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Abstract: Incorporating self-diffusion and super-cross diffusion factors into the modeling approach
enhances efficiency and realism by having a substantial impact on the scenario of pattern formation.
Accordingly, this work analyzes self and super-cross diffusion for a predator-prey model. First, the
stability of equilibrium points is explored. Utilizing stability analysis of local equilibrium points,
we stabilize the properties that guarantee the emergence of the Turing instability. Weakly nonlinear
analysis is used to get the amplitude equations at the Turing bifurcation point (WNA). The stability
analysis of the amplitude equations establishes the conditions for the formation of small spots,
hexagons, huge spots, squares, labyrinthine, and stripe patterns. Analytical findings have been
validated using numerical simulations. Extensive data that may be used analytically and numerically
to assess the effect of self-super-cross diffusion on a variety of predator-prey systems.
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1. Introduction

Pattern formation has captivated scholars in recent decades as a way to better understand natural
processes, and Turing’s key work on reaction-diffusion systems gave rise to the concept of using it
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with reaction-diffusion systems [36]. Turing instability causes a variety of spatial structures to arise,
including spots, spirals, squares, hexagons, combinations of spots and stripes, and so on [2, 3, 14, 28].
Non-Turing patterns, such as traveling wave, periodic traveling wave, spatiotemporal chaos, and so
on, can be detected using diffusion concepts [9, 25]. Many of these patterns in the spatio-temporal
expansion of interactive population systems, which include competing species and predator-prey
systems, were discovered using reaction-diffusion equations [2, 3, 25].

Cross-diffusion is vital in the emergence of patterns in the disciplines of chemistry, biology, and
ecology. In ecology, the concentration gradient of one species influences the flow of another; this
phenomena is known as cross-diffusion in the perspective of the reaction-diffusion model, as detailed
in [30, 37]. Positive cross-diffusion distributes the respective components, whilst negative
cross-diffusion causes them to accumulate locally.The influence of cross-diffusion on excitatory
chemical systems has already been discussed extensively for Chemical self-replication according to
the Templetor model [7], the chlorite-iodide-malonic acid-starch autocatalytic reaction system [35],
the Fitzhugh-Nagumo type reaction kinetics [40], and Stokes equations [5]. Vanag and Epstein [37]
investigated the effects of cross-diffusion in cognitive and various chemical systems in particular.
Cross-diffusion terms can be used to characterize prey’s tendency to avoid predators and also the
predator population’s weakening in the presence of high-density prey regions [18, 19, 22]. The
predator-prey pursuit-evasion technique is another cross-diffusion paradigm wherein waves propagate
via taxis described by nonlinear cross-diffusion parameters.

Super-diffusion may be seen all over the place in nature. The limiting output of Lévyflight is
represented at the molecular level, with the jumping length dispersion containing infinite intervals
during the relative motion of the individual particles. The particle conducts large hops at this moment.
Surface diffusion, turbulence, animal and plasma motion, and other processes can all be affected by
these phenomena. They might also have a big influence on pattern creation. The influence of the super
diffusion implications on the several models, like the activator-inhibitor model [43], the Fitzhugh-
Nagumo model [15], the Lengyel-Epstein model [23], and the complex fractional-order HIV diffusion
model [16]] has lately been noted by many investigators. In a predator-prey model [24] and a three-
species food chain model with harvesting [17], only a few outcomes have been reported around super-
cross-diffusion. As stated in the introduction, we will investigate the Hopf bifurcation along with the
Turing patterns described for the predator-prey system with in the self-super-cross diffusion in this
research.

For decades, Turing instability [36] has piqued the curiosity of scientists as a frequent obstacle in
the development of morphological patterns. In reaction-diffusion systems, mathematical analysis and
numerical simulations have given a range of results on pattern formation. Song et al. [31] investigated
the generation of Turing patterns via the Gierer-Meinhardt model in two spatial dimensions with a
saturation term. They obtained the spotting, striping, cohabitation, and labyrinth patterns. The results
showed the mechanism of morphogenetic processes in mesenchymal cells that have reached maturity.
In both the supercritical and subcritical circumstances, the amplitude equations of the stationary pattern
were found in the Turing domain.

Regarding the parameter values close to the Turing bifurcation curve [4, 9, 21], amplitude equation
is critical in explaining the behavior of a reaction-diffusion system. The system’s homogeneous steady
state loses its stability due to tiny amplitude heterogeneous disturbances [25]. The system exhibits a
critical slowdown at a bifurcation threshold, indicating that it takes a substantial amount of time to
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switch from a stable steady-state homogeneous condition to an inhomogeneous configuration [39].
As a result, multi-scale perturbation analysis may be used for deriving amplitude equations for the

studying of the dynamics of active slow modes. The amplitude equations’ stability analysis offers
information on possible patterns that would occur near the boundary of Turing bifurcation when the
amplitude equations are extracted out from the reaction-diffusion equations original system. This
technique may also be used to learn about pattern selection and stability around the onset [41].
Zemskov et al. [40] investigated pattern formation in the Oregonator and Brusselator models
involving cross-diffusion via WNA. Topaz and Catla [33] and Chen [6] employed this approach to
explore patterns created around a Turing-Hopf bifurcation point, which occurs whenever the system
seems unstable because both temporal and spatial disturbances are considered. The amplitude
equations were established to analyze the production of spatial patterns utilizing WNA, such as
rhomboid, squares and rolls, in an epithelial model theory for insect, mammal, and fish skin pattern
generation. The approach was further modified for the spatial and temporal expansion of interactive
population models, including the cross-diffusion augmented competitive model [12], the hyperbolic
mortality model [42], Beddington-DeAngelis functional responsiveness in the predator-prey
model [41] , and also the herd behavior model [39].

