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Abstract: In this paper, we expanded from the convex case to the nonconvex case in the setting of
reflexive smooth Banach spaces, the concept of the f -generalized projection π

f
S : X∗ → S initially

introduced for convex sets and convex functions in [19, 20]. Indeed, we defined the ( f , λ)-generalized
projection operator π f ,λ

S : X∗ → S from X∗ onto a nonempty closed set S . We proved many properties
of π f ,λ

S for any closed (not necessarily convex) set S and for any lower semicontinuous function
f . Our principal results broaden the scope of numerous theorems established in [19, 20] from the
convex setting to the nonconvex setting. An application of our main results to solutions of nonconvex
variational problems is stated at the end of the paper.
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1. Introduction and preliminaries

Let X be a Banach space with dual space X∗. The duality pairing between X and X∗ will be denoted
by 〈·, ·〉. We denote by B and B∗ the closed unit ball in X and X∗, respectively. The normalized duality
mapping J : X⇒X∗ is defined by

J(x) = { j(x) ∈ X∗ : 〈 j(x), x〉 = ‖x‖2 = ‖ j(x)‖2},

where ‖ · ‖ stands for both norms on X and X∗. Many properties of J are well known and we refer the
reader, for instance, to the book [17].
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Definition 1.1. For a fixed closed subset S of X, a fixed function f : S → R ∪ {∞}, and a fixed λ > 0,
we define the following functional: GV

λ, f : X∗ × S → R ∪ {∞}

GV
λ, f (x∗, x) = f (x) +

1
2λ

V(x∗, x), ∀x∗ ∈ X∗, x ∈ S ,

where V(x∗, x) = ‖x∗‖2 − 2〈x∗, x〉 + ‖x‖2. Using the functional GV
λ, f , we define the generalized ( f , λ)-

projection on S as follows:

π
f ,λ
S (x∗) = {x ∈ S : GV

λ, f (x∗, x) = eV
λ,S f (x∗) := inf

s∈S
GV
λ, f (x∗, s)}, for any x∗ ∈ X∗.

Remark 1.1.

• If f = 0, then π f ,λ
S coincides with the generalized projection πS introduced for closed convex sets

in [2, 3, 13, 14] and for closed nonconvex sets in [6, 7].
• If λ = 1

2 , then π f ,λ
S coincides with the f -generalized projection introduced for closed convex sets

in [19, 20].
• If X is a Hilbert space and f = 0, then π f ,λ

S coincides with the well-known metric projection Pro jS

in [11].
• If X is a Hilbert space, the functional x∗ 7→ eV

λ,S f (x∗) = inf
s∈S

GV
λ, f (x∗, s) coincides with the Moreau

envelope of f with index λ > 0.

Motivated by the previous remarks, we are going to study the above concept of generalized
projection in smooth Banach spaces. Our results will extend many existing works in the literature.

2. ( f , λ)-generalized projections on closed nonconvex sets

We commence by considering the following example, which serves to demonstrate that π f ,λ
S (x∗) may

be empty for nonconvex closed sets even for convex continuous functions f in uniformly convex and
uniformly smooth Banach spaces.

Example 2.1. Let X = `p (p ≥ 1), 0X∗ = (0, . . . , 0, . . . ) ∈ (lp)∗, and let S := {e1, e2, · · · , en, · · · } with
e j = (0, · · · , 0, j+1

j , 0, · · · ). Let λ > 0 and f : X → R be defined as f (x) = ‖x‖ − 1, then S is a closed

nonconvex subset in X with π f ,λ
S (0X∗) = ∅.

Proof. Undoubtedly, the set S is a closed nonconvex set and the function f is convex continuous on X.
Let us show that the ( f , λ)-generalized projection of 0X∗ is empty. Let x be any element of S , then for
some n ≥ 1, x = en and

f (x) +
1

2λ
V(0X; x) = f (x) +

1
2λ
‖x‖2 = f (en) +

1
2λ

(1 +
1
n

)2 >
1

2λ
.

Then, for any x ∈ S , we have f (x) + 1
2λV(0X∗; x) > 1

2λ ; that is,

1
2λ
≤ inf

x∈S

[
f (x) +

1
2λ

V(0X∗; x)
]
≤ lim inf

n→∞

[
f (en) +

1
2λ

V(0X∗; en)
]
≤ lim inf

n→∞

[
1
n

+
1

2λ
(1 +

1
n

)2
]

=
1

2λ
, (2.1)
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and so

inf
x∈S

[
f (x) +

1
2λ

V(0X∗; x)
]

=
1

2λ
.

