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1. Introduction

For the first time COVID-19 was diagnosed in Wuhan, China, in December 2019. The virus gene
testing reveals that it is a beta coronavirus directly associated with SARS. A functional COVID-19 case
is defined as a person who has exhibited clinical manifestations which are diagnostic of COVID-19 [1–
4]. This infection is widespread and had an impact on the patients. Many researchers are investigating
the effects of COVID-19 in a range of contexts. In the field, there are still some mathematical models
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that claim to represent the process of COVID-19 growth. COVID-19 is used by several studies as a
feature extraction method (see [5–12, 30]).

A significant method for controlling the pandemic among the population is infectious model
research. Also studding mathematical models of fractional orders, solving the models and analysis of
results are among challenging problems. Non-singular kernels such as Caputo-Fabrizio (Short Denote:
CF ) fractional derivatives had also been included in the fractional function formulation. A whole effect
of memory is described by utilizing a non-singular kernel and other benefits achieved with the modern
definition known as CF fractional derivative.

Fractional calculus arose from a question posed to Leibnitz by L’Hospital concerning his
generalization of the meaning of the notation dny

dxn for the derivative of order n whn n = 1
2 . In his

reply, dated September 30, 1695, Leibnitz wrote to L’Hospital, “This is an apparent paradox from
which one-day useful consequences will be drawn”.

Recent researches have focused generally on fractional differential equations, and there has been
significant progress in this field. This concept has existed for a long time and is nearly as old as
differential equations. Fractional order differential equations have recently proven to be a useful
problem in many fields of science and engineering [31–33]. Indeed, electromagnetic technology has
a lot of applications in electrochemistry, regulation, etc. In recent years, a lot of researchers have
contributed to fractional derivative operators for various differential equations (see [34–39]). In 2021,
Khan et al. were concerned with the existence of results and stability analysis for a nabla discrete
ABC fractional COVID-19 [7, 14–16]. In the same year, Li et al. concerned a vigorous study of the
fractional order COVID-19 model in ABC derivatives. In 2022, Khan et al. [43] studied a COVID-19
model in the fractal-fractional sense of operators for the existence of a solution in Ulam stability and
related papers (see also [13, 17, 19, 20, 40–42, 44]).

The main objective of this study is to define the model variables that have the highest impact
on early disease transmission when vaccination and medication are used. As far as we are aware,
this paper offers the first comprehensive mathematical characterization of the qualitative dynamics
of COVID-19 with an ineffective vaccine and treatment by the variable fractional derivative, which
follows the CF fractional derivative. We also discussed and theoretically evaluate a mathematical
model of the COVID-19 transmission mechanism, combining important dynamics of the illness with
two important treatment measures: immunization of susceptible people and recovery/treatment of
afflicted people. Along with more unique and original innovations for the intended COVID-19 system,
applying Banach’s fixed point idea, the existence and uniqueness of the solution are discussed to prove
the Hyers-Ulam stability of the innovative COVID-19 model.

Most of them have mentioned that “the main advantage of this kind of operator is that the singular
power-law kernel is now replaced by a non-singular kernel,” which is easier to use in theoretical
analysis, numerical calculations, and real-world applications. But we believe that the singular power-
law kernel is very easy to use in the mentioned above calculations and applications.

2. Preliminaries

In this section, we present some basic definitions and lemmas in CF which used throughout the
paper.

Definition 2.1. A fuzzy number Υ is defined on a set of real numbers which satisfies the
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following properties,

(i) Υ is convex, i.e., Υ[βa1 + (1−β)a2] ≥ min[Υ(a1),Υ(a2)], for all a1,a2 ∈ R and β ∈ [0,1],
(ii) Υ is normal i.e., there exists an a ∈ R such that Υ(a)=1,

(iii) Υ is piecewise continuous.

Definition 2.2. Let x,y ∈ M and β ∈ R, then the α-cut set of fuzzy number is closed and bounded
interval x = (x(α), x(α)) , y = (y(α),y(α)) and β > 0. Then the operation on fuzzy numbers,

(i) Addition: x⊕ y = (x(α) + y(α), x(α) + y(α)).
(ii) Subraction: x	 y = (x(α)− y(α), x(α)− y(α)).

