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Abstract: In this paper, we establish a new iterative process for approximation of fixed points for
contraction mappings in closed, convex metric space. We conclude that our iterative method is more
accurate and has very fast results from previous remarkable iteration methods like Picard-S, Thakur
new, Vatan Two-step and K-iterative process for contraction. Stability of our iteration method and data
dependent results for contraction mappings are exact, correspondingly on testing our iterative method
is advanced. Finally, we prove enquiring results for some weak and strong convergence theorems of a
sequence which is generated from a new iterative method, Suzuki generalized non-expansive mappings
with condition (C) in uniform convexity of metric space. Our results are addition, enlargement over
and above generalization for some well-known conclusions with literature for theory of fixed point.
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1. Introduction

Over the years, fixed point theory has been generalized in multi-directions by numerous
mathematicians. For detail, we recommend these books [3] and [15] to readers. However, if the
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existence of a fixed point is guaranteed for some mapping then to find the value of that fixed point
is not an easy task, that is why we use iterative methods for computing these. With the times,
mathematicians played a considerable role in this field, and it’s very hard to approach all of them
by time. The very important and famous Banach contraction theorem uses Picard iterative method (we
will denote “iterative process” by I.P throughout this paper) for approximation of fixed point. Few
more important iterative methods are Mann [22], Ishikawa [12], Agarwal [2], Noor [18], Abbas [1],
SP [19], S? [13], CR [7], Normal-S [23], Picard Mann [16], Picard-S [10], Thakur New [25], Vatan
Two-step [14] and so on. The qualities like “Fastness and Stability” show the vital role of an I.P
elevate to others. In [20], Rhoades proved for decreasing function the Mann iteration method converges
quicker than compared to Ishikawa iteration method while Ishikawa iterative processes are better than
compared to Mann iterative results for increasing function. Note that Mann I.P is not dependent on
primary guess (for detail see [21] ). [2], Agarwal et al. claimed that Agarwal I.P converges like Picard
I.P also having better results as compared to Mann I.P for contraction mappings. In [1], Abbas et
al. claimed that Abbas I.P converges quickly by comparing Agarwal I.P. In [6], Chugh et al. proved
that CR I.P is equal to and having faster results comparing above-mentioned mathematicians having
iterative processes of quasi-contractive operators in metric domain. Furthermore, mathematician [8]
performed better and advanced results as compared to previous results. This is the beauty of this
field. In this article, we introduce new iterative method also prove that our results are more stable and
faster. Our new iterative process converges faster than Picard-S I.P and hence faster than others. In this
paper some basic concepts and results are used. We also describe a brief summary of the existence of
the iterative process. We also prove strong and weak fixed point convergence theorems for Suzuki
generalized non-expansive mappings, which are generalizations of non-expansive and contraction
mappings. Furthermore, we use convex metric space as an underlying space. We show that new
iterative method has stability and faster convergence results relative to K-iterative process. We also
prove some weak and strong convergence results for Suzuki generalized non-expansive mappings with
respect to new iterative process satisfying condition (C).

1.1. Preliminaries

Assume that X be any non-empty set and d : X × X → R be a function such that

(i) d(i, j) ≥ 0,
(ii) d(i, j) = 0, i ⇐⇒ j,

(iii) d(i, j) = d( j, i),
(iv) d(i, k) ≤ d(i, j) + d( j, k)∀ i, j, k ∈ X.

Then (X, d) is named as metric space. Let (X, d) be a metric space and {an} be any sequence in X. Then
{an} converges to a ∈ X if for any sequence in ε > 0, there is a number n0 ∈ N such that, d(an, a) ≤ ε
for all n0 If {an} converges to a, then we can also write it as limn→0an = a. Suppose that (X, d) is a
metric space and {an} is any sequence with X. Then {an} is a Cauchy sequence if for any ε > 0, there
is a number n0 ∈ N and d (am, an) ≤ ε and n0 ≤ m, n. (X, d) is any metric space consider as complete
when every Cauchy sequence in X be convergent. Let a metric space X known as Opial condition when
every sequence {an} in X, then condition an → a implies that

limn→∞ inf d(an, a) < limn→∞ inf d(an, b) , ∀ a, b ∈ X,
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with b , a. Consider X is metric space, moreover I = [0, 1] any mapping like W : X × X × I → X be
a structure of convex for X when ∀, (a, b, ξ) ∈ X × X × I and v ∈ X we have

d (v,W (a, b, ξ)) ≤ ζd (v, a) + (1 − ξ) d (v, b) ,

then the metric space (X, d) mutually along with the convex structure W known as metric space and
express as (X, d,W). A convex metric (X, d,W) is also known as strictly convex when one of the
following condition is satisfied.
(i) For any i, j ∈ X and α ∈ [0, 1] then ∃ unique k ∈ X such that d (k, i) = αd (i, j) and d (k, j) =