This ensures that π f ,λ
S (0X∗) = ∅. Indeed, if π f ,λ

S (0X∗) , ∅, then there exists some x̄ ∈ π f ,λ
S (0X∗), and so

x̄ = en0 for some n0 ≥ 1, with

inf
x∈S

[
f (x) +

1
2λ

V(0X∗; x)
]

= f (x̄) +
1

2λ
V(0X∗; x̄).

Hence,
1

2λ
= f (en0) +

1
2λ

V(0X∗; en0) =
1
n0

+
1

2λ
(1 +

1
n0

)2 =
1
n0

+
1

2λ
(1 +

2
n0

+
1
n2

0

)

and
1
n0

+
1

n0λ
+

1
2λn2

0

= 0,

which is not possible, and so π f ,λ
S (0X∗) = ∅. �

From the previous example, we see that even in uniformly convex and uniformly smooth Banach
spaces, the ( f , λ)-generalized projection π f ,λ

S (x∗) may be empty for closed nonconvex sets. Thus, it is
hopeless to get the conclusion of Theorem 2.1 in [19] and Theorem 3.1 in [20] saying that π f ,λ

S (x∗) , ∅,
∀x∗ ∈ X∗ whenever S is a closed convex set in reflexive Banach spaces. However, we are going to
prove that for closed nonconvex sets, the set of points x∗ ∈ X∗ for which π f ,λ

S (x∗) , ∅ is dense in X∗. We
are going to prove our main result in the following theorem. First, we need to recall that an extended
real-valued function f defined on X is said to be lower semicontinous (in short l.s.c.) on its domain
provided that its epigraph epi f := {(x, r) ∈ X × R : f (x) ≤ r} is closed in X × R.

Theorem 2.1. Assume that X is a reflexive Banach space with smooth dual norm, and let S be any
closed nonempty set of X and f : S → R ∪ {∞} be any l.s.c. function. Then, the set of points in X∗

admitting the unique ( f , λ)-generalized projection on S are dense in X∗; that is, for any x∗ ∈ X∗, there
exists x∗n → x∗ with π f ,λ

S (x∗n) , ∅,∀n.

Proof. By definition of π f ,λ
S (x∗), we have

π
f ,λ
S (x∗) =

{
x̄ ∈ S : : eV

λ,S f (x∗) = f (x̄) +
1

2λ
V(x∗, x̄)

}
.

Observe that

eV
λ,S f (z∗) = inf

y∈X

{
−

1
λ
〈z∗; y〉 + f (y) +

1
2λ

[
‖z∗‖2 + ‖y‖2)

]
+ ψS (y)

}
=
‖z∗‖2

2λ
− sup

y∈X

{
1
λ
〈z∗; y〉 − f (y) −

‖y‖2

2λ
− ψS (y)

}
=
‖z∗‖2

2λ
− ` f ,λ(z∗),
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with ` f ,λ(z∗) := sup
y∈X

{
1
λ
〈z∗; y〉 − f (y) −

‖y‖2

2λ
− ψS (y)

}
. Clearly, the function ` f ,λ is convex on a reflexive

Banach space X∗, and so there exists a dense set K in X∗ in which the Fréchet gradient exists; that is,
∇F` f ,λ(x∗) exists for any x∗ ∈ K. Now, we use the smoothness of the dual norm to get the existence
of ∇F‖ · ‖(x∗) for any x∗ , 0 in X∗. Thus, for any x∗ ∈ K, the Fréchet derivative ∇FeV

λ,S f (x∗) exists
with ∇FeV

λ,S f (x∗) = 1
2λ∇

F‖ · ‖2(x∗) − ∇F` f ,λ(x∗). Fix any ε > 0. Now, we use the definition of Fréchet
differentiability to obtain some δ > 0 such that

〈∇FeV
λ,S f (x∗); u∗ − x∗〉 ≤ eV

λ,S f (u∗) − eV
λ,S f (x∗) + ε‖u∗ − x∗‖ ∀u∗ ∈ x∗ + δB∗.

Fix any t ∈ (0, δ) and any v∗ ∈ B∗, then

〈∇FeV
λ,S f (x∗); tv∗〉 ≤ eV

λ,S f (x∗ + tv∗) − eV
λ,S f (x∗) + εt.

By definition of the infimum in eV
λ,S f (x∗), there exists for any n ≥ 1 some point xn ∈ S such that

eV
λ,S f (x∗) ≤ f (xn) +

1
2λ

V(x∗, xn) < eV
λ,S f (x∗) +

t
n
. (2.2)

Therefore,

〈∇FeV
λ,S f (x∗); tv∗〉 ≤ f (xn) +

1
2λ

V(x∗ + tv∗, xn) − f (xn) −
1

2λ
V(x∗, xn) +

t
n

+ εt

≤
1

2λ

[
‖x∗ + tv∗‖2 − ‖x∗‖2 − 2〈tv∗, xn〉

]
+

t
n

+ εt.