Numerical simulations might be used to better understand the influence of diffusion, as a
consequence of which represent intriguing phenomena like stationary, pulses, fronts, and periodic
patterns, among others [7]. Cross-diffusion and self-diffusion are put into consideration in interactive
population modeling including prey-predator models and competitive models [32], interesting
spatiotemporal patterns emerge. Numerical simulations will be used to validate the analytical results.

The following is a breakdown of how this article is structured. The temporal and spatiotemporal
predator-prey model will be introduced in the next section. We present the conditions that ensure
that the Turing instability arises in Section 3 by examining the local equilibrium points’ stability. In
Section 4, we use WNA to find the amplitude equations, and in Section 5, we use numerical simulations
to test the validity of the analytical findings. Finally, we present conclusions derived from our paper.

2. The predator-prey model

Differential equations are used in predation theory when it can be assumed that generations overlap
and populations fluctuate continuously over time. For this method to be fair, the time scale must
be set in accordance with the species being investigated. For the majority of mammals, variation
should be represented on an annual basis, but for many planktonic creatures, a daily scale is necessary.
In situations when the dynamics of a population cannot be approximated by continuous functions,
difference equations may be preferable. The Lotka-Volterra model, from which the idea of predation
evolved, contains a number of generally acknowledged flaws. In spite of this, differential equations
have remained an essential tool in the following development of the theory, and this method penetrates
a significant portion of contemporary ecological thought.

The fundamental model for predator-prey interaction may be expressed using nonlinear coupled
ordinary differential equations [1, 25]. Corresponding to Gause [10] for predator–prey interaction
subject to nonnegative initial conditions is defined as:

dU
dt
= U f (U) − Vg(U)
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dV
dt
= Bg(U)V − µV, (2.1)

where U ≡ U(t) and V ≡ V(t) are the density of prey and predator at time t, respectively. µ, supposed
to be [1] constant, is the intrinsic mortality rate of predators and B (0 < B < 1) is the food conversion
efficiency of the predator. Additionally, g(U) is the prey based functional response [11] and f (U) is
the per capita rate to grow the prey (when the predation is absent). In this paper, we assume that f (U)
follows logistic growth law and takes the form

f (U) = A
(
1 −

U
b

)
,

where b is the environmental carrying capacity for the prey population and A is the intrinsic
density–independent growth rate. The notion of employing the prey dependent functional response
was suggested by Feng and Kang [11] and Tian et al. [32] that is

g(U) =
µU

U + H
,

where “gamma(µ)” indicates the predator’s attack rate and H denotes the half-saturating constant.
Combining f (U) and g(U), hence the system (2.1) takes the form

dU
dt
= AU

(
1 −

U
b

)
−
µUV

U + H
dV
dt
=

BµUV
U + H

− µV, (2.2)

with regard to the initial conditions U(0), V(0) > 0 for (U,V) , (0, 0). When (U,V) = (0, 0). The
system described above has been simplified to dU

dt =
dV
dt = 0.

t̃ = At, Ṽ = µV
bA and Ũ = U

b is taken for the non–dimensional time, predator and prey population
density, respectively. For the sake of simplicity, we drop the over–bars to get the following non–
dimensional model

dU
dt
= U(1 − U) −

UV
U + h

dV
dt
= C

( U
U + h

)
V − DV, (2.3)

where C = Bµ
A , D = µA , and h = H

b are all positive parameters. The nonnegative solutions of

U(1 − U) −
UV

U + h
= β(U,V) = 0

C
( U
U + h

)
V − DV = γ(U,V) = 0, (2.4)

are the steady state solutions of (2.3). Aside from the general solution (0, 0) (complete extinction), (2.4)

yields the predator-free steady state point (1, 0) as well as the coexisting equilibrium point L
(
U∗ =

Dh
C−D , V∗ = (1 − U∗)(U∗ + h)

)
in the first quadrant’s interior.
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The temporal model (2.3) fits the spatiotemporal model having self-super-cross-diffusion terms. It
is necessary to understand how the pattern formation phenomenon takes place in a diffusive model
that is anomalous. The unsustainably diffusive operator [13, 29, 38] is expressed by (using the Fourier
transform) (−∆)

µ
2 with the following definition:

F {−(−∆)
µ
2 }(ν) = −|ν|µF u(ν), ν ∈ Rn, µ > 0.