(1 − α) d (i, j) .
(ii) For any i, j, k ∈ X with d (k,W (i, j, α)) = d (i, k) = d ( j, k) we have that i = j for α ∈ (0, 1) .

Let α : (0, 2]→ (0, 1] such that Limε→0α(ε) = 0 and α (2) = 1 then the convex metric space (X, d,W)
is also known as uniformly convex when any r > 0 and having r ∈ (0, 2] d

(
z,W

(
i, j, 1

2

))
≤ r (1 − α)

whenever d (k, i) ≤ r also d (k, j) ≤ r and r ≤ d (i, j) ε for any i, j, k ∈ X. Let X be a non-empty set and
τ be a collection of X such that
(I) κ , X ∈ τ;
(II) Arbitrary union of numbers of τ is in τ;
(III) Finite intersection of numbers of τ is also belong to τ then τ is topology on X and then (x, τ) is
called Topological space [4].

1.2. Geometry of convex metric spaces

The geometrical structure of the under discussion spaces perform a vital role in existence and
approximation of the fixed points of many different nonlinear mappings. Therefore, in that part, we
will highlight some important geometrical properties of the convexity of metric space [9].

(i) W (i, j, α) = W ( j, i (1 − α)) ∀ i, j ∈ X, α ∈ [0, 1] ,
(ii) d (W (i, j, α) ,W (i, j, β)) ≤ (α − β) d (i, j) ∀ ∈ X, (α, β) ∈ [0, 1] ,

(iii) d (W (i, j, α) ,W (i, k, α)) ≤ (1 − α) d ( j, k) ∀ i, j, k ∈ X, α ∈ [0, 1] ,
(iv) d (W (i, j, α) ,W (k, l, α)) ≤ (1 − α) d ( j, l) + αd (i, k) ∀ i, j, k, l ∈ X, α ∈ [0, 1] .

Assume that K be non-empty subset of any metric space X. Any mapping T : K → K is known as
contraction for ∃, θ ∈ (0, 1)

d (Ti,T j) ≤ θd (i, j),∀ i, j ∈ K.

Let (X, d) is a non-empty subset of a metric space X. A mapping T : C → C is said to be generalized
contraction if there exists 0 ≤ h ≤ 1 for

d (Ti,T j) ≤ h max[d (i, j), d(i,Ti), d ( j,T j), d (i,T j) + d ( j,Ti)],∀i, j ∈ C.

Let C be a non-empty subset of a metric space X. A mapping T : C → C is said to be non expansive
mapping if (Ta,Tb) ≤ d(a, b) for all a, b ∈ C. Let C be a non-empty subset of a metric space X. A
mapping T : K → K is known as Suzuki generalized non expensive mapping when satisfy the criteria
of condition (C) if ∀ i, j ∈ K we get

1
2

d (i, j) ≤ d (i, j)⇒ d (Ti,T j) ≤ d (i, j).
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1.3. Some basic results

Proposition 1.1. [17] Suppose that K is non-empty subset of any metric space X and T : K → K is
for every mapping. Then
(i) If T be non expansive so T satisfy condition (C).
(ii) If T satisfy condition (C) and having fixed point, so T be quasi-nonexpansive mapping.
(iii) If T satisfy condition (C), so

d (i,T j) ≤ 3d (Ti, i) + d (i, j) ∀ i, j ∈ K.

Lemma 1.1. Assume that K is any non-empty subset for metric space X. Moreover, T : K → K is
any mapping for Opial property. Assume T satisfy condition (C). If {in} converges weakly to z also
limn→∞d(Tin, in) = 0, then Tk = k. That is, I − T is demiclosed at zero.

