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Abstract: This paper develops a method for computing the l∞-induced norm of a multivariable
discrete-time linear system, for which an infinite-dimensional matrix should be intrinsically concerned
with. To make such a computation feasible, we treat the infinite-dimensional matrix in a truncated
fashion, and an upper bound and a lower bound on the l∞-induced norm of the original multivariable
discrete-time linear system are derived. More precisely, the matrix ∞-norm of the (infinite-
dimensional) tail part can be approximately computed by deriving its upper and lower bounds, while
that of the (finite-dimensional) truncated part can be exactly obtained. With these values, an upper
bound and a lower bound on the original l∞-induced norm can be computed. Furthermore, these bounds
are shown to converge to each other within an exponential order of N, where N is the corresponding
truncation parameter. Finally, some numerical examples are provided to demonstrate the theoretical
validity and practical effectiveness of the developed computation method.
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1. Introduction

The problem that evaluates the effects of external disturbance on the regulated output in control
systems has been regarded as one of the most important issues in the control system society. For the
purpose of quantitatively evaluating some desired performances of the control systems, various system
norms have been taken depending on the nature of the disturbances and the control objectives.

For instance, in [1–6], the H∞ norm is concerned with evaluating the possible maximum ratio
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between the energies of the disturbance and the regulated output, i.e., the L2-induced norm (or
the l2-induced norm) for the continuous-time case (or the discrete-time case). To consider the
input/output behavior of control systems in a mixed fashion, the generalized H2 norm is taken
in [6–11] for assessing the maximum magnitude of the regulated output for the worst disturbance with
a unit energy, i.e., the induced norm from L2 to L∞ (or from l2 to l∞) for the continuous-time case (or
the discrete-time case).

Even though these two induced norms are sometimes practically meaningful, they do not take into
account the effects of bounded persistent disturbances on the regulated output. To address this issue,
the L∞-induced norm or the l∞-induced norm could be employed for evaluating the effects of the above
disturbances on the regulated output in continuous-time systems [12–14] or discrete-time systems [14–
17], respectively. However, in contrast to the cases of the H∞ norm and the generalized H2 norm, whose
analytic computations are possible for both the pure continuous-time and discrete-time systems, it is
a non-trivial task to explicitly compute the L∞-induced norm and the l∞-induced norm, even for the
pure continuous-time and discrete-time systems. This is because the integrals and sums of absolute
values for impulse responses should be computed in the analysis problems of the L∞-induced and l∞-
induced norms, respectively. In a similar line, the L∞-induced norms in previous studies [12–14] are
confined to the case of single-input/single-output (SISO) systems, and no possible extension for the
case of general multivariable systems is discussed in those studies. To solve this difficulty in the case
of continuous-time multivariable systems, an upper bound and a lower bound on the L∞-induced norm
are derived in [18, 19] with the associated convergence analysis. These results are further considered
in an extensive fashion to more involved systems such as sampled data systems [20–23], nonlinear
systems [24] and so on.

Similarly to the problems of dealing with the discrete-time l∞-induced norm [14–17], on the other
hand, an infinite number of variables or constraints should be concerned with. This intrinsic
characteristic also leads to an infinite number of computations for the treatment of the l∞-induced
norm of discrete-time linear systems, even for the analysis problem. As a pioneering study to alleviate
this difficulty, the relationship between the l∞-induced norm and the root mean square (RMS) gain for
discrete-time linear systems is discussed in [25]. Based on the results of that study, a sophisticated
method for computing the l∞-induced norm is subsequently introduced in [26]. However, the methods
in [25, 26] are limited to the case of SISO discrete-time linear systems, and no argument on their
extensions to the general multivariable case is given. Furthermore, no clear convergence order is
derived in [25, 26], although a sort of approximate computation is used in those studies.