When 1 < µ < 2, the above operator is known as super-diffusion. The associated random walk’s
displacement moment develops slower (sub-diffusion) and faster (super-diffusion) than in regular
diffusion. For µ = 2, we have the Laplacian operator ∆ as a special form of the above operator. Here,
the predator-prey system is investigated on the basis of self-super-cross-diffusion in a bounded
domain Ω ⊂ R2, with a smooth boundary ∂Ω, as follows:

∂U
∂t
− d1∇

2U − d2∇
µUV = U(1 − U) −

UV
U + h

, (x, y) ∈ Ω, t > 0,

∂V
∂t
− d3∇

µUV = C
UV

U + h
− DV, (x, y) ∈ Ω, t > 0,

∂U
∂n
=
∂V
∂n
= 0, (x, y) ∈ ∂Ω

U(x, y, 0) > 0, V(x, y, 0) > 0, (x, y) ∈ Ω, (2.5)

d1 is indeed the prey’s diffusion coefficient, d2 is a coefficient of the cross diffusion that anticipates the
movement of prey species based on predator population [19,26,38], and d3 is a coefficient of the cross
diffusion in which the predator species movement is influenced by prey population. The unit normal
vector along ∂Ω in outward direction is denoted by n. There is no flux via the boundary when the
Neumann boundary conditions are homogeneous.

The alternative obtaining of the fractional operator ∇µ for (1 < µ < 2) can be done as follows:

∇µa =
∂µ

∂ξµ
=
∂µa
∂|y|µ

+
∂µa
∂|x|µ

= −
1

2 cos(πµ/2)
(RLDµ−∞,ya + RLDµy,+∞a)

−
1

2 cos(πµ/2)
(RLDµ−∞,xa + RLDµx,+∞a),

where RLDµ−∞,y and RLDµy,+∞, , in respective order, as given below:

RLDµ−∞,ya = 1
Γ(2−µ)

∂2

∂y2

∫ y
−∞

(y − s)1−µa(s, x, t)ds,

RLDµy,+∞a = 1
Γ(2−µ)

∂2

∂y2

∫ +∞
y (s − y)1−µa(s, x, t)ds,

with Γ(.) refers to the Gamma function.

3. Diffusion driven instability

Turing instability takes place as a stable homogeneous steady-state turns out to be unstable in the
presence of tiny amplitude heterogeneous disturbances surrounding it [25,36]. With the cross-diffusion
term d3, the equilibrium point in (2.5), which itself is stable like a solution of the problem (2.3) in the
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absence of the cross-diffusion term d3, becomes unstable. Suppose U(x, y, t) and V(x, y, t) denote
the homogeneous steady states that satisfy these equations for (2.5). Suppose that under temporal
perturbation for Turing instability, asymptotically, the homogeneous steady state is stable. This means
that the requirements j11j22 − j12j21 > 0 and j11 + j22 < 0 are met. Linear stability analysis for the
spatiotemporal model (2.5) at L(U∗,V∗) is used to identify the constraints of the Turing instability [25].

Theorem 3.1. System (2.3) has a single positive equilibrium L(U∗, V∗) if D , C, and L is
asymptotically locally stable.

Proof. The Jacobian J0 of the system (2.3) at the coexisting equilibrium point L(U∗, V∗), is given by

J0 =

 D
C

(
1 − h(C+D)

C−D

)
−D

C

C − D − Dh 0

 ≡ (
j11 j12

j21 j22

)
. (3.1)

Assume that h is the model’s Hopf bifurcation parameter (2.3). By solving

j11 + j22 = 0, (3.2)

we obtain
hH =

C − D
C + D

. (3.3)

The equilibrium point L(U∗, V∗) that co-exists in relation with the parameter h is loses stability by
Hopf bifurcation at h = hH and locally asymptotically stable for h > hH.

We perturb the system (2.3) around L(U∗, V∗) as[
U(x, y, t)
V(x, y, t)

]
=

[
U∗
V∗

]
exp(λt) . (3.4)

The characteristic equation for the growth rate λ is as follows, where λ refers to the rate of perturbation
growth. As a result of the replacement of (3.4) into (2.3), the growth rate’s characteristic equation “(λ)”
is as follows:

det(J1) =

∣∣∣∣∣∣ j11 − λ j12

j21 j22 − λ

∣∣∣∣∣∣ = 0. (3.5)

Hence
λ2 − λj11 − j12j21 = 0. (3.6)

Both j12j21 and j11 may be easily verified as negative. As a result, the two roots λ1,2 have their own
negative real components. The completion of the proof is done accordingly. □

In the following, the stability of L(U∗, V∗) is to be examined in system (2.5) with no cross–diffusion
term d3, having the following,

∂U
∂t
− d1∇

2U − d2∇
µUV = U(1 − U) −

UV
U + h

, (x, y) ∈ Ω, t > 0,

∂V
∂t
= C

UV
U + h

− DV, (x, y) ∈ Ω, t > 0,

∂U
∂n
=
∂V
∂n
= 0, (x, y) ∈ ∂Ω

U(x, y, 0) > 0, V(x, y, 0) > 0, (x, y) ∈ Ω. (3.7)
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Theorem 3.2. Let’s say the wave number vector is ν = (ν1, ν2), and the wave number is ν = |ν|. If
D , C, then L(U∗, V∗) of system (3.7) is asymptotically and locally stable without the cross-diffusion
factor d3.