(iii) Scalar multiplication:

k.v =

(βx,βx), λ ≥ 0,
(βx,βx), λ < 0,

(2.1)

if β = −1 then β� x = −x.

Definition 2.3. Consider mapping Γ : M ×M → R and Γ(x,y) = supζ∈[0,1]max{|x(ζ)− y(ζ) |, |x(ζ)−
y(ζ) |}, be the Hausdorff distance between fuzzy number. where, [x]ζ = [x(ζ), x(ζ)] and [y]ζ =

[y(ζ),y(ζ)].
Then Γ is a metric in M and following criteria.
(i) Γ(x + z,y + z) = Γ(x,y), for all x,y,z ∈ M,
(ii) Γ(kx,ky) = |k|Γ(x,y), for all k ∈ R, x,y,z ∈ M,
(iii) Γ(x + y,z + H) ≤ Γ(x,z) +Γ(y,H), for all x,y,z,H ∈ M.
Then (Γ,M) is complete metric space.

Definition 2.4. Let A and B be two fuzzy sets with C ⊆ R and consider a two variable function M :
A×B→C. Let µA(a),µB(b) and µC(c) be their associate member function,

(i) In addition: Let C = M(a,b) = a + b. Then C = {c|c = a + b;a ∈ A,b ∈ B} and µC(c) = ∨c=a+b =

{µA(a)∧µB(b)}.
(ii) In α-cut notation:

(C)α = M[(A)α, (B)α], then (c)α = (A)α+ (B)α.
For real numbers S 1 and S 2, S 1∧S 2 = min{S 1,S 2} and S 1∨S 2 = max{S 1,S 2}.

Definition 2.5. The Laplace transform of fuzzy valued function f (t) is defined as

F(S ) = L[ f (t)] =

∞∫
0

e−st f (t) = lim
h→∞

h∫
0

e−st f (t)dt.

Definition 2.6. The unit step function which is called Heavyside’s unit function is defined as

µ(t) =

0 i f t < 0,
1 i f t ≥ 0.
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Definition 2.7. The variable caputo derivative of function f (t) ∈ [0,1) is defined as

CF
0 Dϕ(t)

t f (t) =
1

Γ(1−ϕ(t))

t∫
0

1
(t− x)ϕ(t) f

′

(x)dx. (2.2)

Definition 2.8. For f (t) ∈ H1([0,T ]), and ϕ(t) ∈ [0,1), the ϕ(t)th-order variable of CF derivative of
f (t) in the Caputo sense is

CF
0 Dϕ(t)

t f (t) =
M(ϕ(t))
1−ϕ(t)

t∫
0

e

(
−ϕ(t)(t−a)

1−ϕ(t)

)
f
′

(x)dx, (2.3)

where H1([0,T ]) is Hilbert space, the valueM(ϕ(t)) is a normalising function in Eq (2.3), i.e.,M(0) =

M(1) = 1, then
CF
0 Dϕ(t)

t G = 0, (2.4)

which G is constant.

Definition 2.9. The variable fractional integral of non-singular kernel type is stated as follows

CF
0 Jϕ(t)

t f (t) =
(1−ϕ(t))
M(ϕ(t))

f (t) +
ϕ(t)
M(ϕ(t))

t∫
0

f (x)dx, (2.5)

where 0 < ϕ(t) ≤ 1.

Definition 2.10. Suppose γ ∈ R is a solution of equation with non-negative initial condition. For
γ(0) = γ0 and there is Φ[t,γ(t)] ∈ NF([0,v]×R) for t ∈ [0,v] then we get

Ψ[t,γ(t)] =
(1−Ξ(t))
M(Ξ(t))

�Φ[t,γ(t)]⊕
Ξ(t)
M(Ξ(t))

t∫
0

Φ(ℵ,γ(ℵ))dℵ, (2.6)

with
γ(t) = γ0 +CF

0 JΞ(t)
t [Φ(t,γ(t))]. (2.7)

Definition 2.11. Let Ξ∗ = (S 1∧S 2)t∈[0,v]{Ξ(t), t ∈ [0,v]} and Ξ∗∗ = (S 1∨S 2)t∈[0,v]{Ξ(t), t ∈ [0,v]} be the
minimum and maximum values of the variable fractional order Ξ(t) on [0,v] then we get

||Φ(t,γ1(t))−Φ(t,γ2(t))|| ≤ ι||γ1−γ2||.