Lemma 1.2. Assume that K is any weakly compact convex subset for uniformly convexity of metric
space X. Suppose that T is any mapping on K. Consider that T satisfy condition (C). So, T having a
fixed point.

Lemma 1.3. Assume X be any uniformly convexity in metric space and {tn} is real sequence also
providing 0 < u ≤ tn ≤ v < 1 ,for all n ≥ 1. Moreover, assume that {in} along with { jn} are two
sequences for X

limn→∞ sup in ≤ r, lim
n→∞

sup jn ≤ r,

and
lim
n→∞

sup d (tnin, (1 − tn) jn) = r,

and r ≥ 0. So,
limn→∞d(in, jn) = 0.

Suppose that G is any non-empty closed convex subset for any metric space X, and assume {in} is
any bounded sequence in X. When i ∈ X, we find that

r (i, {in}) = lim
n→∞

sup d(in, i).

Then asymptotic radius for {in} relative for G be providing as

r (G, {in}) = inf {r(i, {in}) : i ∈ G} ,

and asymptotic center for {in} relative for G be any set

B(G, {in}) = {i ∈ G : r (i, {in}) = r (G, {in})}.

This is called uniformly convex metric space, B(G, {in}) contain for fixed point.

Definition 1.1. [5] Let {un}
∞
n=0 and {vn}

∞
n=0 are two different fixed point iterative process sequences

which converge to some fixed point p and d (un, p) ≤ an and d (vn, p) ≤ bn for all n ≥ 0. If the
sequences {an}

∞
n=0 and {bn}

∞
n=0 converges to a and b respectively and limn→∞

d(pn,p)
d(qn,q) = 0, then we say that

{un}
∞
n=0 converges faster than {vn}

∞
n=0 to p.
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Definition 1.2. [11] Let {tn}
∞
n=0 is any aribitrary sequence for K. So, an iterative method in+1 =

f (T, in), converge fixed point F, is considered as T − stable may be stable with respect to T , When for
εn = d(tn+1, f (T, tn)), n = 0, 1, 2, 3, ..., we get limn→∞εn = 0 ⇐⇒ lim n→∞tn = F.

Lemma 1.4. [26] Let {λn}
∞
n=0 and {µn}

∞
n=0 be non-negative real sequences satisfying the following

inequality λn+1 ≤ (1 − ξn)λn + µn, where ξn ∈ (0, 1) f or all n ∈ N,Σ∞n=0 ξn = ∞ and µn
ξn
→ 0 as n → ∞,

then limn→∞λn = 0.

Lemma 1.5. [24] Let {ψn}
∞
n=0 be non-negative real sequence and suppose that ∃ , n0 ∈ N ,∀ n ≥ n0,

then the given inequality satisfies in+1 ≤ (1 − jn)in + jnφn, when jn ∈ (0, 1) ∀ n ∈ N,Σ∞n=0 jn = ∞ and
φn ≥ 0 ∀ n ∈ N, So 0 ≤ limn→∞ sup in ≤ limn→∞ sup φn.

1.4. Iterative processes

Overall in this portion we get n ≥ 0, (αn) and (βn) are real sequences in [0, 1], K be subset for
metric space X and T : K → K be any mapping. Let the iterative sequence denoted by {un} in this
section. Gursoy and Karakaya (2014) set up new iterative method which is said to be “Picard-S iterative
method” as follow:

u0 ∈ K,

wn = W(Tun, un, βn),
vn = W(Twn,Tun, αn),

un+1 = Tvn. (1)

The Picard-S iterative method may be utilized in the approximation of the fixed point for contraction
mappings. Moreover, theysolved one mathematical example, which resulted in the Picard-S iterative
method converging faster than others who have done outstanding work in this field. Afterward
Karakaya et al. in 2015 set up an advance iterative process, we knew it by the name of a new two-step
iterative method, they argued that the rate of convergence is better than Picard-S iterative process as
follows:

u0 ∈ K,

vn = T (W(Tun, un, βn)),
un+1 = T (W(Tvn, vn, αn)). (2)

Some time ago, Thakur et al. in 2016 defined a newly advanced iterative method to approximate of
fixed points, which is called Thakur New iterative process:

u0 ∈ K,

wn = W(Tun, un, βn),
vn = T (W(wn, un, αn)),

un+1 = Tvn. (3)