Hence,

〈∇FeV
λ,S f (x∗) +

xn

λ
; v∗〉 ≤

1
2λ

t−1
[
‖x∗ + tv∗‖2 − ‖x∗‖2

]
+

1
n

+ ε.

Using the fact that ∇F‖ · ‖2(x∗) = 2J∗x∗ to write

t−1
[
‖x∗ + tv∗‖2 − ‖x∗‖2 − 2〈J∗x∗, v∗〉

]
≤ ε,

we find that

〈∇FeV
λ,S f (x∗) +

xn − J∗x∗

λ
; v∗〉 ≤

1
n

+ ε +
ε

2λ
, ∀n ≥ 1,∀ε > 0,∀v∗ ∈ B∗,

which gives

‖∇FeV
λ,S f (x∗) +

xn − J∗x∗

λ
‖ ≤

1
n

+ ε(
1

2λ
+ 1), ∀n ≥ 1,∀ε > 0.

By taking n → ∞ and ε → 0, we obtain the convergence of the sequence (xn)n to x̄ := J∗x∗ −
λ∇FeV

λ,S f (x∗). Taking n → ∞ in (2.2), we obtain eV
λ,S f (x∗) = f (x̄) + 1

2λV(x∗, x̄), which means that
x̄ ∈ π f ,λ

S (x∗).
Let us prove that the set π f ,λ

S (x∗) reduces to the single limit x̄. Let ȳ , x̄ with ȳ ∈ π
f ,λ
S (x∗), so

eV
λ,S f (x∗) = f (ȳ) + 1

2λV(x∗, ȳ). Proceeding as before with the constant minimizing sequence yn := ȳ, we
get

‖∇FeV
λ,S f (x∗) +

ȳ − J∗x∗

λ
‖ ≤ 2ε, ∀ε > 0

and, hence; ȳ = J∗x∗ − λ∇FdV
S (x∗), which means that ȳ = x̄. That is, π f ,λ

S (x∗) = {x̄}, and so the proof is
complete. �
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3. Further properties of ( f , λ)-generalized projections on closed nonconvex sets

After proving the density of the domain of the operator π f ,λ
S in the previous section, in this section

we continue with the study of various important properties of the operator π f ,λ
S .

Theorem 3.1. Assume that X is a reflexive Banach space with smooth dual norm. Let S be a closed
subset in X, λ > 0, and f : X → R ∪ {∞} be a l.s.c function, then the following conclusions hold:

(1) If f is bounded below on S , then the set π f ,λ
S (x∗) is closed bounded in X, for any x∗ ∈ dom π

f ,λ
S ;

(2) For any x∗1, x
∗
2 ∈ dom π

f ,λ
S and any x1 ∈ π

f ,λ
S (x∗1) and x2 ∈ π

f ,λ
S (x∗2) we have

〈x∗1 − x∗2; x1 − x2〉 ≥ 0;

(3) For any x∗ ∈ dom π
f ,λ
S , any x̄ ∈ π f ,λ

S (x∗), and any t ∈ [0, 1) we have π f ,λ
S (J(x̄) + t(x∗ − J(x̄))) = {x̄}.

Proof. (1) Let x∗ ∈ dom π
f ,λ
S . Let α ∈ R be the lower bound of f on S . That is, f (x) > α for any x ∈ S .

Then, for any x ∈ π f ,λ
S (x∗),

eV
λ,S f (x∗) = f (x) +

1
2λ

V(x∗; x) ≥ α +
1

2λ
[‖x∗‖ − ‖x‖]2 ,

which ensures that π f ,λ
S (x∗) is bounded. Now, we prove that π f ,λ

S (x∗) is closed. Let {xn}n be a sequence
in π f ,λ

S (x∗) converging to a limit x̄. We have to prove that x̄ ∈ π f ,λ
S (x∗). By l.s.c. of f and the continuity

of V , we have

eV
λ,S f (x∗) = f (x̄) +

1
2λ

V(x∗; x̄)

≤ lim inf
n

[ f (xn) +
1

2λ
V(x∗; xn)]

= inf
s∈S

[ f (s) +
1

2λ
V(x∗; s)] = eV

λ,S f (x∗).

Thus, x̄ ∈ π f ,λ
S (x∗).

(2) Let x∗i ∈ dom π
f ,λ
S and xi ∈ π

f ,λ
S (x∗i ) for i = 1, 2, then by definition of eV

λ,S f (x∗i ) we have

eV
λ,S f (x∗1) = f (x1) +

1
2λ

V(x∗1; x1) ≤ f (x2) +
1

2λ
V(x∗1; x2),

eV
λ,S f (x∗2) = f (x2) +

1
2λ

V(x∗2; x2) ≤ f (x1) +
1

2λ
V(x∗2; x1).