Proof. The system (3.7) is perturbed about L(U∗, V∗) as follows:[
U(x, y, t)
V(x, y, t)

]
=

[
U∗
V∗

]
exp(λt+i(ν1 x+ν2y)), (3.8)

in which λ refers to the perturbation growth rate. By the substitution of (3.8) into (3.7), we get

det(J2) =

∣∣∣∣∣∣ j11 − λ − d1k2 − d2|ν|
µV∗ j12 − d2|ν|

µU∗
j21 j22 − λ

∣∣∣∣∣∣ = 0. (3.9)

The formulae for j11, j12, j21 and j22 may be discovered in (3.1). As a result, the characteristic equation
becomes

λ2 + λTν + hν = 0, (3.10)

in which

Tν = −
(
j11 − ν

2d1 − |ν|
µ(d2V∗)

)
hν =

(
j21d2U∗

)
|ν|µ − j12j21.

Clearly, hν and Tν are both positive. As a result, the two roots λ1,2 have their own negative real
components. The completion of the proof is done accordingly. □

The perturbation all around homogeneous steady state L(U∗, V∗) for system (2.5) as[
U(x, y, t)
V(x, y, t)

]
=

[
U∗
V∗

]
exp(λt+i(ν1 x+ν2y)) . (3.11)

By the substitution of (3.11) into (2.5), we get

det(J3) =

∣∣∣∣∣∣ j11 − λ − d1k2 − d2|ν|
µV∗ j12 − d2|ν|

µU∗
j21 − d3|ν|

µV∗ j22 − λ − d3|ν|
µU∗

∣∣∣∣∣∣ = 0. (3.12)

Hence, the characteristic equation is
λ2 + λTν + hν = 0, (3.13)

in which

Tν = −
(
j11 − ν

2d1 − |ν|
µ(d2V∗ + d3U∗)

)
,

hν = (d1d3U∗)ν2|ν|µ +
(
j12d3V∗ − j11d3U∗ + j21d2U∗

)
|ν|µ − j12j21.
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Checking that Tν is positive is easy. Regarding d3 as the bifurcation parameter, we investigate the
Turing bifurcation threshold for ν ≡ νT at d3 = dT

3 such that hT
ν = 0. The hν-derivative is assessed in

regard to νµ at ν = νT , and using dhν
dνµ

∣∣∣
ν=νT
= 0, one can obtain νT =

√
µ

2+µ

(
j11d3U∗−j12d3V∗−j21d2U∗

d1d3U∗

)
. Through

the substitution of the value of νT in hν it is possible to find the value of d3 such that hν < 0 suggesting
that the cross–diffusion term d3 alters an equilibrium point’s stability in the way presented in Figure 1.
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Figure 1. Illustration of hν versus d3, where µ = 1.5, h = 0.45, D = 0.8, C = 2, d1 = 0.1,
d2 = 0.1.

When j11 + j22 < 0, j11j22 − j12j21 > 0 and d3 < dT
3 , the homogeneous steady state L(U∗, V∗) is stable

in the presence of spatiotemporal or heterogeneous perturbation. When j11j22 − j12j21 > 0, j11 + j22 < 0
and d3 > dT

3 , the homogeneous steady state L becomes unstable.
For the model parameters µ = 1.5, h = 0.45, D = 0.8, d1 = 0.1, d2 = 0.1, C = 2 and dT

3 > d3 = 1 the
real component of the eigenvalue ”λ” becomes negative (Figure 2). For heterogeneous disturbances,
this implies the stability of a homogeneous stable state. When dT

3 < d3 is taken into account, the
matching curves (black, pink, blue, green) in Figure 2 show that inside the interval of |ν|, where the
system appears unstable to diversified perturbations and creates Turing patterns, the largest real fraction
of the eigenvalue is positive. However, we have no way of knowing which Turing patterns were chosen.
The stability of various forms of Turing patterns and also structural transformations among them will
be interpreted using the amplitude equations of Turing patterns at inception d3 = dT

3 .
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Figure 2. The system’s dispersion relations (2.5) in numerous forms.

4. Weakly nonlinear analysis

The system’s dynamics change very slowly near the Turing bifurcation threshold. The slow modes
get implicated in this condition, and the amplitude equations [39–41] may be used to analyze pattern
creation. We create amplitude equations and analyze the stability selection of various patterns by
employing multiple-scale perturbation assessment such as labyrinthine, squares, spots, and mixes of
stripes and spots. We take into consideration three pairs of active resonant modes (ν j, −ν j) ( j = 1, 2, 3)
and making angles of 2π/3 with |ν j| = νT [39, 41]. First, by putting the perturbations a = U − U∗ and
b = V − V∗ about L(U∗, V∗), we may construct the linearized version of model (2.5) as follow:

∂

∂t

(
a
b

)
= L

(
a
b

)
+

1
2

(
βaaa2 + 2βabab + βbbb2

γaaa2 + 2γabab + γbbb2

)
+

(
d2∇

µab
d3∇

µab

)
+

1
6

(
βaaaa3 + 3βaaba2b + 3βabbab2 + βbbbb3

γaaaa3 + 3γaaba2b + 3γabbab2 + γbbbb3

)
, (4.1)

in which L is the linear operator that is give as

L =
(
j11 + d1∇

2 + d2∇
µV∗ j12 + d2∇

µU∗
j21 + d3∇

µV∗ j22 + d3∇
µU∗

)
. (4.2)