Lastly, Nawab Hussain, Kifayat Ullah and Muhammad Arshad established a new iterative method for
approximation of fixed point of contraction mapping which is said to be “K iterative process” defined
as:

u0 ∈ K,
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kn = W(Tin, in, βn),
jn = T (W(T jn,Tin, αn)),

in+1 = T jn. (4)

With the solution of example, they concluded that K iterative method is converging faster than Vatan
two-step iterative process, Picard, Mann, Ishikawa, Agarwal, Noor and Abbas iterative method by
any class for mappings. By motivation above we propose a new iteration process. By definition of
convexity of convex metric space d (W(i, j, α), k) ≤ d (i, j) + (1 − α) d ( j, k) iterative process

i ∈ K,

kn = T [W(Tin, in, βn],
jn = T [W(Tkn,Tin, αn)],

in+1 = T jn. (5)

We will conclude our iteration process (5) is stable and having faster rate of convergence than others
iteration processes.

2. Main results

We will prove the uniqueness and convergence of fixed points for contraction mapping generated by
a new iterative process in convex metric space. Also, we will show that our advanced iterative process
is stable and having faster convergence results than previously defined iterative processes.

2.1. Convergence analysis of new iterative process for contraction mapping

Theorem 2.1. Suppose that K is any non-empty closed convex subset for a convex metric space X and
T : K → K is a contraction mapping. Assume that {in}

∞
n=0 is an iterative sequence generated from the

real sequences {αn} and {βn} in [0, 1] satisfy Σ∞n=0αnβn = ∞. So, {in}
∞
n=0 converge strongly to an unique

fixed point for T .

Proof. We will prove that in → l for n→ ∞ from (5) we get

d(in, l) = d[T (W(Tin, in, βn)), l]
≤ θd [W(Tin, in, βn), l]
≤ θ[βnd (Tin, l) + (1 − βn)d(in, l)]
≤ θ[βnθd (in, l) + (1 − βn)d(in, l)]
≤ θ[θβn + (1 − βn)]d(in, l)
≤ θ[1 − (1 − θ)βn]d(in, l). (6)

Similarly,

d( jn, l) = d [T (W (Tkn,Tin, α
ı
n), l]

≤ θd[W(Tkn,Tin, α
ı
n), l]

≤ θ[αınd (Tkn, l) +
(
1 − αın

)
d (Tin, l)]
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≤ θ[αınθd (kn, l) +
(
1 − αın

)
θ d(in, l)]

≤ θ[αınθ
2(1 − (1 − θ)βn) +

(
1 − αın

)
θd (αın, l)]

≤ θ2[(αınθ(1 − (1 − θ)βn) +
(
1 − αın

)
) d (aın, l)]

≤ θ2[(αınθ − α
ı
nθ(1 − θ)βn + 1 − αın)d(in, l)]

≤ θ2[(1 − (1 − θ)αın − (1 − θ)αınβnθ)d(in, l)]
≤ θ2[(1 − (1 − θ)αın(1 + βnθ)d(in, l)]. (7)

Hence

d(in+1, l) = d(T jn, l)
≤ θd( jn, l)
≤ θ3[1 − (1 − θ)αın(1 + βnθ)]d(in, l). (8)

Repetition of above processes gives the following inequalities

d(in+1, l) ≤ θ3[1 − (1 − θ)αn(1 + βnθ)]d(in, l),
d(in, l) ≤ θ3[1 − (1 − θ)αn−1(1 + βn−1θ)]d(in−1, l),

d(in−1, l) ≤ θ3[1 − (1 − θ)αn−2(1 + βn−2θ)]d(i, j),
d(i1, l) ≤ θ3[1 − (1 − θ)α0(1 + β0θ)]d(i0, l), (9)

from (9) we can easily get

d(in+1, l) ≤ d(i0 − l)θ3(n+1)Πn
k=0(1 − (1 − θ))ik(1 + βkθ)), (10)

where(1 − (1 − θ))αık(1 + βkθ) < 1 the reason is that θ ∈ (0, 1) and αınβn ∈ [0, 1]∀n ∈ N, So we identify
that 1 − i ≤ %−a∀i ∈ [0, 1]

d(in+1, l) ≤ d(i0, l)θ3(n+1)%−(1−θ)Σn
k=0αk(1 + βkθ), (11)

taking limit on both sides of (11) we get limn→∞d(in, l) = 0 i.e., in → l for n→ ∞ as required. �

Theorem 2.2. Assume that K is any non-empty closed convex subset of metric space X and T : K → K
is a contraction mapping. Suppose that {bn}

∞
n=0 is an iterative sequence generated by (5) having real

sequence
{
αın

}∞
n=0 and {βn}

∞
n=o in [0, 1] satisfying Σ∞n=0α

ı
nβn = ∞. So, iterative method (5) are T-stable.

Proof. Assume {sn}
∞
n=0 ⊂ X is any aribitrary sequence in K. Suppose the give sequence generated (5)

is a bn+1 = f (T, an) converge to unique fixed point F. Moreover, εn = d(sn+1, f (T, sn)) we will conclude
that limn→∞ εn = 0 ⇐⇒ limn→∞sn = F. Let limn→∞ εn = 0 we get

(sn+1, F) ≤ d(sn+1, f (T, sn)) + d( f (T, sn), F)
= εn + d((Tbn, F)
≤ εn + θd((bn, F)
≤ θ3(1 − (1 − θ)αın(1 + βnθ)) d (sn, F) + εn.
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since θ ∈ (0, 1) αın, βn ∈ [0, 1]∀n ∈ N and limn→∞ εn = 0 so the above inequality together with
Lemma 1.4 leads to limn→∞ d(sn, F) = 0. Hence limn→∞ sn = F.

Conversely, let limn→∞ sn = F we have

εn = d(sn+1, f (T, sn))
≤ d(sn+1, p) + d( f (T, sn), F)
≤ d(sn+1, p) + θ3(1 − (1 − θ)αn (1 + βnθ))d(sn, F).

This implies that limn→∞εn = 0. �

Theorem 2.3. Suppose that K be any non-empty and closed convex subset of a metric space X.
Moreover, T : K → K is any contraction mapping having fixed point F. For given u0 = x0 ∈ C, let
{un}

∞
n=0 and {xn}

∞
n=0 are iteration sequences generated by (5) respectively, having real sequences{αn}

∞
n=0

and {βn}
∞
n=0 in [0, 1] satisfy assumption (i) α ≤ αn < 1 and β ≤ βn < 1, for some α, β > 0 as well as ∀

n ∈ N. So, {xn}
∞
n=0 converge to F faster than {un}

∞
n=0.

Proof. By (10) of Theorem 2.2 we get

d (xn+1, F) ≤ d(x0, F)θ3(n+1)Πn
k=0(1 − (1 − θ)αk(1 + βkθ). (12)

The following inequality is due to Definition 1.1 and (8) which is obtained from (5) also converging to
unique fixed point F

d(un+1, F) ≤ d(u0, F)θ2(n+1)Πn
k=0(1 − (1 − θ)αk(1 + βkθ), (13)

together with assumption (i) and (12)⇐⇒

d(xn+1, F) ≤ d(x0, F)θ3(n+1)Πn
k=0(1 − (1 − θ)α(1 + βθ))

= d(x0, F)θ3(n+1)[1 − (1 − θ)α(1 + βθ)]n+1. (14)

Similarly, (13) together with assumption (i) leads to

d(un+1, F) = d(u0, F)θ2(n+1)[1 − (1 − θ)α(1 + βθ)]n+1. (15)

Define

an = d(x0, F)θ3(n+1)[1 − (1 − θ)α(1 + βθ)]n+1,

bn = d(u0, F)θ2(n+1)[1 − (1 − θ))α(1 + βθ)]n+1. (16)

Then

Ψn =
an

bn
= θn+1.

Since

lim
n→∞

Ψn + 1
Ψn

= lim
n→∞

θn+2

θn+1 = 1 > θ.

Applying the ratio test
Σ∞n=0Ψn < ∞.

From (16) we have
lim
n→∞

an

bn
= lim

n→∞
Ψn = 0.

This is⇐⇒ {xn}
∞
n=0 having quicker result as compare to {un}

∞
n=0. �
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Now we are able to prove following data dependence results.