Definition 2.12. Let ε > 0 and γ ∈ R be the solution of the following inequality. Then the equation is
Hyers-Ulam stable if

‖CF
0 DΞ(t)

t γ(t)−Φ(t,γ(t))‖ ≤ ε, (2.8)

for t ∈ [0,v] and there is unique solution γ2(t) with as Jk > 0 that it follows

||γ(t)−γ2(t)|| ≤ Jkε; t ∈ [0,v] (2.9)

is said to be Hyers-Ulam-stable.
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Definition 2.13. Let ε > 0 and γ ∈ R be the solution of the following inequality. Then the equation is
Hyers Ulam Rassias-stable.

||CF
0 DΞ(t)

t γ(t)−Φ(t,γ(t))|| ≤Ω(t)ε, (2.10)

for t ∈ [0,v] and there is a unique solution γ2(t) with Jk > 0 that it follows

||γ(t)−γ2(t)|| ≤ JkΩ(t)ε; t ∈ [0,v] (2.11)

is said to be Hyers-Ulam-Rassias stable.

Lemma 2.14. Suppose f (t) ∈C([0,T ]), then the fractional differential equation with variable CF is

CF
0 Dϕ(t)

t f (t) = %(t), t ∈ [0,T ], o < ϕ(t) ≤ 1, (2.12)

f (0) = f0,%0 ∈ R and then

f (t) = %0 +
(1−ϕ(t))
M(ϕ(t))

%(t) +
ϕ(t)
M(ϕ(t))

t∫
0

%(x)dx. (2.13)

Theorem 2.15. (Arzela-Ascoli theorem [21]): Let X be a compact metric space. Let C(X,R) be given
the sup norm metric. Then a setM(C,X) is compact iffM is bounded, closed and equicontinuous.

3. Classical COVID-19 model

In this paper, we cover the COVID-19 model which was chosen recently [22], as well as the
parameters and covariants used in the model. Assume a demographic with homogeneous mixing,
which signifies any living thing that has a fair probability of colliding with itself. But using a
causal physically based proposed model to categorize effectively evaluation, the current population
is segmented up into various infections and disease asserts related to individual overall health at any
time ′t′ with S (t) is susceptible, V(t) is vaccinated, E(t) is exposed, I(t) is symptoms in patients highly
infections people, A(t) is infected latent, H(t) is seriously injured, R(t) is regained.

dS/dt = [1− p]π+ηR− (βS +µ+ v)S ,
dV/dt = pπ+ vS − (βV +µ)V,
dE/dt = βS S +βVV − (σ+µ)E,
dI/dt = σψE +λ(1−φ)A− (γ+µ+δ)I,
dA/dt = σ(1−ψ)E− (λ+µ)A,
dH/dt = γ(1− k)I− (τ+µ+δ)H,
dR/dt = γkI +λφA +τH− (η+µ)R,

(3.1)

with initial conditions,
S (t0) = S 0, V(t0) = V0, E(t0) = E0,

I(t0) = I0, A(t0) = A0, H(t0) = H0,

R(t0) = R0.

(3.2)

Susceptible people are infected after having close contact with symptomatic, asymptomatic, and
patient people. We assume that disease transmission from asymptomatic to immunocompromised
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patients is lower than from symptomatic and hospitalized people whereas for a brief significant period,
the COVID-19 pandemic which began in December 2019, is still ongoing. Consider σ escape rate
from the exposed class, where a minority of the individuals is infected while the other (1−ψ) becomes
asymptotic. The asymptomatic class has an abandonment rate of λ. Natural death at the rate of µ.
Even these improving diagnoses and traveling to the undiagnosed class at the rate of (1−φ) and the
fraction φ struggling to recover normally from the pathogens and traveling to the obtained class R are
all influences that limit the number of patients. Departure from the sick class γ with a percentage (1−k)
of one being detained and other healing spontaneous.

People get attracted through into society at the pace of π with a portion of p being immunized and
the rest (1− p) exposed. A few are vaccines at a much higher rate than the other v. The infected persons
can also become introduced to the illness b(1−ε) if the antibiotic is imperfect. Just a remotely effective
treatment has already begun to promote a pure product to the SARS-COV-2 virus. The variable reflects
the new vaccine’s success.