Adding these two inequalities yields

V(x∗1; x1) + V(x∗2; x2) ≤ V(x∗1; x2) + V(x∗2; x1)

and, hence, by decomposition and rearrangement, we obtain

〈x∗2 − x∗1; x2 − x1〉 ≥ 0,

AIMS Mathematics Volume 8, Issue 12, 29555–29568.
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and the proof of (2) is complete.
(3) First, we prove that for any x̄ ∈ π f ,λ

S (x∗) and any t ∈ [0, 1), we have

x̄ ∈ π f ,tλ
S (Jx̄ + t(x∗ − Jx̄)).

Let x̄ ∈ π f ,λ
S (x∗), then

f (x̄) +
1

2λ
V(x∗; x̄) ≤ f (y) +

1
2λ

V(x∗; y), ∀y ∈ S

and
1

2λ
[
V(x∗; x̄) − V(x∗; y)

]
≤ f (y) − f (x̄), ∀y ∈ S .

First, observe that
〈Jx̄ + t(x∗ − Jx̄) − Jx̄; y − x̄〉 = t〈x∗ − Jx̄; y − x̄〉.

We distinguish two cases:
Case 1. If 〈x∗ − Jx̄; y − x̄〉 ≤ λ[ f (y) − f (x̄)], then we have

V(Jx̄ + t(x∗ − Jx̄); x̄) − V(Jx̄ + t(x∗ − Jx̄); y) = 2t〈x∗ − Jx̄; y − x̄〉 − V(Jx̄; y)

≤ 2tλ[ f (y) − f (x̄)] − V(Jx̄; y)

≤ 2tλ[ f (y) − f (x̄)].

Case 2. If 〈x∗ − Jx̄; y − x̄〉 > λ[ f (y) − f (x̄)], and since t ∈ [0, 1), we have

2t〈x∗ − Jx̄; y − x̄〉 − 2tλ[ f (y) − f (x̄)] < 2〈x∗ − Jx̄; y − x̄〉 − 2λ[ f (y) − f (x̄)],

and so

2t〈x∗ − Jx̄; y − x̄〉 = 2t〈x∗ − Jx̄; y − x̄〉 − 2tλ[ f (y) − f (x̄)] + 2tλ[ f (y) − f (x̄)]

< 2〈x∗ − Jx̄; y − x̄〉 − 2λ[ f (y) − f (x̄)] + 2tλ[ f (y) − f (x̄)]

< (‖x∗‖2 − 2〈x∗; x̄〉 + ‖x̄‖2) + 2λ(t − 1)[ f (y) − f (x̄)]

+ (2〈x∗; y〉 − ‖x∗‖2 − ‖y‖2) + (‖y‖2 − 2〈Jx̄; y〉 + ‖x̄‖2)

< V(x∗, x̄) − V(x∗, y) + V(Jx̄, y) + 2λ(t − 1)[ f (y) − f (x̄)]

< 2λ[ f (y) − f (x̄)] + V(Jx̄, y) + 2λ(t − 1)[ f (y) − f (x̄)]

< V(Jx̄, y) + 2tλ[ f (y) − f (x̄)].

Thus,

2t〈x∗ − Jx̄; y − x̄〉 − V(Jx̄; y) ≤ 2tλ[ f (y) − f (x̄)]
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and, hence,

V(Jx̄ + t(x∗ − Jx̄); x̄) − V(Jx̄ + t(x∗ − Jx̄); y) ≤ 2tλ[ f (y) − f (x̄)].

Therefore, in both Case 1 and 2, we have

V(Jx̄ + t(x∗ − Jx̄); x̄) − V(Jx̄ + t(x∗ − Jx̄); y) ≤ 2tλ[ f (y) − f (x̄)],∀y ∈ S ,∀t ∈ [0, 1),

which is equivalent to

V(Jx̄ + t(x∗ − Jx̄); x̄) + 2tλ f (x̄) ≤ V(Jx̄ + t(x∗ − Jx̄); y) + 2tλ f (y),∀y ∈ S ,∀t ∈ [0, 1).

Hence,

f (x̄) +
1

2tλ
V(Jx̄ + t(x∗ − Jx̄); x̄) ≤ f (y) +

1
2tλ

V(Jx̄ + t(x∗ − Jx̄); y),∀y ∈ S ,∀t ∈ (0, 1);

that is, x̄ ∈ π f ,tλ
S (Jx̄ + t(x∗ − Jx̄)), for any t ∈ (0, 1).