Theorem 2.4. Assume that T̃ is an approximate operator for a contraction mapping T . Consider,
{in}

∞
n=0 is an iteration sequence is generated by (5) of T and define the iteration sequence { j̃n}

∞
n=0 which

is given below

ĩ0 ∈ K,

k̃n = T̃ [W (T̃ ĩn, ĩn, γn, )],
j̃n = T̃ [W(T̃ k̃n, T̃ ĩn, αn, )],

ĩn+1 = T̃ j̃n. (17)

With real sequences {αn}
∞
n=0 and {γn}

∞
n=0 in [0, 1] satisfying

(i) 0.5 ≤ αnγn, ∀, n ∈ N and,
(ii) Σ∞n=0αnγn = ∞ when T p = p also T̃ p̃ =p̃ and limn→∞ x̃n = p̃. Then we have

d(p, p̃) ≤
7ε

1 − θ
.

When ε > 0 be any fixed number.

Proof. See from (5) and (17) that

d(kn, k̃n) = d [T (W (Tin, in, γn),T (W (T̃ ĩn, ĩn, γn))]
≤ d [T (W (Tin, in, γn),T (W (T̃ ĩn, ĩn, γn))]

+d [T (W (T̃ ĩn, ĩn, γn)), T̃ (W (T̃ ĩn, ĩn, γn))]
≤ θ[(1 − (1 − θ) γn)d(in, ĩn) + γnθ] + ε. (18)

Using (18), we get

d( jn, j̃n) = d [T (W(Tkn,Tin, αn), T̃ (W (T̃ ĩn, T̃ k̃n, αn))]
≤ θ2[1 − (1 − θ)αn(1 + θγn)]d(in, ĩn) + θε(1 + αnγnθ) + ε. (19)

By using (19), we get

d(in+1, ĩn+1) = d(T jn, T̃ j̃n)
≤ θd( jn, j̃n) + ε

≤ [1 − (1 − θ)αn(1 + θγn)]d (in, ĩn)
+αnγnθε + 3 (1 − αnγn + αnγn) ε, (20)

by assumption (i) we get

1 − αnγn ≤ αnγn,

d(in+1, ĩn+1) ≤ [1 − (1 − θ)αn(1 + θγn)]d(in, ĩn)

+αnγn (1 − θ)
7ε

1 − θ
. (21)
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Let Ψn = d(in, ĩn), φn = αnγn (1 − θ) , φn = 7ε
1−θ then from Lemma 1.5 together with (20) we get

0 ≤ lim
n→∞

sup d(in, ĩn) ≤ lim
n→∞

sup
7ε

1 − θ
. (22)

Since by Theorem 2.1 we have limn→∞in = p and assumption we get the results limn→∞̃in = p̃ apply all
of these simultaneously with (22) we have

d(p, p̃) ≤
7ε

1 − θ
.

As required. �

2.2. Convergence result for suzuki generalized non expansive mapping for condition (C)

In this section, we prove some weak and strong convergence theorems for a sequence generated by
a new iteration process for Suzuki type generalized non-expansive mappings with condition (C) with
uniformly convex metric space.

Lemma 2.1. Assume that K is non-empty and closed convex subset of metric space X. Moreover,
consider T : K → K is mapping which satisfy the condition (C) for F(T ) , 0. To arbitrary chosen
a0 ∈ K, consider the sequence {an} is generated by (5), so, limn→∞d(an, s) exists on any s ∈ F(T ).

Proof. Suppose that s ∈ F(T ) also c ∈ K. Since T satisfies condition (C)

1
2

d (s,T s) = 0 ≤ d(s, c)⇔ d(T s,Tc) ≤ d(s, c),

so by using Proposition 1.1(ii) we have the result as

d(cn, s) = d(T [W (Tan, an, βn)), s]
≤ d[W(Tan, an, βn), s]
≤ γnd(Tan, s) + (1 − γn)d(an, s)
≤ γnd(an, s) + (1 − γn)d(an, s)
≤ γnd(an, s) + d(an, s) − γnd(an, s)
≤ d(an, s), (23)

by using (23) we get

d(bn, q) = d [T (W (Tcn,Tan, α
ı
n)), s]

≤ d (W (Tcn,Tan, α
ı
n), s)