Non-pharmacological use such as self-quarantine of positive samples, isolation, face shields, wash
hands, and social distancing, but the most limiting lockdowns, closures, or restricted openings of
shops and schools were depended on and proceeded to be broadly applied before the access of pharma
initiatives such as diagnosis and immunization.

4. The fuzzy variable fractional differential equation COVID-19 model

This chapter discusses the COVID-19 model with variable CF fractional derivative and the fuzzy
approach

CF
0 DΞ(t)

t S (t) = (1− p)π−ηR + (βS +µ+ v)S ,
CF
0 DΞ(t)

t V(t) = pπ+ vS − (βV +µ)V,
CF
0 DΞ(t)

t E(t) = βS S +βVV − (σ+µ)E,
CF
0 DΞ(t)

t I(t) = σψE +λ(1−φ)A− (γ+µ+δ)I,
CF
0 DΞ(t)

t A(t) = σ(1−ψ)E− (λ+µ)A,
CF
0 DΞ(t)

t H(t) = γ(1− k)I− (τ+µ+σ)H,
CF
0 DΞ(t)

t R(t) = γkI +λφA +τH− (η+µ)R.

(4.1)

Here Ξ (t) denotes indicates for the variable CF fractional order and the initial conditions
accompanying,

S (t0) = S 0 ≥ 0,
V(t0) = V0 ≥ 0,
E(t0) = E0 ≥ 0,
I(t0) = I0 ≥ 0,
A(t0) = A0 ≥ 0,
H(t0) = H0 ≥ 0,
R(t0) = R0 ≥ 0.

(4.2)

AIMS Mathematics Volume 8, Issue 2, 2720–2735.



2726

Take a look at the right side of the proposal model in Eq (4.1). Now let us continue with the form
Φ j[t,S (t),V(t),E(t), I(t),A(t),H(t),R(t)] = Φ j(∗), j = 1,2, ...7.

Φ1(∗) =CF
0 DΞ(t)

t S (t) = (1− p)π−ηR + (βS +µ+ v)S ,
Φ2(∗) =CF

0 DΞ(t)
t V(t) = pπ+ vS − (βV +µ)V,

Φ3(∗) =CF
0 DΞ(t)

t E(t) = βS S +βVV − (σ+µ)E,
Φ4(∗) =CF

0 DΞ(t)
t I(t) = σψE +λ(1−φ)A− (γ+µ+δ)I,

Φ5(∗) =CF
0 DΞ(t)

t A(t) = σ(1−ψ)E− (λ+µ)A,
Φ6(∗) =CF

0 DΞ(t)
t H(t) = γ(1− k)I− (τ+µ+σ)H,

Φ7(∗) =CF
0 DΞ(t)

t R(t) = γkI +λφA +τH− (η+µ)R.

(4.3)

Here Φ j(∗), j = 1,2...7 are fuzzy functions for Ξ(t) ∈ (0,1]. Then Eq (4.1) modified as,

γ(t) = γ(0) +CF
0 JΞ(t)

t [Φ(t,γ(t))], (4.4)

Ξ(t) ∈ (0,1]. Here, by using initial condition CF
0 JΞ(t)

t , we transform Eq (4.2) into integral equations
used to solve the problem. We convert Eq (4.1) into the integral equations as shown below,

CF
0 DΞ(t)

t (S (t)) = Φ1(∗),
CF
0 DΞ(t)

t (V(t)) = Φ2(∗),
CF
0 DΞ(t)

t (E(t)) = Φ3(∗),
CF
0 DΞ(t)

t (I(t)) = Φ4(∗),
CF
0 DΞ(t)

t (A(t)) = Φ5(∗),
CF
0 DΞ(t)

t (H(t)) = Φ6(∗),
CF
0 DΞ(t)

t (R(t)) = Φ7(∗).

(4.5)

S (t) = S 0 +CF
0 JΞ(t)

t (Φ1(∗)),
V(t) = V0 +CF

0 JΞ(t)
t (Φ2(∗)),

E(t) = E0 +CF
0 JΞ(t)

t (Φ3(∗)),
I(t) = I0 +CF

0 JΞ(t)
t (Φ4(∗)),

A(t) = A0 +CF
0 JΞ(t)

t (Φ5(∗)),
H(t) = H0 +CF

0 JΞ(t)
t (Φ6(∗)),

R(t) = R0 +CF
0 JΞ(t)

t (Φ7(∗)).

