45].

Theorem 1.1. (See [45]) Consider © : [g,h] — R;". Define h : (0,1) —» R* and h(%) # 0. If
(ORS SX(CR-h, [g, ]’l],RI+) and O € IR[g’h], then

ax
h(x)

h(%)(a(g”l (12)

1 h 1
(S )sm — f Oy <cx [0() +0(h)] |

Also, by using the notion of the h-GL function Jensen-type inequality was also developed.

Theorem 1.2. (See [45]) Let u; € R*, j; € [g, h]. If h is non-negative super multiplicative function and
® € SX(CR-h, [g, h],R;"), then this holds :

RS - OG)
@[EZM) mZh(i). (1.3)

In addition, it introduces a new concept of interval-valued GL-functions pertaining to a total order
relation, the Center-Radius order, which is unique as far as the literature goes. With the example
presented in this article, we are able to show how CR-7V¥ S can be used to analyze various integral

inequalities. In contrast to classical interval-valued analysis, CR-order interval-valued analysis differs
M+M
2

from it. Using the concept of Centre and Radius, we calculate intervals as follows: M¢ = and

Mg = M—;M, respectively, where M = [M, M. Inspired by the concepts of interval valued analysis and

the strong literature that has been discussed above with particular articles, see e.g., Zhang et al. [39],
Bhunia and Samanta [41], Shi et al. [42], Liu et al. [43] and Afzal et al. [44,45], we introduced the
idea of CR-(hy, h,)-GL function. By using this new concept we developed H.H and Jensen-type
inequalities. The study also includes useful examples to back up its findings.

Finally, the article is designed as follows: In Section 2, preliminary is provided. The main problems
and applications are provided in Section 3 and 4. Finally, Section 5 provides the conclusion.

2. Preliminaries
As for the notions used in this paper but not defined, see Refs. [42,43,45]. It is a good idea to

familiarize yourself with some basic arithmetic related to interval analysis in this section since it will
prove very helpful throughout the paper.

Ml=MM]  (xeR MSx<M xeR)
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INI= NN (xeR NSx<N;xeR)

M+ N1 = MM+ N,N1=[M+N,M+N]

[nMoaM| (7 <0),

where 1 € R.
Let R; and R; be the set of all closed and all positive compact intervals of R, respectively. Several
algebraic properties of interval arithmetic will now be discussed.

Consider M = [M, M] e R;, then M, = M;M and M, = MM are the center and radius of interval

2
M respectively. The CR form of interval M can be defined as:

M+M M-M
|

Following are the order relations for the center and radius of intervals:

Definition 2.1. The CR-order relation for M = [ M, M] = M M), N = (N, N1 =N, N,) eR,
represented as:
M <Ne  if M %N

MﬁcrN:}{MrSNr, lf MC:NC_

Note: For arbitrary two intervals M, N € R;, we have either M <., N or N <., M.
Riemann integral operators for 7 V¥ S are presented here.

Definition 2.2. (See [45]) Let O : [g, h] be an 7VF such that D = [D, D]. Then D is Riemann
integrable (I'R) on [g, h] if D and D are IR on [g, ], that is,

h h h
(IR) f D(s)ds = [(R) f D(s)ds, (R) f E(s)ds].
8 8 8

The collection of all (IR) 7VF S on [g, h] is represented by TR (g 1))
Shi et al. [42] proved that the based on CR-order relations, the integral preserves order.

Theorem 2.1. Let D, 7 : [g, h] be IVF S given by D = [D, D] and F = [, F. If D(s) Zcr F(s),

Vielg, hl] then
h h
f D(s)ds =Zcr f F(s)ds.
g g

We’ll now provide an illustration to support the aforementioned Theorem.

AIMS Mathematics Volume 8, Issue 2, 3101-3119.



3105

Example 2.1. Let D = [s,2s] and ¥ = [s2, s> + 2], then for s € [0, 1].

3
De = ?S,@R - %,y—‘c =+ 1and Fg = 1.
From Definition 2.1, we have D(s) <cg F(s), s € [0, 1].
Since,
! 1
2s]lds = [ =, 1

fo [s, 2s]ds [2, ]

and

! 17
224+ 2lds ==, =|.
j(:[ss+]s[33]

Also, from above Theorem 2.1, we have

1 1
f D(s)ds =Zcr f F(s)ds.
0 0

3
s2+2
25 2s
s
2 H s
3
S 15
©
>

0 0.2 0.4 0.6 0.8 1
S
Figure 1. A clear indication of the validity of the CR-order relationship can be seen in the

graph.

values

0 0.2 0.4 0.6 0.8 1
S

Figure 2. As can be seen from the graph, the Theorem 2.1 is valid.
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Definition 2.3. (See [42]) Define hy,h, : [0,1] — R*. We say that ® : [g,h] — R is called (hy, hy)-
convex function, or that ® € S X((hy, hy), [g, h], R"), if VY gi,h, € [g,h] and y € [0, 1], we have

O(yg1 + (1 =y)h) < hi(y)ha(1 —y)O(g1) + hi(1 = y)hao(y)O(hy). (2.1)
If in (2.1) “<” replaced with “>” it is called (h, h,)-concave function or ® € S V((hy, hy), [g, h], R").