The results of (2.5) can be expanded as follows (at the initiation of Turing instability):(
a
b

)
=

3∑
j=1

[
X j exp(iν j · r) + X j exp(−iν j · r)

]
, (4.3)

where X j, −X j are the relative amplitudes of the modes ν j, −ν j.
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We alter the bifurcation parameter d3 with a, b, t as close to the Turing bifurcation threshold as
possible by writing

a = ϵa1 + ϵ
2a2 + ϵa3 + · · ·,

b = ϵb1 + ϵ
2b2 + ϵb3 + · · ·,

t = t0 + ϵt1 + ϵ
2t2 + · · ·,

d3 = dT
3 + ϵd

(1)
3 + ϵ

2d(2)
3 + · · ·. (4.4)

This yields

L = LT + ϵ

(
0 0
∇µV∗ ∇µU∗

)
d(1)

3 + ϵ
2
(

0 0
∇µV∗ ∇µU∗

)
d(2)

3 + · · ·, (4.5)

where

LT =

(
j11 + d1∇

2 + d2∇
µV∗ j12 + d2∇

µU∗
j21 + dT

3∇
µV∗ j22 + dT

3∇
µU∗

)
. (4.6)

The amplitude, indicated by X j ( j = 1, 2, 3), is treated as a variable which shows slow change with
respect to time ∂X j

∂t = 0 [39, 41]. Thus,

∂X j

∂t
= ϵ
∂X j

∂t
+ ϵ2
∂X j

∂t
+ O(ϵ3). (4.7)

To derive the amplitude equations: Substituting (4.4) into (4.1) and collecting the like power
coefficients of ”ϵ”. The linear system at O(ϵ) is obtained as follows:

LT

(
a1

b1

)
= 0. (4.8)

Due to the fact that (a1, b1)t is the linear combination of the eigenvectors correlating to the eigenvalue
0, and LT is the system’s linear operator at the Turing bifurcation threshold. After solving (4.8), one
can get (

a1

b1

)
=

3∑
j=1

(
N
1

)
(Y j expiν j·r +c.c), (4.9)

where N = (d3ν
µ
T U∗)

j21−d3ν
µ
T V∗

and amplitude Y j of mode expiν j·r. At O(ϵ2), we obain

LT

(
a2

b2

)
=
∂

∂t1

(
a1

b1

)
− d(1)

3

(
0 0

V∗ U∗

)
∇µ

(
a1

b1

)
−

(
d2

dT
3

)
∇µ(a1b1)

−
1
2

(
βaaa2

1 + 2βaba1b1 + βbbb2
1

γaaa2
1 + 2γaba1b1 + γbbb2

1

)
=

(
Fx

Fy

)
. (4.10)

The Fredholm solvability criterion stipulates that to assure the nontrivial solution existence (4.10), on
the right side of Eq (4.10), the vector function ought to be orthogonal to the eigenvectors of the zero
eigenvalue of LT+ (LT+ stands for adjoint of LT ). The eigenvectors of the operator LT+ are(

1
M

)
expiν j·r +c.c. ( j = 1, 2, 3), in which M =

j11−d1ν
2
T−d2ν

µ
T V∗

dT
3 ν
µ
T−j12

. The condition of orthogonality
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is (1,M)
(

F j
x

F j
y

)
= 0, in which F j

x and F j
y denote the coefficients of expiν j·r term, in respective order.

For example, by the substitution of (4.9) into (4.10) and equation of the coefficient of expiν1·r, we get(
F1

x

F1
y

)
=

(
N
1

)
∂Y1

∂t1
− d(1)

3

(
0 0

V∗ U∗

)
(−νµT )

(
N
1

)
Y1 − N(−νµT )

(
d2

dT
3

)
2Ȳ2Ȳ3

−
1
2

(
β1

γ1

)
2Ȳ2Ȳ3, (4.11)

where (
β1

γ1

)
=

(
βaaN2 + 2βabN + βbb

γaaN2 + 2γabN + γbb

)
.

We obtain the following result when we use the solvability criterion.

(M + N)
(
∂Y1

∂t1

)
= −ν

µ
T d(1)

3 M(V∗N + U∗)Y1 +

(
(β1 +Mγ1) − (2NνµT )(d2 +MdT

3 )
)
Ȳ2Ȳ3. (4.12)

Taking the coefficients of expiν2·r and expiν3·r, we obtain the following relationships.