(4.6)

Again, we modify Eq (4.6) into,

γ(t) γ(0) Φ(t,γ(t))
S (t) S 0 Φ1[t,S (t),V(t),E(t), I(t),A(t),H(t),R(t)]
V(t) V0 Φ2[t,S (t),V(t),E(t), I(t),A(t),H(t),R(t)]
E(t) E0 Φ3[t,S (t),V(t),E(t), I(t),A(t),H(t),R(t)]
I(t) I0 Φ4[t,S (t),V(t),E(t), I(t),A(t),H(t),R(t)]
A(t) A0 Φ5[t,S (t),V(t),E(t), I(t),A(t),H(t),R(t)]
H(t) H0 Φ6[t,S (t),V(t),E(t), I(t),A(t),H(t),R(t)]
R(t) R0 Φ7[t,S (t),V(t),E(t), I(t),A(t),H(t),R(t)]
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Theorem 4.1. If we assume that γ ∈ R, then the Eq (4.6) of the solution is

CF
0 DΞ(t)

t [γ(t))] = Φ(ℵ,γ(ℵ)), t ∈ [0,v],0 < Ξ(t) ≤ 1, (4.7)

γ(0) = γ0,γ0 ∈ R with,

γ(t) = γ(0) +CF
0 JΞ(t)

t [Φ(t,γ(t))]. (4.8)

Proof. By using the initial conditions (4.2), Theorem 4.1 can be proved [17, 18]. �

Theorem 4.2. The operator (2.6) satisfies the Banach fixed point theory with the hypothesis if and only
if

ι

[
(1−Ξ∗)
M(Ξ∗)

+
Ξ∗v
M(Ξ∗)

]
< 1. (4.9)

Proof. Assume that γ1,γ2 ∈ R

||Ψγ1−Ψγ2|| ≤ ||Ψ1γ1−Ψ1γ2||+ ||Ψ2γ1−Ψ2γ2||

≤

∣∣∣∣∣∣
[
(1−Ξ(t))
M(Ξ(t))

�Φ[t,γ1(t)]⊕
Ξ(t)
M(Ξ(t))

t∫
0

Φ(ℵ,γ1(ℵ))dℵ −

1−Ξ(t)
M(Ξ(t))

�Φ[t,γ2(t)]⊕
Ξ(t)
M(Ξ(t))

Φ(ℵ,γ2(ℵ))dℵ
]∣∣∣∣∣∣,

≤

[
(1−Ξ∗)
M(Ξ∗)

ι+
Ξ∗

M(Ξ∗)
ιv
]
(S 1∧S 2)t∈[0,v]|γ1−γ2|

≤ ι

[
(1−Ξ∗)
M(Ξ∗)

+
Ξ∗

M(Ξ∗)
v
]
||γ1−γ2||.

The operator Φ in Eq (2.6) satisfying the Banach fixed point theorem, depending on the inequality (4.9),
and using Eqs (4.4) and (4.8) satisfies

γq(t) =
(1−Ξ(t))
M(Ξ(t))

�Φ[t,γq(t)]⊕
Ξ(t)
M(Ξ(t))

t∫
0

Φ(ℵ,γq(ℵ))dℵ. (4.10)

�

Theorem 4.3. The following Eqs (4.2)–(4.6) with CF in fuzzy variable fractional integral equation
(FVFIE) has unique solution

ι

[
(1−Ξ∗)
M(Ξ∗)

+
Ξ∗v
M(Ξ∗)

]
< 1. (4.11)

Proof. Assume that there is another solution for the CF in FVFIE (4.2)–(4.6), which is solution
of (γ1(t)).
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||γ1(t)−γ2(t)|| ≤

∣∣∣∣∣∣
[
(1−Ξ(t))
M(Ξ(t))

�Φ[t,γ1(t)]⊕
Ξ(t)
M(Ξ(t))

t∫
0

Φ(ℵ,γ1(ℵ))dℵ −

1−Ξ(t)
M(Ξ(t))

�Φ[t,γ2(t)]⊕
Ξ(t)
M(Ξ(t))

Φ(ℵ,γ2(ℵ))dℵ
]∣∣∣∣∣∣,

≤
(1−Ξ(t))
M(Ξ(t))

� |Φ[t,γ1(t)−Φ[t,γ2(t)]| ⊕
Ξ(t)
M(Ξ(t))

∣∣∣∣∣∣∣∣∣
t∫

0

Φ[t,γ1(t)−Φ[t,γ2(t)]

∣∣∣∣∣∣∣∣∣
≤ ι

[
(1−Ξ∗)
M(Ξ∗)

+
Ξ∗v
M(Ξ∗)

]
||γ1(t)−γ2(t)||.