Definition 2.4. (See [42]) Define iy, h, : (0,1) —» R*. We say that © : [g, h] — R* is called (hy, hy)-GL
convex function, or that ® € SGX((hy, hy), [g, h], R"), if ¥ gi,h, € [g,h] and y € [0, 1], we have
) < 0(g1) N O(h) _

hi(Ph(1 =7y) (1 =y)ha(y)

If in (2.2) “<” replaced with “>” it is called (hy,h,)-GL concave function or ® €
SGV((hi, ho), (g, h], R).

O(yg1 + (1 —y)h

(2.2)

Now let’s introduce the concept for CR-order form of convexity.

Definition 2.5. (See [42]) Define hy, h, : [0,1] — R*. We say that © : [g,h] — R" is called CR —
(h1, hy)-convex function, or that ® € S X(CR-(hy, hy), g, h], R"),if VY g1,h, € [g,h] and y € [0, 1], we
have

O(yg: + (1 = Y)h) =czk M(Y)ha(1 = y)O(g1) + hi (1 = Y)ha(¥)O(hy). (2.3)

If in (2.3) “<cg” replaced with “>cx” it is called CR-(h;, h,)-concave function or ® € SV(CR-
(hla hZ)a [ga h]’R+)

Definition 2.6. (See [42]) Define hy,h, : (0,1) —» R*. We say that ® : [g,h] — R* is called CR-
(h1, hy)-GL convex function, or that ® € S GX(CR-(hy, hy), [g, h], R),if VY g1, h; € [g,h] and y € [0, 1],

we have

0O(g1) N O(h) -
hha(1 —y) (1 =y)ha(y)
If in (2.4) “<cg” replaced with “>cg” it is called CR-(h;, h,)-GL concave function or ® € SGV(CR-
(hy, ), [8, h], RY).

Remark 2.1. e [fh; = h, = 1, Definition 2.6 becomes a CR-P-function [45].
o Ifhi(y) = ﬁ, h, = 1 Definition 2.6 becomes a CR-h-convex function [45].
o If hi(y) = hi(y), hy = 1 Definition 2.6 becomes a CR-h-GL function [45].
o Ifhi(y) = yi h, = 1 Definition 2.6 becomes a CR-s-convex function [45].
e If h(y) = v*, Definition 2.6 becomes a CR-s-GL function [45].

O(yg1 + (1 = y)hy) Zcr (2.4)

3. Main results

Proposition 3.1. Consider ® : [g,h] — Ry given by [0, O] = (O, Of). If O¢c and Ok are (hy, hy)-GL
over (g, h], then O is called CR-(h,, hy)-GL function over (g, h].

Proof. Since ®¢ and @y are (hy, h,)-GL over [g, ], then for each y € (0, 1) and for all g, h; € [g, ],

we have
Oc(g1) N Oc(hy)
h(yh(1-y) (1 —y)h(y)

Oc(ygr + (1 = y)hi) Zcr
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and

Or(g) . Or(h)
(1 -y (1 -phy)

Or(yg: + (1 = y)h) Zcr

Now, if

Oc(g1) N Oc(hy)
hM(Mha(1 =) h(1 =phy(y)’
then for each y € (0, 1) and for all g, h; € [g, hl,

Oc(ygr + (1 =y)h) #

Oc(g1) + Oc(hy)
h(Wha (1 =y)  h(1 =ph(y)

Oc(ygr + (1 =y)h) <

Accordingly,
Oc(g1) Oc(h)

+ .
hha(l —y) (1 =y)h(y)
Otherwise, for each y € (0, 1) and for all g, h;, € [g, h],

) < Or(g1) N Or(hy)
hi(Pho(1 —y) (A =yhy(y)

0O(g1) N O(hy)
hi(ha(1 =y) (1 = Y)ha(y)
Taking all of the above into account, and Definition 2.6 this can be written as

Oy . 6t)
h(Mha(1 =) (1 =ph(y)

Oc(yg: + (1 = yhy) Zcr

Or(vg1 + (1 —y)h

= O(yg: + (1 =) Zcr

O(yg + (1 =y)h) =Zcr
for each y € (0, 1) and for all g, h; € [g, h].
This completes the proof. O
The next step is to establish the H.H inequality for the CR-(/, h,)-GL function.
Theorem 3.1. Define hy, hy : (0,1) > R* and hy (}) hy (1) # 0. Let © : [g,h] — R;*, if © € SGX(CR-
(hy, hy), [t,ul,R;") and © € IRy, we have

[HED] geny 1 g &k
: @( . )5CRh—gfg‘ O(y)dy =Zcr [@(g)+®(h)]f(; Hxl-x)

Proof. Since © € SGX(CR-(h;.hy),[g,h],R;"), we have

[H(%, %)}@(g ‘2F h) <cr O(xg + (1 — x)h) + O((1 — x)g + xh).