With this in mind, we develop a new approximate method for computing the l∞-induced norm of
discrete-time linear systems, compatible with the general multivariable case. Motivated by the fact that
the l∞-induced norm coincides with the∞-norm of an infinite-dimensional matrix, a truncation scheme
of the infinite-dimensional matrix is provided. Here, the∞-norm of the (infinite-dimensional) tail part
can be approximately computed within any degree of accuracy, while that of the finite-dimensional
truncated part can be exactly obtained. More precisely, we derive an upper bound and a lower bound
on the ∞-norm of the tail part, in terms of the sum of a geometric sequence and the generalized H2

norm of discrete-time linear systems, respectively. They are further shown to converge to each other
within an exponential order of N, where N is the corresponding truncation parameter. To summarize,
these arguments can lead to computable upper and lower bounds on the l∞-induced norm with the
convergence rate no smaller than ρN for a constant 0 < ρ < 1.
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This paper is organized as follows. The l∞-induced norm of multivariable discrete-time linear
systems and the issues to be tackled are introduced in Section 2. The main results of this paper, i.e., a
method for computing an upper bound and a lower bound on the l∞-induced norm and the relevant
convergence analysis, are provided in Section 3. Based on the arguments in Section 3, a
bisection-based computation method is also introduced in Section 4. Some numerical examples are
given in Section 5 to demonstrate the overall arguments derived in this paper. Some concluding
remarks are provided in Section 6. On the other hand, the notations used in this paper are summarized
in Table 1.

Table 1. The notations used in this paper.

Notation Meaning
N0 The set of nonnegative integers
Rν The set of ν-dimensional real-valued vectors
λmax(·) The maximum eigenvalue of (·)
ceil(·) The ceiling function of a scalar, i.e., ceil(v) := min{n ∈ N0 : n ≥ v}
| · |1 The 1-norm of a real-valued matrix, i.e., |A|1 := max j

∑
i |Ai j|

| · |2 The 2-norm of a real-valued matrix, i.e., |A|2 := λmax(AT A)
1
2

| · |∞ The∞-norm of a real-valued matrix, i.e., |A|∞ := maxi
∑

j |Ai j|

∥ · ∥2 The l2-norm of a real-valued sequence, i.e., ∥ f ∥22 :=
∑∞

k=0 f T
k fk

∥ · ∥∞ The l∞-norm of a real-valued sequence, or the l∞-induced norm of an
operator, i.e., ∥ f ∥∞ := supk∈N∪0 | fk|∞, ∥T∥∞ := sup∥w∥∞≤1 ∥Tw∥∞

∥ · ∥GH2 The generalized H2 norm, i.e., ∥T∥GH2 := sup∥w∥2≤1 ∥Tw∥∞

2. Truncated fashion to the l∞-induced norm of discrete-time linear systems

Let us consider the multivariable discrete-time linear system G given by

G :

xk+1 = Axk + Buk,

yk = Cxk + Duk,
(2.1)

where xk ∈ R
n is the state, uk ∈ R

nu is the exogenous disturbance and yk ∈ R
ny is the regulated output,

with which the sizes of the matrices are determined by A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu .
To ensure that the l∞-induced norm of G is bounded and well-defined, we assume that A is Schur
stable (i.e., all the eigenvalues of A are located inside the unit circle).

For this system, we first note that

yk =

k−1∑
i=0

CAk−i−1Bui + Duk + Akx0. (2.2)

Based on the fact that the Schur stability assumption ensures the convergence of Ak to 0 as k becomes
larger, let us denote the corresponding input/output operator by G, while ignoring the third term in the
right-hand-side (RHS) of (2.2), equivalently to the corresponding existing studies [16, 27], i.e.,

(Gu)k := yk =

k−1∑
i=0

CAk−i−1Bui + Duk. (2.3)
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This further admits the Toeplitz matrix-based representation described by
y0

y1

y2
...

 =


D 0 · · · · · · · · ·

CB D · · · · · · · · ·

CAB CB D · · · · · ·
...

. . .
. . .
. . .
. . .



u0

u1

u2
...

 . (2.4)

On the other hand, we next note that the l∞-induced norm is defined as the supremum of the ratio
between the exogenous disturbance and regulated output in terms of their l∞ norms, i.e.,

∥G∥∞ := sup
∥u∥∞,0

∥y∥∞
∥u∥∞

= sup
∥u∥∞≤1

∥y∥∞
∥u∥∞

= sup
∥u∥∞=1

∥y∥∞. (2.5)

From the point of view of (2.5) in (2.4), it immediately follows that the l∞-induced norm coincides with
the matrix∞-norm of the last block row matrix of the Toeplitz matrix (while conversely reordering the
elements) defined as

P :=
[
D CB CAB CA2B · · ·

]
. (2.6)

In other words, we can reinterpret the problem of computing the l∞-induced norm ∥G∥∞ by that of
computing the matrix∞-norm of P (described by (2.6)), i.e.,

∥G∥∞ = |P|∞. (2.7)