Additionally, this indicates that

ι

[
(1−Ξ∗)
M(Ξ∗)

+
Ξ∗v
M(Ξ∗)

]
||γ1(t)−γ2(t)|| ≥ 0. (4.12)

The Eqs (4.11) and (4.12) is relates ||γ1(t)−γ2(t)|| = 0, then

||γ2(t),
(1−Ξ(t))
M(Ξ(t))

�Φ[t,γ2(t)]⊕
Ξ(t)
M(Ξ(t))

t∫
0

Φ(ℵ,γ2(ℵ))dℵ||, (4.13)

there exists γ(t) which satisfies,

γ(t) =
(1−Ξ(t))
M(Ξ(t))

�Φ[t,γ(t)]⊕
Ξ(t)
M(Ξ(t))

t∫
0

Φ(ℵ,γ(ℵ))dℵ, (4.14)

i.e., γ1(t) = γ2(t). The CF in FVFIE (4.2)–(4.6) is a unique solution. As a result CF with fuzzy
variable fractional differential equation COVID-19 model has a unique solution. �

5. Hyers-Ulam stability analysis of the COVID-19 model

Theorem 5.1. The solution of the Eqs (4.2)–(4.6) is Ulam-Hyers stable with CF with FVFIE, under
the Theorem 4.3.

ι

[
1−Ξ∗

M(Ξ∗)
+

Ξ∗v
M(Ξ∗)

]
< 1. (5.1)
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Proof. By CF with FVFIE (4.2)–(4.6) has a unique solution from Theorem 4.3 and relates with (4.14)

|γ(t)−γ2(t)| ≤

∣∣∣∣∣∣
[
(1−Ξ(t))
M(Ξ(t))

�Φ[t,γ(t)]⊕
Ξ(t)
M(Ξ(t))

t∫
0

Φ(ℵ,γ(ℵ))dℵ −

1−Ξ(t)
M(Ξ(t))

�Φ[t,γ2(t)]⊕
Ξ(t)
M(Ξ(t))

Φ(ℵ,γ2(ℵ))dℵ
]∣∣∣∣∣∣

≤
(1−Ξ(t))
M(Ξ(t))

� |Φ(t,γ(t))−Φ(t,γ2(t))|

⊕
Ξ(t)
M(Ξ(t))


t∫

0

|Φ(t,γ(t))−Φ(t,γ2(t))|


≤ ι

(1−Ξ(t))
M(Ξ(t))

� |γ(t)−γ2(t)| ⊕ ι
Ξ(t)
M(Ξ(t))


t∫

0

|γ(t)−γ2(t)|


≤ ι

[
(1−Ξ∗)
M(Ξ∗)

+
Ξ∗v
M(Ξ∗)

]
||γ(t))−γ2(t)||

|γ(t)−γ2(t)| ≤ Jkε. (5.2)

Where ε = ι
[

(1−Ξ∗)
M(Ξ∗) + Ξ∗v

M(Ξ∗)

]
and Jk = ||γ(t)−γ2(t)||. From Eq (5.2) is said to be Hyers-Ulam stable with

CF in FVFIE (4.2) – (4.6) in COVID-19 model and the CF with fuzzy variable fractional differential
equation COVID-19 model has Hyers-Ulam stable. �

Numerical simulations and discussion

Numerical simulations are performed to demonstrate the theoretical findings. Table 1 shows the
model input variables for the numerical simulations as well as their source and description. We
examined the effect of the vaccine and treatment of COVID-19 spreading [30]. Due to natural
and seasonal changes, potential measurement flaws, and the fact that mathematical models are
representations of complex biological systems, some model parameter values are not always known
with certainty. We determine the relative significance of model parameters to disease transmission
and graphically display how sensitive the functional reproduction number is to model parameters
to show how changes in model parameter values affect R. Timely rating of prevention strategies
and other hyperparameters based on their impact may ideally potentially enable policy and outcome
prioritize public health intervention measures to be implemented, focusing attention on the most
effective interventions. Similarly, the treatment rate and the effective contact rate should be kept as
low as possible to limit COVID-19 spread in the environment. Now we discuss the obtained numerical
outcomes of the governing method. Let us assume that the initial condition is taken as S = 50, V = 20,
E = 30, I = 100, A = 45, H = 200, R = 300 with parameters given in Table 1.
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Table 1. Parameter and bilogical interpretations.