Integration over (0,1), we have

1 1
[H(l, 1)]@ (u) =<Cr [f O(xg + (1 — x)h)dx + f O((1 - x)g + xh)dx
2°2 2 0 0

AIMS Mathematics Volume 8, Issue 2, 3101-3119.
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1 1
= [f O(xg + (1 = x)h)dx + f O((1 = x)g + xh)dx,
0 0

1 1
f O(xg + (1 — x)h)dx + f (1 -x)g+ xh)dx]
0 0

2 h 2 h_
- [ﬂ f Oy, f o0 |

)

=—— | O(ydy.
h—-gJ,

By Definition 2.6, we have

O(g) ©(h)

O(xg + (1 — x)h) Zcr m(Oh(l - x) + hi(1 = x)hy(x)

Integration over (0,1), we have

1
f O(xg + (1 — x)h)dx <Zcg G)(g)f
0

Accordingly,

— f O)dy =cr [O(g) + OM)] f m

Now combining (3.1) and (3.2), we get required result

[H(%’%)]@)(Hu

1 h
2 2 )5CR mfg OOy zex [063) + O f m

Remark 3.1. e [fh(x) = hy(x) = 1, Theorem 3.1 becomes result for CR- P-function:

1 h 1 h
5@(“” ; )m - f O)dy <cx [0(g) + OM)].

o If hi(x) = h(x), ho(x) = 1 Theorem 3.1 becomes result for CR-h-GL-function:

() (g+n L ' dx
< < —_—
> (’3( 3 ) =CR h—g L OWy)dy Zcr j; h(x)

o Ifhi(x) = h(x), hy(x) = 1 Theorem 3.1 becomes result for CR-h-convex function:

1 +h 1 h !
1 @(g—) <cp —— f OOy <cr f h(x)dx.
2h(-) 2 h-gJ, 0

2

1(x)hz(1—x) ()f 1(1—X)h2(x)

(3.1)

(3.2)

AIMS Mathematics Volume 8, Issue 2, 3101-3119.
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o Ifhi(x) = #(x) hy(x) = @ Theorem 3.1 becomes result for CR-(hy, hy)-convex function:
1

g+h) 1 fh fl dx
¢) < O(y)dy < _ .
2[H( ’%)] ( > CRh_g ] (V)dy Zcr o Hool—»)

Example 3.1. Consider [z, u] = [0, 1], h(x) = %, hh(x)=1,Yxe (0,1).0:[g,h] > R;" is defined
as

N =

O®y) = [-y*,2y* + 11.

where [ ( )]
H(35)| (g+h 1\ [-13
o570 )55
1 h 1 s 1 5 -15
—f O(y)dy = f(—y )dy,f(27 +Ddy| == 3z|
I’l—g g 0 0 3°3
! dx -1
[®(g)+®(h)]j; m:[jz]
As a result,

—13< —15< —12
4’2 —CR 373 —CR 27 .

This proves the above theorem.
Theorem 3.2. Define hy, hy : (0,1) > R* and hy (3) hy (1) # 0. Let © : [g,h] — R;*, if © € SGX(CR-
(hi,hp), [t,ul,R;") and ® € IR, we have

[ ( %)]2®(g+h

1
2,
<cr A <
4 7 )—CR l—CRh

1+ 1 f‘ dx
2 H(%,%) o H(x,1-x)

L HGa) [®(3g+h)+®(3h+g)

h
f O(y)dy Zcr M
8

=Cr {[(9(8) +0(h)]

where

b

4 4 4

1
Q(g+h)+®(g)+®(h)]f ax
2 2 o H(x,1-x)

Ay =

Proof. Take [g, %], we have

Y (gem w05 0(d-nge )
® > :®( 5 )5CR 11 + 11 :
H(z’z) H(Z’Z)

Volume 8, Issue 2, 3101-3119.
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Integration over (0,1), we have

1 1
®(3g;h) <cr } 1 [f @(xg+(1—x)g;h)dx+f ®(xg;h+(1—x)h)dx]
H(3.4) Yo ’

Accordingly,
H(5.3) (3g+h 1T
® < dy. .
: ( - )_CRh_gfg o0y (3.3)
Similarly for interval [%, h], we have
H(%’ %) 3h+g 1 &
® < O(y)dy. 3.4
1 ( > )_CRh_gfg (y)dy (3.4)

Adding inequalities (3.3) and (3.4), we get

H(3.3 30+ h 3
- Do (228) o (et)

1 h
<cx [ - f @(y)dy].