≤ αınd (Tcn, s) + (1 − αın)d(Tan, s)
≤ αınd(cn, s) + (1 − αın)d(an, s)
≤ αınd(an, s) + d(an, s) − αınd (an, s)
= d(an, s). (24)

Same way using (24) we attain

d(un+1, s) = d(Tvn, s) ≤ d(vn, s) ≤ d(an, s)⇒ d(an, s) (25)

be bounded and decreasing ∀ s ∈ F (T ) . Therefor, limn→∞ d(an, s) exist as required. �
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Theorem 2.5. Assume that K is any non-empty closed convex subset for a uniformly convex metric
space X, and consider that T : K → K is a mapping which satisfy the condition (C). For arbitrary
chosen i0 ∈ C, suppose that the sequence {in} is generated by (5) ∀ n ≥ 1, and {αn} and {βn} be sequence
for some real numbers in [i, j] and having few points i, j along with 0 < i ≤ j < 1. So, F(T ) , θ ⇐⇒
{in} is bounded and limn→∞d(Tin, in) = 0.

Proof. Suppose that F(T ) , φ also consider that q ∈ F(T ). Then, from Lemma 2.1, limn→∞d(in, q)
exists and {in} are bounded.

limn→∞d(in, q) = r. (26)

By (23) and (26), we get
lim
n→∞

sup d(kn, q) ≤ lim
n→∞

sup d(in, q) = r, (27)

by Proposition 1.1(ii)
lim
n→∞

sup d(Tin, q) ≤ lim
n→∞

sup d(in, q) = r, (28)

in other way

d(in+1, q) = d(T jn, q)
≤ d( jn, q)
= d [T (W (Tkn,Tin, αn)), q]
≤ (1 − αn)d(Tin, q) + αnd(Tkn, q)
≤ (1 − αn)(inq) + αnd(kn, q)
≤ (in, q) − αnd(in, q) + αnd(kn, q)

this implies

d (in+1, q) − d (in, q)
αn

≤ d(kn, q) − d(in, q)

d(in+1, q) − d(in, q) ≤
d(in+1, q) − d(in, q)

αn
≤ d(kn, q) − d(in, q)

=⇒ d(in+1, q) ≤ d(kn, q)

therefore
r ≤ lim

n→∞
inf d(kn, q), (29)

from (27) and (29) we get

r = d(kn, q)
= lim

n→∞
d(T (W (Tin, in, βn)), q)

= lim
n→∞

d( W( Tin, in, βn)), q)

≤ lim
n→∞

[(βnd (Tin − q) + (1 − βn))(in, q)], (30)

from (26), (28) and (30) together we have limn→∞ d(Tin, in) = 0.Conversely, suppose {in} be bounded

lim
n→∞

d(Tin, in) = 0.
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Consider q ∈ (c, {in}) we get

r (Tq, {in}) = lim
n→∞

sup d(in,Tq)

≤ lim
n→∞

sup[3d(in − Tq + d(in, q)]

≤ lim
n→∞

sup d(in, q)

= r (q, {in})

=⇒ Tq ∈ A(K, {in}).

So X be a uniformly convex, A(K, {in}) be a singleton, so we get the results Tq = q, F(T ) , φ. Hence
proved the theorem. �

Theorem 2.6. Suppose that K is any non-empty closed convex subset for a uniformly convexity for
metric space X, also having opial property, consider that T : K → K is any mapping which satisfies
the condition (C). By arbitrary chosen a0 ∈ C, consider that a sequence {an} is generated from (5)
∀ n ≥ 1, {δn} also {ηn} are two different sequences having real numbers with [i, j] by some i, j along
with 0 < i ≤ j < 1 such that F(T ) , φ. So, {in} converges weakly to any fixed point for T .