As clarified from the definition of P in (2.6), however, a direct and exact computation of the ∞-norm
|P|∞ is quite difficult due to an infinite number of columns in P. To alleviate this difficulty, we treat P
in a truncated fashion described by

P = P−N + P+N , (2.8)

where

P−N :=
[
D CB CAB · · · CAN B 0 · · ·

]
, (2.9)

P+N :=
[
0 · · · 0 CAN+1B CAN+2B · · ·

]
, (2.10)

where N ∈ N0 is the truncation parameter.
It would be worthwhile to note that |P−N |∞ for any finite N ∈ N0 can be exactly obtained and this

value converges to |P|∞(= ∥G∥∞) as the truncation parameter N becomes larger, since |P+N |∞ tends to 0
by taking N larger from the stability assumption on A (and the details will be provided in the following
section). In the same line, the infinite-dimensional matrix P−N is redefined by ignoring the zero terms,
i.e.,

P−N =
[
D CB CAB · · · CAN B

]
, (2.11)

because this replacement does not affect computing the l∞-induced norm |P|∞ and is just for the
simplicity of the argument. From the definition of P−N and P, we are led to the following result.
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Theorem 2.1. The matrix∞-norm of the finite dimensional matrix P−N converges to that of the infinite
dimensional matrix P, i.e.,

|P−N |∞ → |P|∞ (N → ∞). (2.12)

Furthermore, the matrix∞-norm |P|∞ coincides with the l∞-induced norm ∥G∥∞.

This theorem implies that taking a sufficiently large N in |P−N |∞ is theoretically meaningful for
computing the original l∞-induced norm ∥G∥∞ = |P|∞. However, |P−N |∞ corresponds to a just lower
bound on |P|∞. More importantly, it is still unclear how close the approximate value |P−N |∞ for a
given N is to the original value of the l∞-induced norm ∥G∥∞ = |P|∞. Hence, it is required to treat the
tail part P+N in a rigorous fashion to derive a more accurate computation of |P|∞. With respect to this,
the following section develops an approximate approach to the tail part P+N , by which an upper bound
and a lower bound on |P|∞ together with the corresponding convergence rate could be derived.

3. Upper and lower bounds on the l∞-induced norm ∥G∥∞ with convergence analysis

This section introduces the main results of this paper, i.e., sophisticated arguments on dealing
with P+N tailored to computing an upper bound and a lower bound on |P|∞.

As a preliminary step to establishing such arguments, we first denote for i = 1, . . . , ny and j =
1, . . . , nu the i-th row vector of C, j-th column vector of B and (i, j)-th element of D by Ci, B j and Di j,
respectively. Then, the matrix∞-norms |P|∞, |P−N |∞ and |P+N |∞ can be described by

|P|∞ = max
1≤i≤ny

nu∑
j=1

(|Di j| +

∞∑
k=0

|CiAkB j|), (3.1)

|P−N |∞ = max
1≤i≤ny

nu∑
j=1

(|Di j| +

N∑
k=0

|CiAkB j|), (3.2)

|P+N |∞ = max
1≤i≤ny

nu∑
j=1

∞∑
k=N+1

|CiAkB j|, (3.3)

where CiAkB j and Di j are scalars for all i = 1, . . . , ny and j = 1, . . . , nu from the definitions of Ci, B j

and Di j.
We next define the scalar-valued constants ρi, ρ−iN , and ρ+iN for i = 1, . . . , ny, respectively as

ρi :=
nu∑
j=1

|Di j| +

∞∑
k=0

|CiAkB j|

 , (3.4)

ρ−iN :=
nu∑
j=1

|Di j| +

N∑
k=0

|CiAkB j|

 , (3.5)

ρ+iN :=
nu∑
j=1

∞∑
k=N+1

|CiAkB j|. (3.6)
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These scalar-value constants ρi, ρ
−
iN and ρ+iN coincide with the matrix ∞-norms of the ith row vectors

of P, P−N and P+N , respectively. Then, it immediately follows from the definition of the matrix ∞-norm
that

|P|∞ = |ρ|∞ = |ρ−N + ρ
+
N |∞, (3.7)

with

ρ :=
[
ρ1 ρ2 · · · ρny

]T
, (3.8)

ρ−N :=
[
ρ−1N ρ−2N · · · ρ−nyN

]T
, (3.9)

ρ+N :=
[
ρ+1N ρ+2N · · · ρ+nyN

]T
. (3.10)

For any fixed N ∈ N, the computation of ρ−iN can be conducted immediately, while that of ρ+iN is still
quite difficult due to the infinite-dimensional property of P+N . With respect to this issue, we first note
that all the elements of ρ, ρ−N and ρ+N are nonnegative. Hence, if we can derive an upper bound and
a (positive) lower bound on ρ+iN for each i = 1, . . . , ny, then replacing ρ+iN with these values in (3.7)
leads to an upper bound and a lower bound on |P|∞. In this sense, we develop a method for computing
such upper and lower bounds and establish the corresponding convergence property in the following
subsections.