Now

[H(%’%)]z 1 (3g+h\ 1(3h+g

=4 ®(5( r )*5( r ))

G et o)

g h(k) h(b)

_HGS) [ (384 h) , o3t e

- o) e M)
= A

[®(g) +0(m | G(M)
2

| =

AIMS Mathematics Volume 8, Issue 2, 3101-3119.
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O(g) + O(h) g+h ! dx
SCR[ 2 +®( 2 )]f Hx -

= /Ay
- |ew+en _ew @(h) f
—CR 2 H(L, % (L.1) H(x, l—x)
0O(g) + O(h) 1 dx
<on | 282 +Heéfm@+mm‘£ﬁaT;5

1
<o {[@(g) +Om)]|5 +

% % ” H (x 1-x)
Example 3.2. Thanks to Example 3.1, we have

[H(%’%)]2®(g+h):®(l)

o2

. _|e@+em o 1) b dx
27 2 2 fOH(x,l—x)’

1
AI:E

AZ__ —, = + _,2 ’
2\[4°2
a= |27
2 = 8’4 ’
1 1 dx -1
0 O(h =172
Thus we obtain
13 S B [2Es o [2B27a [2,
327 * (16" 8 373|784 207

This proves the above theorem.

Theorem 3.3. Let ©,0 : [g,h] — R; ", hi,hy : (0,1) = R* such that hy,h, # 0. If ©® € SGX(CR-
hi, (g, hl,R/"), 0 € SGX(CR-hy,[g,h],R;") and ©,0 € IR, y then, we have

1 " 1 dx 1 dx
s | @Oy Scx M(g. ) fo Poion T Neh fo Hen0H(1 - % 1-2)

8

where
M(g, h) = ©(2)0(g) + O(h)B(h), N(g, h) = O(g)0(h) + O(h)6(g).

AIMS Mathematics Volume 8, Issue 2, 3101-3119.
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Proof. Conider ® € SGX(CR-hy,[g,h],R;"), 8 € SGX(CR-h,, g, h],R;") then, we have
0O(g) N O(h)
hy(0)hy(1 = x) by (1 = x)hy(x)’

o) . 6
(1= %) (1= x)hy(x)

O(gx + (1 — x)h) =cx

H(gx + (1 - x)h) <c
Then,
O(gx + (1 = 0)h)§(tx + (1 — x)u)
O(g)0(g) N O(g)0(h) + O(g)d(g) N O(h)o(h)
“RH(x, 1 - %) H(1 - x, x) H(x, )H(1 - x,1-2x)
Integration over (0,1), we have

1
f(; @(gx +(1 - x)h)@(gx +(1 - x)h)dx
1 1 . :
- [ fo 0(gx + (1 = x)h)(gx + (1 = )h)dx, j; O(gx + (1 - x)h)B(gx + (1 - x)h)dx]

1 h 1 h__ _ 1 h
= [— f OWoy)dy, — f ®(7)9(7d7] =— f OWy)o(y)dy
h _g 8 h_g g h g g

y fl [©@0ie) +Omoh)] | fl (0@ + Mg |
R A H2(x,1 - x) o Hx,)H(1 - x,1-x)
It follows that

1 " 1 dx 1 dx
g ), OOy Sca M.l fo Poion T Neh fo HoroH(I —x1-%)

Theorem is proved. O

Example 3.3. Consider [g,h] = [1,2], hi(x) = i, hy(x) =1Yxe (0,1). ©,0 : [g,h] > R;" be
defined as
O) = [-¥%.2y* + 11,6(y) = [-7,7].

Then,
h

15
OW)d(y)dy = [—, 9] ,

h_g g 4

1 1 1 )
M(g,h)](; mdx—M(l,Z)L de—[—7,7],
: 1 : -15 15
N(g, h)j; HooHI —x1- x)dx = N(1,2)f0 x(1 — x)dx = [T’ F]

It follows that
15 9
4 b

It follows that the theorem above is true.