Uniqueness. Now, let us prove the uniqueness. That is, for any t ∈ (0, 1) and for any xt ∈ π
f ,tλ
S (Jx̄ +

t(x∗ − Jx̄)), we have to prove that xt = x̄. To do that, fix t ∈ (0, 1) and let ut := J∗(Jx̄ + t(x∗ − Jx̄)). Let
xt , x with xt ∈ π

f ,tλ
S (Jut), then

f (x̄) +
1

2tλ
V(Jut; x̄) = inf

s∈S

[
f (s) +

1
2tλ

V(Jut; s)
]

= f (xt) +
1

2tλ
V(Jut; xt),

and so
V(Jut; x̄) − V(Jut; xt) = 2tλ[ f (xt) − f (x̄)].

A direct decomposition of the left hand side of this equality yields to

V(Jut; x̄) − V(Jut; xt) = ‖x̄‖2 − ‖xt‖
2 − 2〈Jut; x̄ − xt〉

= t[‖x̄‖2 − 2〈x∗; x̄ − xt〉 − ‖xt‖
2] + (1 − t)[‖x̄‖2 − 2〈Jx̄; x̄ − xt〉 − ‖xt‖

2]

= t[V(x∗; x̄) − V(x∗; xt)] − (1 − t)V(Jx̄; xt)

and, hence,
t[V(x∗; x̄) − V(x∗; xt)] − (1 − t)V(Jx̄; xt) = 2tλ[ f (xt) − f (x̄)].

Thus,
1 − t
2tλ

V(Jx̄; xt) = [ f (x̄) +
1

2λ
V(x∗; x̄)] − [ f (xt) +

1
2λ

[V(x∗; xt)]. (3.1)

On the other hand, we use the fact that xt ∈ S and x̄ ∈ π
f ,λ
S (x∗) to write f (x̄) + 1

2λV(x∗; x̄) ≤
f (xt) + 1

2λV(x∗; xt), which, together with the previous equality (3.1), ensures that V(Jx̄; xt) ≤ 0 and
V(Jx̄; xt) = 0. This equality ensures that xt = x̄, thus ending the proof of the uniqueness and the proof
of property (3) is achieved. �
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4. Applications to nonconvex variational problems

In this section, we assume that X is a p-uniformly convex and q-uniformly smooth Banach space.
That is, there exists a constant c > 0 such that

δX(ε) ≥ cε p ( respectively ρX(t) ≤ ctq),

where δX is the moduli of convexity of X, and ρX is the moduli of smoothness of X, given respectively
by

δX(ε) = inf
{
1 − ‖

x + y
2
‖ : ‖x‖ = ‖y‖ = 1 and ‖x − y‖ = ε

}
, 0 ≤ ε ≤ 2

and

ρX(t) = sup
{

1
2

(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ = 1, ‖y‖ = t
}
, t > 0.

For more details and properties of p-uniformly convex and q-uniformly smooth Banach space, we refer
the reader to books [1, 17].

Let F : X⇒X∗ be a set-valued mapping, f : X → R ∪ {∞} be a l.s.c. function (not necessarily
convex), and let S ⊂ X be a nonempty closed set not necessarily convex. First, we define the following
set:

N f ,λ
S (x) := {x∗ ∈ X∗ : such that x ∈ π f ,λ

S (J(x) + λx∗)}.

Our aim is to use the main result in the previous section to study the following nonconvex variational
problem:

Find x̄ ∈ S such that N f ,λ
S (x̄) ∩ [−F(x̄)] , ∅. (4.1)

This variational problem can be seen as a variant of the following nonconvex variational problem

Find x̄ ∈ S such that NP
S (x̄) ∩ [−F(x̄)] , ∅, (4.2)

where NP
S (x̄) is the proximal normal cone associated with S at x̄. This problem, denoted as (4.2), has

been introduced and studied in [8] for prox-regular sets in the Hilbert space setting. When f = 0, it
is easy to check that any solution of (4.2) is also a solution of (4.1) for some λ > 0. Conversely, for
any λ > 0, any solution of (4.1) is a solution of (4.2). If, in addition, S is assumed to be convex, then
both variational problems (4.2) and (4.1) coincide. Since the work in [8], numerous other works have
explored and extended, in various ways, the existence of solutions for (4.2) (see [5, 9, 10, 15, 18] and
the references therein). Furthermore, the variational problem (4.2) can be viewed as a reformulation of
the well-known generalized equilibrium problem:

Find x̄ ∈ S such that 0 ∈ F(x̄) + NS (x̄), (4.3)

which is an extension of the equilibrium problems involving set-valued mappings overs closed sets
(see, for instance, [4,12,16]). Consequently, our proposed variational problem (4.1) can be considered
an appropriate extension of both (4.2) and (4.3).

First, we show that in the convex case, the variational problem (4.1) coincides with the usual
variational inequality:

Find x̄ ∈ S and y∗ ∈ F(x̄) such that 〈y∗, y − x̄〉 + f (y) − f (x̄) ≥ 0, ∀y ∈ S . (4.4)

The variational inequality (4.4) is well studied in the convex case in [2, 3, 13, 14].
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Proposition 4.1. Whenever S is a closed convex set and f is a l.s.c. convex function, we have (4.1)
⇐⇒(4.4).