(M + N)
(
∂Y2

∂t1

)
= −ν

µ
T d(1)

3 M(V∗N + U∗)Y2 +

(
(β1 +Mγ1) − (2NνµT )(d2 +MdT

3 )
)
Ȳ3Ȳ1, (4.13)

(M + N)
(
∂Y3

∂t1

)
= −ν

µ
T d(1)

3 M(V∗N + U∗)Y3 +

(
(β1 +Mγ1) − (2NνµT )(d2 +MdT

3 )
)
Ȳ1Ȳ2. (4.14)

Equation (4.10) has the following solution:(
a2

b2

)
=

(
κ0
ℑ0

)
+

3∑
m=1

( (
κm
ℑm

)
expiνm·r +

(
κmm

ℑmm

)
expi2νm·r

)
+

(
κ12

ℑ12

)
expi(ν1−ν2)r

+

(
κ23

ℑ23

)
expi(ν2−ν3)r +

(
κ31

ℑ31

)
expi(ν3−ν1)r +c.c.. (4.15)

The substitution of Eq (4.15) into Eq (4.10) and collection of the coefficients of exp2iν j·r gives(
j11 − 22ν2

T d1 − 2µνµT d2V∗ j12 − 2µνµT d2U∗
j21 − 2µνµT d3V∗ j22 − 2µνµT d3U∗

) (
κ11

ℑ11

)
=

−

(
d2

dT
3

)
(−2µνµT )NY2

1 −
1
2

(
β1

γ1

)
Y2

1, (4.16)

that provides (
κ11

ℑ11

)
=

(
j11 − 22ν2

T d1 − 2µνµT d2V∗ j12 − 2µνµT d2U∗
j21 − 2µνµT d3V∗ j22 − 2µνµT d3U∗

)−1

×

(
2µνµT d2N − β1

2
2µνµT dT

3 N − γ1
2

)
Y1 ≡

(
ξx1

ξy1

)
Y2

1. (4.17)
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The coefficients of components of (4.15) involving exp0, expiνm·r and expi(ν1−ν2)·r are calculated similarly
and given as (

a0

b0

)
=

(
j11 j12

j21 j22

)−1 (
ν
µ
T d2N − β1

2
ν
µ
T dT

3 N − γ1
2

) (
|Y1|

2 + |Y2|
2 + |Y3|

2
)

≡

(
ξx0

ξy0

) (
|Y1|

2 + |Y2|
2 + |Y3|

2
)
, (4.18)

κm = Nℑn m = 1, 2, 3, (4.19)(
κ12

ℑ12

)
=

(
j11 − (

√
3νT )2d1 − (

√
3νT )µd2V∗ j12 − (

√
3νT )µd2U∗

j21 − (
√

3νT )µd3V∗ j22 − (
√

3νT )µd3U∗

)−1

×

(
(
√

3νT )µd2V∗d2N − β1
2

−(
√

3νT )µd2V∗dT
3 N − γ1

2

)
2Y1Ȳ2 ≡

(
ξx2

ξy2

)
2Y1Ȳ2. (4.20)

The coefficients of the components of (4.15) corresponding to expi(ν2−ν3)·r and expi(ν3−ν1)·r are obtained
by permuting the suffixes. At O(ϵ3), we obtain

LT

(
a3

b3

)
=

(
Gx

Gy

)
, (4.21)

in which (
Gx

Gy

)
=

 ∂a2
∂t1
+ ∂a1
∂t2

∂b2
∂t1
+ ∂b1
∂t2

 − d(1)
3

(
0 0

V∗ U∗

)
∇µ

(
a2

b2

)
− d(2)

3

(
0 0

V∗ U∗

)
∇µ

(
a1

b1

)
−

(
d2

dT
3

)
∇µ

(
a1b2 + a2b1

)
−

(
0

d(1)
3

)
∇µ(a1b1)

−
1
2

(
βaa(a1a2) + 2βab

(
a1b2 + a2b1

)
+ βbb(b1b2)

γaa(a1a2) + 2γab
(
a1b2 + a2b1

)
+ γbb(b1b2)

)
−

1
6

(
βaaaa3

1 + 3βaaba2
1b1 + 3βabba1b2

1 + βbbbb3
1

γaaaa3
1 + 3γaaba2

1b1 + 3γabba1b2
1 + γbbbb3

1

)
. (4.22)

The coefficients for expiν1·r can be found by collecting them from (4.22).(
G1

x

G1
y

)
=

 N
(
∂B1
∂t1
+ ∂Y1
∂t2

)
∂B1
∂t1
+ ∂Y1
∂t2

 + d(1)
3 ν
µ
T

(
0 0

V∗ U∗

) (
NB1

B1

)
+ d(2)

3 ν
µ
T

(
0 0

V∗ U∗

)

×

(
NY1

Y1

)
+ ν
µ
T

(
d2

dT
3

) (
(Nξy0 + ξx0 + Nξy1 + ξx1)|Y1|

2Y1 + (Nξy0 + ξX0

+ Nξy2 + ξx2)
(
|Y2|

2 + |Y3|
2)Y1 + 2N(Ȳ2b̄3Ȳ3N̄2)

)
+ 2νµT

(
0

d(1)
3

)
Ȳ2Ȳ3

−


((βaaN + βab)(ξx0 + ξx1) + (βabN + βbb)(ξy0 + ξy1))|Y1|

2 + ((βaaN + βab)
×(ξx0 + ξx2) + (βabN + βbb)(ξy0 + ξy2))(|Y2|

2 + |Y3|
2)|Y1| + β1(Ȳ2b̄3 + Ȳ3B̄2)

((γaaN + γab)(ξx0 + ξx1) + (γabN + γbb)(ξy0 + ξy1))|Y1|
2 + ((γaaN + γab)