-15 15
<cr [-7,7] + [T, g] = [

-19 19
272
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Theorem 3.4. Let ©,0 : [g,h] = Ry, hy,hy : (0,1) > R* such that hy,h, # 0. If ® € SGX(CR-
hi,[g,hl,R;*), 6 € SGX(CR-hy, (g, h],R;") and ©,0 € IR,y then, we have

2 2 2

[H(%’%)T@(gm)g(gm)

1 : dx : dx
<cr fg OBy + Mg, [ gt N [

Proof. Since ® € SGX(CR-hy, g, hl,R:"), 8 € SGX(CR-h,, [g,h],R;"), we have
®(g +h) < O (gx+ (1 —x)h) N O (g(1 — x) + xh)

2 H(3.5) H(3.3)
0(#) <cx 0(gx + (11 1—x)h) N 0(g(1 —lx)l+ xh)
H(33) H (5 3)
Then,
g+h\ (g+h
o5 )(57)
1
<cr T [0 (gx+ (1 —x)h)0(gx + (1 — x)h) + O (g(1 — x) + xh)O(g(1 — x) + xh)]
H(3. 3
+ [(1% [O (gx + (1 — x)h)O(g(1 — x) + xh) + O(g(1 — x) + xh)B(gx + (1 — x)h)]
H(3.3
1
+ =<cr W [O (gx + (1 — x)h)8(gx + (1 — x)h) + O (g(1 — x) + (xh)B(g(1 — x) + xh)]
H(3.3

N 1 ( 0(g) N 0(h) o(h) N 6(h) )
H(L L 2N\H(x,1-x) HA-x,x))\H(1-x,x) H(x1-x)
[#(5.4)]

+[( 0 _ om )( og) o) )]

H1l-x,x) Hx1-x)J\H(x,1-x) H(l-2x,x)

=cr ;2 [O (gx + (1 — x))O(gx + (1 — x)h) + O (g(1 — x) + xh)O(g(1 — x) + xh)]

=
—
=
-

N =

1 2 1 1
" H 11 2|:(H(X,X)H(1—X,l—x))M(g’h)-i_(HZ(x,l_x) +H2(1—x,x))N(g’h)]'
[#(3-3)]

Integration over (0, 1), we have

[ o5 )el5 = L ol 5ol 5 e [ 355 (5"
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o T [hig f h@(y)@(y)dy]

2 ! 1
[H(l 1)]2 [M(g’ h)fo Hx, x)H(1 — x,1 — x)dx

222

! 1
N fo H2(x, 1 - ) dx] ‘

+

1 1)7?
Multiply both sides by M above equation, we get the required result

2 2

[H(%’%)T@(gm)g(gm)

1 h : dx : dx
h_gfg ®(7)9(7)d7+M(g,h)fo H(X’X)H(l_x’]_x)+N(g,h)f0 ol

As a result, the proof is complete.

O

Example 3.4. Consider [g, h] = [1,2], hi(x) = i, hy(x) = i, Yxe (0,1). 0,0 : [g,h] > R;" be
defined as
O(y) = [-7*.2y* + 11,6() = [-7,7].

Then,

[H(%,%)]2®(g+h)9(g+h) _ 1@(5)9(3) _ [—33 33]’

2 |78 \2)\2) 7| 32732
h

15
OW)o(y)dy = [T’ 9] ,

h—g

8

1 dx 1
M(g,h)ﬁ Hro0H1 —x1-x) = (16)M(1,2)£ x(1 = x)dx = [-56,56],

N hfl X _ 6w 2)f1 2dx = [~80, 80]
(ga)om— , Ox X = R .

It follows that

[—33 33] [15
=<CRr Z,9

-33 33 ~529
32732 '

+ [-56,56] + [-80,80] = [T, 145

This proves the above theorem. Next, we will develop the Jensen-type inequality for CR-(h, h,)-GL
functions.

AIMS Mathematics Volume 8, Issue 2, 3101-3119.



3115

4. Jensen type inequality

Theorem 4.1. Let u; € R, j; € [g,h]. If hy, h, is super multiplicative non-negative functions and if
® € SGX(CR-(hy, hy), g, hl,R;"). Then the inequality become as :

©Gw) } 4.1)
)

k k

o g L mi zex 33| -

i=1 i=1

Mz U1
Uk’ E;

where Uy = Y5, u;
Proof. When k = 2, then (4.1) holds. Suppose that (4.1) is also valid for k — 1, then

1 k k-1 l
ol gz i) =i+ .71
< OGjy) O3k o))
< hl(z_i)hZ(Uk_:) hl( )hz( )
<cn O3k N - 03 1
(e (5) " &L 52 I () a2
cop— 2T &}
())&l 52
S0 eG }
<
CR - (%,Ué_;])

It follows from mathematical induction that the conclusion is correct.
Remark 4.1. e [fh(x) = hy(x) = 1, Theorem 4.1 becomes result for CR- P-function:
1 & k
®(7 Z Miji) =<CRr Z O®).
k= i=1

o Ifhi(x) = ) (x), hy(x) = Theorem 4.1 becomes result for CR-(hy, hy)-convex function:

Zk:u] < ZH(“" U“)@()
k iJi| =CR - U Uk Ji

o Ifhi(x) = i, hy(x) = 1 Theorem 4.1 becomes result for CR-convex function:
1 & K
el — iJil = —0(j)).
(Uk;bl]) CR;Uk (Ji)
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o Ifhi(x) = ﬁ hy(x) = 1 Theorem 4.1 becomes result for CR-h-convex function:

1 & k "
0| — iJil = h|— 0.
(Uk;bl]) CR; (Uk) (Ji)

o Ifhi(x) = h(x), ho(x) = 1 Theorem 4.1 becomes result for CR-h-GL-function:

& k
®(Uk Z Mi]i) =CRrR Z

i=1 i=1

03)
n(i)
o Ifhi(x) = é hy(x) = 1 Theorem 4.1 becomes result for CR-s-convex function:

1 & . ¢ u; ’ .
U(Fk Z Mi]i) =cr Z (Uk) O3).

i=1 i=1

5. Conclusions

A useful alternative for incorporating uncertainty into prediction processes is 7 V¥ S. The present
study introduces the (h;, hy)-GL concept for 7VF S using the CR-order relation. As a result of
utilizing this new concept, we observe that the inequality terms derived from this class of convexity
and pertaining to Cr-order relations give much more precise results than other partial order relations.
These findings are generalized from the very recent results described in [37,42,43,45]. There are
many new findings in this study that extend those already known. In addition, we provide some
numerical examples to demonstrate the validity of our main conclusions. Future research could
include determining equivalent inequalities for different types of convexity utilizing various fractional
integral operators, including Katugampola, Riemann-Liouville and generalized K-fractional operators.
The fact that these are the most active areas of study for integral inequalities will encourage many
mathematicians to examine how different types of interval-valued analysis can be applied. We
anticipate that other researchers working in a number of scientific fields will find this idea useful.

Contflict of interest

The authors declare that there is no conflict of interest in publishing this paper.

References

1. R. E. Moore, Interval analysis, Prentice-Hall, 1966.

2. R. E. Moore, Methods and applications of interval analysis, Philadelphia, 1979.

3. J. M. Snyder, Interval analysis for computer graphics, Comput. Graphics, 26 (1992), 121-130.

https:///doi.org/10.1145/133994.134024

4. Y. H. Qian, J. Y. Liang, C. Y. Dang, Interval ordered information systems, Comput. Math. Appl.,
56 (2009), 1994-2009. https://doi.org/10.1016/j.camwa.2008.04.021

AIMS Mathematics Volume 8, Issue 2, 3101-3119.


http://dx.doi.org/https:///doi.org/10.1145/133994.134024
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2008.04.021

3117

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. S. Rahman, A. A. Shaikh, A. K. Bhunia, Necessary and sufficient optimality conditions for non-
linear unconstrained and constrained optimization problem with interval valued objective function,
Comput. Ind. Eng., 147 (2020), 106634. https://doi.org/10.1016/j.cie.2020.106634

E. Rothwell, M. J. Cloud, Automatic error analysis using intervals, IEEE T. Educ., 55 (2011), 9-15.
https://doi.org/10.1109/TE.2011.2109722

E. Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis,
IEEE T. Educ., 20 (2009), 638—653. https://doi.org/10.1109/TNN.2008.2011267

W. Gao, C. Song, F. Tin-Loi, Probabilistic interval analysis for structures with uncertainty, Struct.
Saf., 32 (2010), 191-199. https://doi.org/10.1016/j.strusafe.2010.01.002

X. J. Wang, L. Wang, Z. P. Qiu, A feasible implementation procedure for interval
analysis method from measurement data, Appl. Math. Model., 38 (2014), 2377-2397.
https://doi.org/10.1016/j.apm.2013.10.049

S. Faisal, M. A Khan, S. Igbal, Generalized Hermite-Hadamard-Mercer type inequalities via
majorization, Filomat, 36 (2022), 469—483. https://doi.org/10.2298/FIL.2202469F

S. Faisal, M. A. Khan, T. U. Khan, T. Saeed, A. M. Alshehri, E. R. Nwaeze, New
conticrete Hermite-Hadamard-Jensen-Mercer fractional inequalities, Symmetry, 14 (2022), 294.
https://doi.org/10.3390/sym14020294

S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and
matrices, J. Math. Inequal., 11 (2017), 241-259. https://doi.org/10.7153/jmi-11-23

M. Kamenskii, G. Petrosyan, C. F. Wen, An existence result for a periodic boundary value problem
of fractional semilinear di Kerential equations in a Banach space, J. Nonlinear Var. Anal., 5 (2021),
155-177. https://doi.org/10.23952/jnva.5.2021.1.10