Parameter Descriptions Value Reference
π People are getting hired at a quick speed into the population. 10000

59×365 [23, 24]
p Average fraction of those that were inoculated from recruited. 0.0001 Assumed
v Inoculation completion. 0.4 Assumed

µ Risk of mortality due to the extreme weather event.
1

59×365
[23, 24]

δ Risk of morality illness. 0.018 [25, 26]
ε Vaccinated people got serious illness. 0.8 Assumed
σ A vulnerable groups departure rate. 0.13 [27]
γ Departure rate in the highly contagious group. 0.0833 [26]
k A portion of patients that heal gradually. 0.05 [28]
ψ Primary infection in a low minority those who are vaccinated. 0.7 [24]
b Amount of secure connection. 1.12 [26]
τ People who are discharged get a great recovery. 0.0701 [25]
φ The fraction of undiagnosed patients who recovery. 0.14 [27]
λ A present for all who exist of their sick grade. 0.13978 [24, 26]
η A ratio for which people have lost an antibodies. 0.011 [29]

Figure 1 shows the time series for the susceptibility, vaccination, exposure, and infectious categories
in the mathematical model. Because vaccines may have limits in some situations. When vaccinations
are easily obtainable the number of persons at risk gradually reduces as more people receive the vaccine
(the number of vaccinations of class v grows at the start of implementation). Even though vaccine
availability is high, vaccine efficiency is low, and is larger than unity, the disease may not be cured.
The statistical conclusion is that high vaccine efficiency and immunization coverage significantly lower
the number of community-acquired secondary infections Figure 2.

Early identifications of stability and mechanics that have a higher impact on medical transmission
are critical for informing policy decisions about which parameters to focus on for data gathering or
disease mitigation. The time series of the model system is shown for the susceptible, immunized,
exposed, and infected groups, because vaccinations may not be effective in all circumstances in
Figure 3. When vaccinations are widely accessible, we observe that as increasing numbers of people
receive the vaccine (the number of class V vaccine recipients grows at the start of implementation), the
number of susceptible individuals rapidly drops. In our proposed model performance is well because
the number of recovered people slightly increases after vaccination. Hence, the fractional derivative
model proves to be a model easier to use for theoretical and numerical calculations and real word
applications.

Corollary 5.2. The solution of the system Eqs (4.2)–(4.6) is Ulam-Hyers-Rassias stable with CF with
FVFIE, under the Theorem 4.3.

ι

[
(1− (Ξ)∗)
M((Ξ)∗)

+
(Ξ)∗v
M((Ξ)∗)

]
< 1. (5.3)

By this Eq (4.14) we can prove that Hyers-Ulam-Rassias stability.

AIMS Mathematics Volume 8, Issue 2, 2720–2735.



2731

Figure 1. Dynamics of exposed E with control and V vaccinated class.

Figure 2. Dynamics of susceptible class S and infected with control I.

Figure 3. Profile of S , E, V and I with saturation.

6. Conclusions

The mathematical modeling tends towards the stability analysis of COVID-19, we developed a
deterministic model of the COVID-19 transmission dynamics using an inadequate vaccination. The
model is theoretically examined for both its effective and intrinsic reproduction frequencies to be
computed. The findings of the paper explain how the COVID-19 system was generalized with fuzzy
variable differential equation and unit step function carried out under CF fractional derivative. Using

AIMS Mathematics Volume 8, Issue 2, 2720–2735.
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Banach’s fixed point theory, we analyzed new existence and unique conditions for the COVID-19
system model. The investigation to prove Hyers-Ulam stability for the COVID-19 system is carried
out. Future studies will investigate how COVID-19 patterns are affected by different treatment methods
and objectives.
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