3.1. Upper and lower bounds on ρ+N
Regarding deriving an upper bound and a lower bound on ρ+iN , we first note that ρ+iN defined as (3.6)

coincides with the l∞-induced norm of the following multi-input/single-output (MISO) discrete-time
system G+iN .

G+iN :

xk+1 = Axk + Buk,

yk = CiAN+1xk.
(3.11)

Equivalently to the case of G, let us denote the input/output operator of G+iN by G+iN . Based on the fact
that ρ+iN = ∥G

+
iN∥∞, we provide the following lemma associated with an upper bound on ∥G+iN∥∞(= ρ+iN).

Lemma 3.1. With an L ∈ N such that |AL|∞ < 1, the inequality

∥G+iN∥∞ ≤
|CiANL|∞ · |B|∞

1 − |AL|∞
=: ρ+iNL, (3.12)

holds, where

ANL :=
[
AN+1 AN+2 · · · AN+L

]
. (3.13)

Remark 3.1. There should exist a finite L ∈ N ensuring |AL|∞ < 1 because of the Schur stability
assumption on A.

Proof. It readily follows from (3.6) together with ∥G+iN∥∞ = ρ
+
iN that

∥G+iN∥∞ = ρ
+
iN =

nu∑
j=1

∞∑
k=N+1

|CiAkB j| =

∞∑
k=N+1

nu∑
j=1

|CiAkB j| =

∞∑
k=N+1

|CiAkB|∞, (3.14)
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where the last equality follows by the fact that

|CiAkB|∞ =
∣∣∣∣CiAk

[
B1 · · · Bnu

]∣∣∣∣
∞
=

∣∣∣∣[CiAkB1 · · · CiAkBnu

]∣∣∣∣
∞
=

nu∑
j=1

|CiAkB j|. (3.15)

From |CiAkB|∞ ≤ |CiAk|∞ · |B|∞, (3.14) further admits for an L ∈ N0 such that |AL|∞ < 1 the
representation

∥G+iN∥∞ ≤
∞∑

k=N+1

|CiAk|∞ · |B|∞ =
∞∑

k=0

(
|CiAN+1+Lk|∞ + · · · + |CiAN+L+Lk|∞

)
· |B|∞. (3.16)

Here, note that(
|CiAN+1+Lk|∞ + · · · + |CiAN+L+Lk|∞

)
≤

(
|CiAN+1|∞ + · · · + |CiAN+L|∞

)
· |ALk|∞

≤
(
|CiAN+1|∞ + · · · + |CiAN+L|∞

)
· |AL|k∞. (3.17)

Substituting this into (3.16) leads to

∥G+iN∥∞ ≤
∞∑

k=0

(
|CiAN+1|∞ + · · · + |CiAN+L|∞

)
· |B|∞ · |AL|k∞ =

(
|CiAN+1|∞ + · · · + |CiAN+L|∞

)
· |B|∞

1 − |AL|∞
.

(3.18)

Because CiAk is a row vector for all k ∈ N0, it immediately follows from the definition of the matrix
∞-norm that

|CiAN+1|∞ + · · · + |CiAN+L|∞ =
∣∣∣∣[CiAN+1 · · · CiAN+L

]∣∣∣∣
∞
= |CiANL|∞. (3.19)

By combining (3.18) and (3.19), we can easily see that

∥G+iN∥∞ ≤
|CiANL|∞ · |B|∞

1 − |AL|∞
= ρ+iNL. (3.20)

This completes the proof.

This lemma can be regarded as a discrete-time version of Proposition 2 in [20] for the L∞-induced
norm analysis of sampled-data systems. We can see from Lemma 3.1 that an upper bound on ρ+iN can be
readily obtained by ρ+iNL defined as (3.12), and this upper bound obviously converges to 0 by taking N
larger since |ANL|∞ tends to 0 as N increases.