×(ξx0 + ξx2) + (γabN + γbb)(ξy0 + ξy2))(|Y2|
2 + |Y3|

2)|Y1| + γ1(Ȳ2b̄3 + Ȳ3B̄2)


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−

( (
|Y1|

2 + |Y2|
2 + |Y3|

2)(βaaaN3 + 3βaabN2 + 3βabbN + βbbb
)(

|Y1|
2 + |Y2|

2 + |Y3|
2)(γaaaN3 + 3γaabN2 + 3γabbN + γbbb

) )
Y1. (4.23)

In the case of O(ϵ2), the Fredholm solvability criterion is used, we have (1,M)
(

G j
x

G j
y

)
= 0. In simplified

form, it gives

(M + N)
(
∂B1

∂t1
+
∂Y1

∂t2

)
= −ν

µ
T M(V∗N + U∗)(d(1)

3 B1 + d(2)
3 Y1) + E1(Ȳ2b̄3 + Ȳ3B̄2)

+ E2 ¯Y2Y3 − (B1|Y1|
2 + B2(|Y2|

2 + |Y3|
2))Y1, (4.24)

in which

β2 = βaaaN3 + 3βaabN2 + 3βabbN + βbbb,

γ2 = γaaaN3 + 3γaabN2 + 3γabbN + γbbb,

E1 = (β1 +Mγ1) − 2NνµT (d2 +MdT
3 ),

E2 = 2MNνµT d(1)
3 ,

B1 = −(νµT (d2 +MdT
3 )(Nξy0 + ξx0 + Nξy1 + ξx1) + (βaaN + βab +M(γaaN + γab))

× (ξx0 + ξx1) + (βabN + βbb +M(γabN + γbb))(ξy0 + ξy1) + (β2 +Mγ2)),
B2 = −(νµT (d2 +MdT

3 )(Nξy0 + ξx0 + Nξy2 + ξx2) + (βaaN + βab +M(γaaN + γab))
× (ξx0 + ξx2) + (βabN + βbb +M(γabN + γbb))(ξy0 + ξy2) + (β2 +Mγ2)).

The permutation of Y’s subscript can be used to determine the other two equations. Xm = ϵYm+ϵ
2bm+

O(ϵ3) can be used to extend the amplitude Xm (m = 1, 2, 3).
We can correlate the amplitude equation to X1 by using Xm expression and (4.7).

ℑ0
∂X1

∂t
= ηX1 + E3X̄2X̄3 − (G1|X1|

2 +G2(|X2|
2 + |X3|

2))X1, (4.25)

in which

η =
d3 − dT

3

dT
3

,

ℑ0 =
M + N

dT
3 ν
µ
T M(V∗N + U∗)

,

E3 =
E1 + µĒ2

dT
3 ν
µ
T M(V∗N + U∗)

,

Ē2 = −2MNνµT d(1)
3 ,

G1 =
B1

dT
3 ν
µ
T M(V∗N + U∗)

,

G2 =
B2

dT
3 ν
µ
T M(V∗N + U∗)

.
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The other two equations may be obtained in a similar way by permuting the subscript of X:

ℑ0
∂X2

∂t
= ηX2 + E3X̄3X̄1 − (G1|X2|

2 +G2(|X3|
2 + |X1|

2))X2, (4.26)

ℑ0
∂X3

∂t
= ηX3 + E3X̄1X̄2 − (G1|X3|

2 +G2(|X1|
2 + |X2|

2))X3. (4.27)

Stability analysis of amplitude equation

There are two parts to the amplitude Eq (4.25): a mode fm = |Xm| and a phaseΘm. By separating the
imaginary and real components and putting Xm = fm expiΘm into (4.25) the four real-valued differential
equations that proceed are generated.

ℑ0
∂Θ

∂t
= −E3

f21f
2
2 + f

2
2f

2
3 + f

2
3f

2
1

f1f2f3
sinΘ,

ℑ0
∂f1
∂t
= ηf1 + E3f2f3 cosΘ −G1f

3
1 −G2(f22 + f

2
3)f1,

ℑ0
∂f2
∂t
= ηf2 + E3f3f1 cosΘ −G1f

3
2 −G2(f23 + f

2
1)f2,

ℑ0
∂f3
∂t
= ηf3 + E3f1f2 cosΘ −G1f

3
3 −G2(f21 + f

2
2)f3, (4.28)

in which Θ1 + Θ2 + Θ3 = Θ.

Properties

The solution of the dynamical system (4.28) is found as follows:

(1) f1 = f2 = f3 = 0 is the stationary state, which is stable for η < η2 = 0. As a consequence, for
η > η2 we get a spatial pattern and for η < η2 we get a stable homogeneous steady state.

(2) The striped pattern produced by f1 =
√
η

G1
, 0, f2 = f3 = 0 is stable for η > η3 = E2

2
G1

(G2−G1)2 and
instability occurs for η < η3.

(3) The mixed state is given by f1 = |E2 |

G1−G2
, f2 = f3 =

√
η+G1f12

(G1+G2) , is always unstable.

(4) Hexagon pattern represented by f1 = f2 = f3 =
|E2 |±
√

E2
2+4(G1+2G2)η

2(G1+2G2) exists when η > η1 = −
E2

2
4(G1+2G2) .