Proof. It is enough to prove that the set N f ,λ
S (x̄) can be characterized in the convex case as

N f ,λ
S (x̄) = {x∗ ∈ X∗ : such that 〈x∗, x − x̄〉 + f (x̄) − f (x) ≤ 0, ∀x ∈ S }.

First, we prove that the set N f ,λ
S (x̄) is a subset of the righthand side of the above equality. Let x∗ ∈

N f ,λ
S (x̄), then by definition of N f ,λ

S (x̄), we have x̄ ∈ π f ,λ
S (J(x̄) + λx∗). That is,

eV
λ,S f (J(x̄) + λx∗) = GV

λ, f (J(x̄) + λx∗, x̄),

then
f (x̄) +

1
2λ

V(J(x̄) + λx∗, x̄) ≤ f (y) +
1

2λ
V(J(x̄) + λx∗, y), ∀y ∈ S .

Hence,

f (x̄) − f (y) ≤
1

2λ
[
V(J(x̄) + λx∗, y) − V(J(x̄) + λx∗, x̄)

]
≤

1
2λ

[
2〈λx∗; x̄ − y〉 + V(J(x̄), y)

]
≤ 〈x∗; x̄ − y〉 +

1
2λ

V(J(x̄), y), ∀y ∈ S .

Let any x ∈ S and any t ∈ (0, 1), then by convexity of S , we have that the point y := x̄+ t(x− x̄) belongs
to S . Thus,

〈x∗; t(x − x̄)〉 ≤ f (x̄ + t(x − x̄)) − f (x̄) +
1

2λ
V(J(x̄), x̄ + t(x − x̄)).

Using the convexity of f on S to write

〈x∗; t(x − x̄)〉 ≤ (1 − t) f (x̄) + t f (x) − f (x̄) +
1

2λ
V(J(x̄), x̄ + t(x − x̄))

≤ t[ f (x) − f (x̄)] +
1

2λ
V(J(x̄), x̄ + t(x − x̄)),

and by dividing by t and taking the limit when t ↓ 0, we obtain

〈x∗; x − x̄〉 ≤ f (x) − f (x̄) +
1

2λ
lim
t↓0

t−1 [V(J(x̄), x̄ + t(x − x̄)) − V(J(x̄), x̄))] .

Using the differentiability of V with respect to the second variable and ∇xV(z∗, x) = 2(J(x) − z∗), we
obtain

lim
t↓0

t−1 [V(J(x̄), x̄ + t(x − x̄)) − V(J(x̄), x̄))] = 〈∇xV(J(x̄), x̄); x − x̄〉 = 〈2(J(x̄) − J(x̄); x − x̄〉 = 0.

Therefore, we get

〈x∗; x − x̄〉 ≤ f (x) − f (x̄), ∀x ∈ S .
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Conversely, let x∗ ∈ X∗ satisfy the last inequality, then

f (x̄) − f (x) ≤ 〈x∗; x̄ − x〉

≤ 〈x∗; x̄ − x〉 +
1

2λ
V(J(x̄), x)

≤
1

2λ
[V(J(x̄), x) − 2〈λx∗; x − x̄〉]

≤
1

2λ
[V(J(x̄) + λx∗, x) − V(J(x̄) + λx∗, x̄)] , ∀x ∈ S .

This gives
GV
λ, f (J(x̄) + λx∗, x̄) = eV

λ,S f (J(x̄) + λx∗),

which means that x̄ ∈ πλ, fS (J(x̄)+λx∗) and, hence, by definition of the set N f ,λ
S (x̄), we obtain x∗ ∈ N f ,λ

S (x̄),
and the proof is complete. �

Remark 4.1. When the set-valued mapping F is defined as F(x) = Ax − ξ with A : X → X∗ and
ξ∗ ∈ X∗, the proposed variational problem in the convex case (4.4) corresponds to the following well
known and well studied convex variational inequality (see, for instance, [2, 13, 14] and the references
therein):

Find x̄ ∈ S such that 〈Ax̄ − ξ, y − x̄〉 + f (y) − f (x̄) ≥ 0, ∀y ∈ S . (4.5)

We suggest the following algorithm to solve the proposed nonconvex variational problem (4.1)
under some natural and appropriate assumptions on S , f , and F.
Algorithm 1. Let δn ↓ 0 with δ0 be too small.

• Select x0 ∈ S , y∗0 ∈ F(x0) and λ > 0;
• For n ≥ 0,

– Compute zn+1 := J∗(J(xn) − λy∗n);
– Choose un+1 ∈ J∗(J(zn+1) + δnB∗) with π f ,λ

S (J(un+1)) , ∅;
– Choose xn+1 := πS (J(un+1)) and y∗n+1 ∈ F(xn+1).