D. Zhao, T. An, G. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for
harmonical h-convex interval-valued functions, Math. Inequal. Appl., 23 (2020), 95-105.
https://doi.org/10.7153/mia-2020-23-08

M. B. Khan, J. E. Macas-Diaz, S. Treanta, M. S. Soliman, H. G. Zaini, Hermite-Hadamard
inequalities in fractional calculus for left and right harmonically convex functions via interval-
valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178

M. V. Mihai, M. U. Awan, M. A. Noor, J. K. Kim, Hermite-Hadamard inequalities and their
applications, J. Inequal. Appl., 2018 (2018), 309. https://doi.org//10.1186/s13660-018-1895-4

C. P. Niculescu, L. E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exch.,
29 (2003), 663-686. https://doi.org/10.14321/realanalexch.29.2.0663

T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, On new fractional integral inequalities
for p-convexity within interval-valued functions, Adv. Differ. Equ., 1 (2020), 1-17.
https://doi.org/10.1186/s13662-020-02782-y

E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard
type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 1 (2020), 1-17 .
https://doi.org/10.1186/s13662-020-02977-3

M. Nowicka, A. Witkowski, Applications of the Hermite-Hadamard inequality, arXiv, 1 (2016).
https://doi.org/1603.07170

AIMS Mathematics Volume 8, Issue 2, 3101-3119.


http://dx.doi.org/https://doi.org/10.1016/j.cie.2020.106634
http://dx.doi.org/https://doi.org/10.1109/TE.2011.2109722
http://dx.doi.org/https://doi.org/10.1109/TNN.2008.2011267
http://dx.doi.org/https://doi.org/10.1016/j.strusafe.2010.01.002
http://dx.doi.org/https://doi.org/10.1016/j.apm.2013.10.049
http://dx.doi.org/https://doi.org/10.2298/FIL2202469F
http://dx.doi.org/https://doi.org/10.3390/sym14020294
http://dx.doi.org/https://doi.org/10.7153/jmi-11-23
http://dx.doi.org/https://doi.org/10.23952/jnva.5.2021.1.10
http://dx.doi.org/https://doi.org/10.7153/mia-2020-23-08
http://dx.doi.org/https://doi.org/10.3390/fractalfract6040178
http://dx.doi.org/https://doi.org//10.1186/s13660-018-1895-4
http://dx.doi.org/https://doi.org/10.14321/realanalexch.29.2.0663
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02782-y
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02977-3
http://dx.doi.org/https://doi.org/1603.07170

3118

21

22.

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

. L. Xiao, G. Lu, A new refinement of Jensen’s inequality with applications in information theory,
Open Math., 18 (2018), 1748—1759. https:///doi.org/10.1515/math-2020-0123

M. U. Awan, M. A. Noor, F Safdar, A. Islam, Hermite-Hadamard type
inequalities  with  applications,  Miskolc  Math.  Notes, 21 (2020), 593-614.
https:///doi.org/10.18514/MMN.2020.2837

. W. W. Breckner, Continuity of generalized convex and generalized concave set-valued functions,
Rev. Danaly. Numer. Theo. Lapprocim., 22 (1993), 39-51.

Y. Chalco-Cano, A. Flores-Franulic, H. Romén-Flores, Ostrowski type inequalities for interval-
valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457-472.
https://doi.org/10.1590/S1807-03022012000300002

T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf.
Sci., 420 (2017), 110-115. https://doi.org/10.1016/j.ins.2017.08.055

H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor, Hermite-Hadamard-and Jensen-
type inequalities for interval nonconvex function, J. Math., 2020 (2020), 3945384.
https://doi.org/10.1155/2020/3945384

D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for 4-convex
interval-valued functions, J. Inequal. Appl., 1 (2018), 1-14. https://doi.org/10.1186/s13660-018-
1896-3

W. Afzal, W. Nazeer, T. Botmart, S. Treantd, Some properties and inequalities for generalized class
of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2022),
1696-1712. https://doi.org/10.3934/math.20221064

J. E. Macias-Diaz, M. B. Khan, M. A Noor, A. A. A. Allah, S. M. Alghamdi, Hermite-Hadamard
inequalities for generalized convex functions in interval-valued calculus, AIMS Math., 7 (2022),
4266—4292. https://doi.org/10.3934/math.2022236

M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some
new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for

generalized pre-invex functions via fuzzy-interval-valued settings, Fractal Fract., 6 (2022), 83.
https://doi.org/10.3390/fractalfract6020083

M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some
new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for

generalized pre-invex functions via fuzzy-interval-valued settings, Fractal Fract., 6 (2022), 83.
https://doi.org/10.3390/fractalfract6020083