The solution ρ =
|E2 |+
√

E2
2+4(G1+2G2)η

2(G1+2G2) is stable for η < η4 = E2
2

2G1+G2
(G2−G1)2 , otherwise unstable.

Therefore, the amplitude equations show how distinct patterns emerge when different thresholds of η
are achieved. At this point, we will look at the numerical simulation results and make a comparison
with the underlying theory in Section 4.

5. Numerical simulation

For the purpose of demonstrating the theoretical analysis, a numerical simulation is presented. To
verify our numerical approach with the space fractional reaction-diffusion model, we have used
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fractional exponential integrator methodology [8, 20, 27, 34]. Furthermore, in our simulation,
boundary constraints in the spatial domain are imposed to verify that Turing patterns are produced.
All the simulations were run at N = 60. The numerical graphs were made using the Matlab software.
The 2019b version of the Matlab was used for the numerical simulation.

Existence of hexagonal patterns can be seen from (4) where C = 3, D = 1, h = 0.45, µ = 1.5,
d3 = 6, d2 = 1 and d1 = 1 initially perturbed as a = 0.1 + 0.4 cos(y) sin(x), b = 0.5 + 0.1 cos(y) sin(x)
with iterations (i) i=50, (ii) i=60, (iii) i=70 and (iv) i=80 (see Figure 3).

Existence of big spots can be seen from (4) where C = 8, D = 2, h = 0.45, µ = 1.5, d3 = 10, d2 = 1
and d1 = 1 initially perturbed as a = 0.1 + 0.5 cos(y) cos(x), b = 0.1 + 0.5 cos( y

2 ) sin( x
2 ) with iterations

(i) i=60, (ii) i=100, (iii) i=120 and (iv) i=140 (refers to Figure 4).

Existence of small spots can be seen from (4) where C = 2, D = 0.8, h = 0.45, µ = 1.5, d3 = 4,
d2 = 0.1 and d1 = 0.1 initially perturbed as a = 0.5+ 0.1 cos(y) cos(x), b = 0.7+ 0.1 cos(y) cos(x) with
iterations (i) i=100, (ii) i=110, (iii) i=200 and (iv) i=350 (refers to Figure 5).

Existence of square patterns can be seen from (4) where C = 4, D = 0.5, h = 0.45, µ = 1.5, d3 = 10,
d2 = 1 and d1 = 1 initially perturbed as a = 0.1 + cos( y

2 ) cos( x
2 ), b = 0.1 + cos( y

2 ) cos( x
2 ) with iterations

(i) i=100, (ii) i=110, (iii) i=120 and (iv) i=140 (refers to Figure 6).

Existence of stripe patterns can be seen from (4) where C = 6, D = 2, h = 0.45, µ = 1.5, d3 = 2,
d2 = 0.1 and d1 = 0.1 initially perturbed as a = 0.1 + 0.1 sin2(x), b = 0.5 + 0.1 cos2(x) with iterations
(i) i=64, (ii) i=128, (iii) i=256 and (iv) i=512 (refers to Figure 7).
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Figure 3. Illustrations of hexagonal pattern.
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Figure 4. Illustrations for big spot patterns.
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Figure 5. Illustrations for small spot patterns.
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Figure 6. Illustrations for square patterns.
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Figure 7. Illustrations for stripe patterns.
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Cross-diffusion plays a crucial role in determining and selecting patterns in the spatio-temporal
extension of the model under consideration. In addition to random diffusion (known as self-diffusion)
of both species, cross-diffusion components are introduced to account for the influence of the
population density of one species on the movement of other species. Due to the effect of
cross-diffusion factors, the homogeneous stable state of the self-diffusion model, which is stationary
under heterogeneous perturbation, loses its stability and generates diverse patterns, such as big spot,
mixture of spots and stripes, and labyrinthine. Cross-diffusion changes the big spot pattern created by
the self-diffusion model into a homogeneous steady state or other patterns such as a mixture of big
spot and stripes as well as labyrinthine. This clarifies both the stabilizing and destabilizing effects of
the nonlinear cross-diffusion factors. In addition, when the self-diffusion coefficients are assumed to
be equal, the homogeneous stable state of the self-diffusion model loses its stability and creates spatial
patterns consisting of small spots, followed by a mixture of small spots and stripes, and finally
labyrinthine. As a result of cross-diffusion, the prey and predator populations display an inverse
connection, which is another significant finding in this instance.

6. Conclusions

Using amplitude equations, the impacts of super-cross diffusion on a system containing a
self-diffusive term have been explored through our study. Until linear or nonlinear
super-cross-diffusion terms are utilized in the systems, the self-diffusion approach does not yield
significant Turing pattern whenever the prey dependent functional responses are addressed. By using
the stability analysis, several criteria have been specified to assure the system’s Turing instability.
Under such conditions, the system will accommodate the Turing instabilities while producing the
related specified configurations. Multiple-scale perturbation analysis has also been done all around
Turing bifurcation boundary to obtain the amplitude equations used to analyze the stability of several
Turing patterns. These findings are mathematically verified and appear to be in good order. Hexagons,
huge spots, tiny spots, squares, and stripes are all produced with the inclusion of self and
super-cross-diffusion terms.
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