Since S and f are not necessarily convex, the ( f , λ)-generalized projection π
f ,λ
S does not exist

necessarily for any x∗ ∈ X∗ \ J(S ) (see Example 2.1). However, our previous algorithm is well defined,
as we will prove in the following proposition.

Proposition 4.2. Assume that X is uniformly convex and uniformly smooth Banach space. The above
algorithm is well defined.

Proof. Let n ≥ 0 and xn ∈ S with y∗n ∈ F(xn). The point zn+1 is well defined since J and J∗ are
well defined and one-to-one, because the space X is assumed to be uniformly convex and uniformly
smooth. Now, since the ( f , λ)-generalized projection of J(zn+1) is not ensured, we use our main result
in Theorem 2.1 to choose some point J(un+1) ∈ X∗ too close to J(zn+1) so that ‖J(zn+1) − J(un+1)‖ ≤ δn

and π f ,λ
S (J(un+1)) is singleton. So, we take xn+1 := π

f ,λ
S (J(un+1)), and then we are done. �
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After proving the well definedness of the algorithm without any additional assumptions on λ, S , f ,
and F, we add some natural assumptions on the data to prove the convergence of the sequence {xn}n to
a solution of (4.1).

In our analysis, we need the following assumptions on S , f , and F:
AssumptionsA:

(1) The set S is compact;
(2) F is bounded on S by some constant L > 0;
(3) F has a closed graph on S . That is, for any convergent sequence {(xn, y∗n)}n in gph F the graph of

F with xn ∈ S , we have the limit (x̄, ȳ∗) := limn(xn, y∗n) stays in gph F ;
(4) There exists some constant µ > 0 and ξ > 0 such that

‖π
f ,λ
S (u∗1) − π f ,λ

S (u∗2)‖ ≤ ξ‖u∗1 − u∗2‖, for all u∗1, u
∗
2 ∈ J(S ) + µB∗;

(5) The constants µ, δ0, and λ satisfy:

0 < δ0 < µ and λ <
µ − δ0

L
.

Theorem 4.1. Let {xn}n be a sequence generated by Algorithm 1. Assume that the assumptionsA are
satisfied, then there exists a subsequence of {xn}n converging to a solution of (4.1).

Proof. By compactness of the set S and the construction of the sequence (xn)n, there exists a
subsequence (xnk) converging to some point x̄ ∈ S . We have to prove that x̄ is a solution of (4.1). That
is, −F(x̄)∩N f ,λ(x̄) , ∅, meaning there exists ȳ∗ ∈ F(x̄) such that −ȳ∗ ∈ N f ,λ

S (x̄), i.e., x̄ ∈ π f ,λ
S (J(x̄)−λȳ∗).

Set z̄ := J∗(J(x̄) − λȳ∗). By construction, we have xnk+1 = π
f ,λ
S (J(unk+1)). By closedness of the graph

of F in (4), we obtain easily that the sequence {y∗nk
}k is convergent to some limit ȳ∗ belonging to F(x̄).

Also, the continuity of J and J∗ ensure that the subsequence (znk)k converges to z̄ := J∗(J(x̄) − λȳ∗).
Also, by construction we have

‖J(unk+1) − J(z̄)‖ ≤ ‖J(unk+1) − J(znk+1)‖ + ‖J(znk+1) − J(z̄)‖
≤ δnk−1 + ‖J(znk+1) − J(z̄)‖ → 0,

which ensures that the subsequence (J(unk))k converges to J(z̄). Now, we have to prove that (J(un))n

and x̄ belong to J(S ) + µB. Using the choice of λ and the assumptions on the constants L, δ0 and µ, we
can write

dJ(S )(J(un)) ≤ dJ(S )(J(zn)) + ‖J(un) − J(zn)‖ ≤ λ‖y∗n−1‖ + δn−1 < λL + δ0 < µ

and
dJ(S )(J(z̄)) = dJ(S )(J(x̄) − λȳ∗) ≤ λ‖ȳ∗‖ < λL < µ,

which ensure that J(un) and J(z̄) belong to J(S ) + µB∗. Using the Lipschitz continuity of the ( f , λ)-
generalized projection on J(S ) + µB∗ we can write

‖π
f ,λ
S (J(z̄)) − x̄‖ = ‖π

f ,λ
S (J(z̄)) − π f ,λ

S (J(unk+1)) + xnk+1 − x̄‖

≤ ‖π
f ,λ
S (J(z̄)) − π f ,λ

S (J(unk+1))‖ + ‖xnk+1 − x̄‖
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≤ ξ‖J(unk+1) − J(z̄)‖ + ‖xnk+1 − x̄‖ → 0.