M. U. Awan, M. A. Noor, K. I. Noor, A. G. Khan, Some new classes of convex functions and
inequalities, Miskolc Math. Notes, 19 (2018), 2179. https://doi.org/10.18514/MMN.2018.2179

R. Liu, R. Xu , Hermite-Hadamard type inequalities for harmonical (1, h2)-convex interval-valued
functions, Math. Found. Comput., 4 (2021), 89. https://doi.org/10.3934/mfc.2021005

W. G. Yang, Hermite-Hadamard type inequalities for (pl1, hl)-(p2, h2)-convex functions on the
co-ordinates., Tamkang J. Math., 3 (2016), 289-322. https://doi.org/10.5556/j.tkjm.47.2016.1958

AIMS Mathematics Volume 8, Issue 2, 3101-3119.


http://dx.doi.org/https:///doi.org/10.1515/math-2020-0123
http://dx.doi.org/https:///doi.org/10.18514/MMN.2020.2837
http://dx.doi.org/https://doi.org/10.1590/S1807-03022012000300002
http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.08.055
http://dx.doi.org/https://doi.org/10.1155/2020/3945384
http://dx.doi.org/https://doi.org/10.1186/s13660-018- 1896-3 
http://dx.doi.org/https://doi.org/10.1186/s13660-018- 1896-3 
http://dx.doi.org/https://doi.org/10.3934/math.20221064 
http://dx.doi.org/https://doi.org/10.3934/math.2022236
http://dx.doi.org/https://doi.org/10.3390/fractalfract6020083
http://dx.doi.org/https://doi.org/10.3390/fractalfract6020083
http://dx.doi.org/https://doi.org/10.18514/MMN.2018.2179
http://dx.doi.org/https://doi.org/10.3934/mfc.2021005
http://dx.doi.org/https://doi.org/10.5556/j.tkjm.47.2016.1958

3119

35

36.
37.

38.

39.
40.
41.

42.
43.

44.
45.
AR

@ AIMS Press

.D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for (m, hl, h2)-convex functions
via Riemann-Liouville fractional integrals, Turkish J. Anal. Number Theory, 2 (2014), 22-27.
https://doi.org/10.12691/tjant-2-1-6

S. K. Sahoo, P. O. Mohammed, D. O. Regan, M. Tariq, New Hermite-Hadamard type inequalities
in connection with interval-valued generalized harmonically (4, h;)-Godunova-Levin functions,
Symmetry, 14 (2022), 1964. https://doi.org/10.3390/sym14101964

W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard
inequalities for interval-valued (A, h;)-Godunova-Levin functions, AIMS Math., 7 (2022), 19372—
19387. https://doi.org/2010.3934/math.20221064

Y. An, G. Ye, D. Zhao, W. Liu, Hermite-Hadamard type inequalities for interval (A, h,)-convex
functions, Mathematics, 7 (2022), 436. https://doi.org/10.3390/math7050436

X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type
inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions,
J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324

S. Ali, R. S. Ali, M. Vivas-Cortez, S. Mubeen, G. Rahman, K. S. Nisar, Some fractional integral
inequalities via h-Godunova-Levin preinvex function, AIMS Math., 8 (2022), 13832-13844.
https://doi/10.3934/math.2022763

A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-
objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169-178.
https://doi/10.1016/j.cie.2014.05.014

F. F. Shi, G. J. Ye, W. Liu, D. F. Zhao, cr-h-convexity and some inequalities for cr-A-convex
function, Filomat, 10 (2022).

W. Liu, E. Shi, G. J. Ye, D. F. Zhao, The properties of harmonically cr-A-convex function and its
applications, Mathematics, 10 (2022), 2089. https://doi/10.3390/math10122089

W. Afzal, A. A. Lupas, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for
harmonical (4;, hy)-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970.
https://doi.org/10.3390/math10162970

W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treantd, Some h-Godunova-Levin
function inequalities using center radius (cr) order, Fractal Fract., 6 (2022), 5I18.
https://doi.org/10.3390/fractalfract6090518

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 2, 3101-3119.


http://dx.doi.org/https://doi.org/10.12691/tjant-2-1-6
http://dx.doi.org/https://doi.org/10.3390/sym14101964
http://dx.doi.org/https://doi.org/2010.3934/math.20221064
http://dx.doi.org/https://doi.org/10.3390/math7050436
http://dx.doi.org/https://doi.org/10.1155/2022/3830324
http://dx.doi.org/https://doi/10.3934/math.2022763
http://dx.doi.org/https://doi/10.1016/j.cie.2014.05.014
http://dx.doi.org/https://doi/10.3390/math10122089
http://dx.doi.org/https://doi.org/10.3390/math10162970
http://dx.doi.org/https://doi.org/10.3390/fractalfract6090518
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Jensen type inequality
	Conclusions