For the purpose of deriving a tighter bound for |ρ|∞, we next consider a lower bound
on ∥G+iN∥∞(= ρ+iN). Such a lower bound can be derived by using the relationship between the
generalized H2 norm (i.e., the induced norm from l2 to l∞) and the l∞-induced norm for MISO
discrete-time systems. In connection with this, we induce the following result.

Lemma 3.2. The inequality

ρ+
iN

:=
(
CiAN+1X(AT )N+1CT

i

) 1
2
≤ ρ+iN = ∥G

+
iN∥∞, (3.21)

holds, where X is the solution of the discrete-time Lyapunov equation given by

AXAT − X + BBT = 0. (3.22)
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Proof. We first note that

{u | ∥u∥2 ≤ α} ⊆ {u | ∥u∥∞ ≤ α}, ∀α > 0. (3.23)

This implies for any discrete-time linear system that the generalized H2 norm (i.e., the induced norm
from l2 to l∞) is not larger than the l∞-induced norm since they take the same performance measure (i.e.,
the l∞ norm) for the regulated output, although the domain of the former is involved in that of the latter.
In other words, it immediately follows that

∥G+iN∥GH2 ≤ ∥G
+
iN∥∞, (3.24)

where ∥ · ∥GH2 means the generalized H2 norm of (·), and thus ∥G+iN∥GH2 corresponds to a lower bound
on ∥G+iN∥∞ = ρ

+
iN . In regard to computing the generalized H2 norm of G+iN , we next note that the

corresponding input/output relation is given by

yk =

k−1∑
j=0

CiAN+k− jBu j. (3.25)

Applying the discrete-time Cauchy-Schwartz inequality to (3.25) leads to

y2
k ≤

 k−1∑
j=0

(CiAN+k− jB)(CiAN+k− jB)T

 ·
 k−1∑

j=0

uT
j u j

 , (3.26)

where the equality holds when ui = λ(CiAN+k−i−1B)T for a constant λ. This further establishes that

sup
∥u∥2=1

y2
k =

 k−1∑
j=0

(CiAN+k− jB)(CiAN+k− jB)T

 . (3.27)

By taking the supreumum of (3.27) in terms of k ∈ N0, we can obtain that

sup
k∈N0

sup
∥u∥2=1

y2
k =

 ∞∑
j=0

CiAN+ j+1BBT (AN+ j+1)TCT
i

 = CiAN+1X(AT )N+1CT
i , (3.28)

because
∞∑
j=0

A jBBT (AT ) j = X, (3.29)

where X is the solution to the discrete-time Lyapunov equation described by

AXAT − X + BBT = 0. (3.30)

This completes the proof.

This lemma provides a readily computable lower bound on the l∞-induced norm of the tail
system G+iN , i.e., ρ+iN . It is also obvious from (3.21) that the lower bound ρ+

iN
converges to 0 as N

becomes larger since A is Schur stable.
From the point of view of (3.7) based on Lemmas 3.1 and 3.2, we can obtain the following theorem

relevant to an upper bound and a lower bound on ∥G∥∞ = |P|∞.
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Theorem 3.1. Consider the column vectors ρ+NL and ρ+
N

defined respectively as

ρ+NL :=
[
ρ+1NL · · · ρ+nyNL

]
, (3.31)

ρ+
N

:=
[
ρ+

1N
· · · ρ+

nyN

]
. (3.32)

Then, the following inequality holds:

|ρ−N + ρ
+

N
|∞ ≤ |P|∞ ≤ |ρ−N + ρ

+
NL|∞. (3.33)

Furthermore, the gap between the upper and lower bounds in (3.33) converges to 0 within an
exponential order of N regardless of the choice of L.

Proof. The first assertion is readily established by the definition of the matrix ∞-norm. On the other
hand, if we note that

ρ+iNL − ρ
+

iN
≤ ρ+iNL, (3.34)

then the second assertion also immediately follows because ρ+iNL converges to 0 in the exponential order
of γN for some 0 < γ < 1 from the Schur stability assumption on A.

From Theorem 3.1, we can compute an upper bound and a lower bound on the l∞-induced
norm ∥G∥∞ = |P|∞ and ensure that they converge to each other within an exponential order of N
regardless of the choice of L.