Proof. As F(T ) , φ, so from Theorem 2.5 it is obvious that {an} is not only bounded and
limn→∞d(Tan, an) = 0. As X be uniformly convex so by reflexive, from Eberlin’s theorem ∃ a
subsequence {an j} of {an} which converges weakly to some points q1 ∈ X. So C is closed and convex,
by Mazur’s theorem q1 ∈ C and using Lemma 2.1, q1 ∈ F(T ). At once, we prove the {an} converges
weakly by q1. Actually, if this is false, so there may be have a subsequence {ank} for {an}, {ank} converges
weakly for q2 ∈ C also q2 , q1. From Lemma 1.1, q2 ∈ F(T ). So limn→∞d(an, p) exists ∀ p ∈ F(T ).
From Theorem 2.5 and by Opial’s property, we get the results

lim
n→∞

inf d(an, q1) = lim
j→∞

inf d(an j, q1)

< lim
j→∞

inf d(an j, q2)

= lim
n→∞

inf d(an, q2)

= lim
k→∞

inf d(ank, q2)

< lim
k→∞

inf d(ank, q1)

= lim
n→∞

inf d(an, q1),

which is contradiction. So q1 = q2. =⇒ {an} converges weakly to a fixed point for T . �

Theorem 2.7. Suppose that K is a non-empty compact closed convex subset for a uniformly convex
metric space X, also consider T : K → K is mapping which satisfies the condition (C). By arbitrary
chosen m0 ∈ K, consider the sequence {mn} is generated from (5) ∀, n ≥ 1, also {δn} and {ηn} are
two sequences of real numbers in [i, j] by some i, j having condition 0 < i ≤ j < 1. Therefor, {mn}

converges strongly to fixed point for T .

Proof. From Lemma 1.2, take F(T ) , φ also using Theorem 2.5 we obtained the results
limn→∞d(Tmn,mn) = 0. Then K is compact, so ∃ any subsequence {mnk} for {mn} and {mnk} converges
strongly to q and q ∈ K. By Proposition 1.1(iii), we get

d(mnk − Tq) ≤ 3d(Tmnk,mnk) + d(mnk, q),∀n ≥ 1.
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Assume that k → ∞, also we obtained Tq = q, and i.e., q ∈ F(T ). Since, from Lemma 2.1,
limn→∞d(mn, q) hold for every q ∈ F(T ), then mn converge strongly to q. Senter and Dotson established
a notation for a mappings which satisfy the condition (I) . A mapping T : K → K is knwon as to satisfy
condition (I), if ∃ an increasing function f : [0,∞)→ [0,∞) along with f (0) = 0 and f (r) > 0 ∀ r > 0
and d(m,Tm) ≥ f (d(m, F(T ))) ∀, m ∈ K, also d(m, F(T )) = infq ∈ F(T )d(m, q). �

Theorem 2.8. Suppose that K is any non-empty closed convex subset for uniformly convex metric
space X, also consider that T : K → K be any mapping which satisfy condition (C). By arbitrary
chosen i0 ∈ K, and consider that sequence {in} is generated by (5) ∀ n ≥ 1, ,{αn} and {βn} are two
different sequences having real numbers along with [l,m] for some l,m with 0 < l ≤ m < 1 such that
G(T ) , φ. If T satisfy condition (I), so {in} converges strongly to fixed point T .

Proof. From Lemma 2.1, we obtained the limn→∞d(in, q) holds ∀ q ∈ G(T ) and limn→∞d(in,G(T )) hold.
Assume that limn→∞d(in, q) = r for 0 ≤ r if r = 0 so we attain following results. Suppose that 0 < r, by
Proposition 1.1 and condition (I),

f (d(in,G(T ))) ≤ d(Tin, in). (31)

So G(T ) , φ, so from Theorem 2.6, we get

lim
n→∞

d(Tin, in) = 0. (32)

So (31) implies that
lim
n→∞

f (d(in,G(T ))) = 0.

So f is increasing function, so from (32), we get

lim
n→∞

d(in,G(T )) = 0.

So, we get the subsequence {ink} of {in} and a sequence { jk} ⊂ G(T )

d(ink, jk) <
1
2k ,

for all k ∈ N, so using Lemma 2.1, from (25) we get

d(ink+1, jk) ≤ d(ink, jk) <
1
2k

d( jk+1, jk) ≤ d( jk+1, ik+1) + d (ik+1, jk)

≤
1

2k+1 +
1
2k ,

1
2k−1 → 0 as k → ∞.

It is proved that { jk} are Cauchy sequence in G(T ) and it also converges to any point q. Since G(T ) be
closed, so, q ∈ G(T ) also {ink} converges strongly to p. So limn→∞d(in, q) exists, we have in → q ∈ G(T ).
Hence proved. �
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