This ensures that x̄ = π
f ,λ
S (J(z̄)) = π

f ,λ
S (J(x̄) − λȳ∗), which ensures by definition of the set N f ,λ

S (x̄) that

−ȳ∗ ∈ N f ,λ
S (x̄).

Thus,
N f ,λ

S (x̄) ∩ [−F(x̄)] , ∅;

that is, x̄ is a solution of (4.1), thus completing the proof. �

Example 4.1. Assume that X is p-uniformly smooth and 2-uniformly convex space (for instance, X =

Lp with p ∈ (1, 2]), and consider the following nonconvex variational inequality: Find x̄ ∈ S and
y∗ ∈ F(x̄) such that

〈y∗, x̄ − y〉 + f (y) − f (x̄) ≥ − 1
2λV(J(x̄), y), ∀y ∈ S , (4.6)

where S is given by S := A2 ∪ (A2 + x0) and f = ψA with A := A1 ∪ (A1 + x0). Assume that A1 and A2

are two closed convex sets with A1 ∩ A2 = B (i.e., their intersection is the unit ball), and assume that
x0 is very far from both sets A1 and A2 so that A2 ∩ (A2 + x0) = ∅ and A1 ∩ (A1 + x0) = ∅. We assume,
for instance, that ‖x0‖ ≥ 2diam(A1 ∪ A2). Assume that the set A2 is compact, then by Theorem 4.1,
the noncovex variational inequality (4.6) admits a solution as a limit of a subsequence of the sequence
generated by Algorithm 1.

Proof. To do that, we have to prove that all the assumptions of Theorem 4.1 are fulfilled. First, we
need to check the two following equalities:{

A ∩ S = B ∪ (B + x0),
π

f ,λ
S (x∗) = πA∩S (x∗), ∀x∗ ∈ X∗.

The first equality follows directly from our assumption on x0 and some simple computations. To prove
the second equality, we take x∗ ∈ X∗ and any λ > 0 and let x̄ ∈ π f ,λ

S (x∗). Then, x̄ ∈ S with

f (x̄) +
1

2λ
V(x∗; x̄) ≤ f (y) +

1
2λ

V(x∗, y), ∀y ∈ S .

This inequality ensures that x̄ has to be in A and, hence, x̄ ∈ A ∩ S with

1
2λ

V(x∗; x̄) ≤ f (y) +
1

2λ
V(x∗, y), ∀y ∈ S .

Since λ > 0, we deduce that
V(x∗; x̄) ≤ V(x∗, y), ∀y ∈ A ∩ S .

This ensures by definition that x̄ ∈ πA∩S (x∗). In a similar way, we prove the converse direction.
Now, we recall two results from [7].

(1) Example 4.10 in [7]. The set B ∪ (B + x0) with ‖x0‖ > 3 is a closed nonempty nonconvex set that
is uniformly generalized prox-regular for some positive constant r > 0 in the sense of [7].
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(2) Theorem 4.4 in [7]. If X is q-uniformly convex and K is a bounded set, which is uniformly
generalized prox-regular for some positive constant r > 0, then there exists some r′ ∈ (0, r) and
γ > 0 such that

‖πK(x∗) − πK(y∗)‖ ≤ γ‖x∗ − y∗‖
1

q−1 , ∀x∗, y∗ ∈ UV
K(r′).

Here, UV
K(r′) := {x∗ ∈ X∗ : inf

y∈K
V(x∗, y) ≤ r′2}.

Since the space X∗ is 2-uniformly smooth, there exists some α > 0 such that V(x∗, y) ≤ α‖x∗ −
J(y)‖2, ∀y ∈ S . Here, α depends only on S and the space X∗. Choose µ ∈ (0, r′

√
α
), then for any

x∗ ∈ J(S ) + µB∗ we have

inf
s∈S

V(x∗, s) ≤ α inf
s∈S
‖x∗ − J(s)‖2 ≤ αµ2 < r′2;

that is, x∗ ∈ UV
S (r′). Combining now the above results (1) and (2), we have A ∩ S = B ∪ (B + x0) is

bounded uniformly generalized prox-regular for some r > 0, and so there exists r′ ∈ (0, r) such that
πA∩S is Lispchitz continuous on UV

A∩S (r′), and in particular on J(S ) + µB∗ for some µ > 0. Therefore,
all the assumptions of Theorem 4.1 are satisfied, and so the sequence generated by Algorithm 1 admits
a subsequence converging to a solution of the nonconvex variational inequality (4.6). �

Remark 4.2. It is very important to mention that the existence of solution of (4.6) cannot be obtained
by any other existence results due to the nonconvexity of all the data of the considered problem, the set
S and the function f .
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