3.2. Convergence analysis of truncation method

Beyond the naive analysis of the convergence property discussed in the preceding subsection, this
subsection aims at establishing more rigorous arguments. More precisely, we show that the gap
between the upper bound ρ+iNL and lower bound ρ+

iN
is monotonically decreasing in terms of N, and

clarifies that this gap should converge to the zero. To this end, we first take the notation e+iNL to denote
such a gap described by

e+iNL := ρ+iNL − ρ
+

iN
=
|CiANL|∞ · |B|∞

1 − |AL|∞
−

(
CiAN+1X(AT )N+1CT

i

) 1
2
. (3.35)

With this, we provide the following two lemmas associated with the convergence property of e+iNL.

Lemma 3.3. For each i = 1, 2, . . . , ny, e+iNL is a monotonically decreasing sequence in terms of N ∈ N0.

Proof. The objective of this proof is to show that

e+iN+1L ≤ e+iNL, (∀N ∈ N0). (3.36)

According to the definition of e+iNL in (3.35), we can see that

e+iN+1L − e+iNL

=

(
|CiAN+1L|∞ · |B|∞

1 − |AL|∞
−

(
CiAN+2X(AT )N+2CT

i

) 1
2

)
−

(
|CiANL|∞ · |B|∞

1 − |AL|∞
−

(
CiAN+1X(AT )N+1CT

i

) 1
2

)
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=

(
|CiAN+1L|∞ · |B|∞

1 − |AL|∞
−
|CiANL|∞ · |B|∞

1 − |AL|∞

)
+

((
CiAN+1X(AT )N+1CT

i

) 1
2
−

(
CiAN+2X(AT )N+2CT

i

) 1
2
)
. (3.37)

Substituting the triangular inequality

√
x −
√

y ≤
√

x − y (x ≥ y ≥ 0) (3.38)

into the second term of the right-hand-side (RHS) of (3.37) leads to

e+iN+1L − e+iNL ≤
|CiAN+1L|∞ · |B|∞

1 − |AL|∞
−
|CiANL|∞ · |B|∞

1 − |AL|∞
+

(
CiAN+1X(AT )N+1CT

i −CiAN+2X(AT )N+2CT
i

) 1
2
,

(3.39)

where the relation ‘CiAN+1X(AT )N+1CT
i ≥ CiAN+2X(AT )N+2CT

i ’ is established from

CiAN+1X(AT )N+1CT
i −CiAN+2X(AT )N+2CT

i = CiAN+1BBT (AT )N+1CT
i = |B

T (AT )N+1CT
i |

2
2 (3.40)

because X is the solution to the discrete-time Lyapunov equation AXAT − X + BBT = 0. Then, it
immediately follows from (3.39) and (3.40) that

e+iN+1L − e+iNL ≤
|CiAN+1L|∞ · |B|∞

1 − |AL|∞
−
|CiANL|∞ · |B|∞

1 − |AL|∞
+ |BT (AT )N+1CT

i |2

=
|
[
CiAN+2 · · · CiAN+L+1

]
|∞ · |B|∞

1 − |AL|∞
−
|
[
CiAN+1 · · · CiAN+L

]
|∞ · |B|∞

1 − |AL|∞
+ |BT (AT )N+1CT

i |2

=
|CiAN+L+1|∞ · |B|∞

1 − |AL|∞
−
|CiAN+1|∞ · |B|∞

1 − |AL|∞
+ |BT (AT )N+1CT

i |2

≤
|CiAN+1|∞ · |AL|∞ · |B|∞

1 − |AL|∞
−
|CiAN+1|∞ · |B|∞

1 − |AL|∞
+ |BT (AT )N+1CT

i |2

= −|CiAN+1|∞|B|∞ + |BT (AT )N+1CT
i |2. (3.41)

Because BT (AT )N+1CT
i is a column vector, the following inequality holds.

|BT (AT )N+1CT
i |2 ≤ |B

T (AT )N+1CT
i |1 ≤ |B

T |1|(AT )N+1CT
i |1 = |CiAN+1|∞|B|∞. (3.42)

Substituting (3.42) into (3.41) derives

e+iN+1L − e+iNL ≤ −|CiAN+1|∞|B|∞ + |BT (AT )N+1CT
i |2 ≤ −|CiAN+1|∞|B|∞ + |CiAN+1|∞|B|∞ = 0. (3.43)

This completes the proof.

This lemma clarifies that the gap between the upper bound ρ+iNL and the lower bound ρ+
iN

on ρ+iN
is monotonically decreasing as the truncation parameter N becomes larger. Furthermore, it might be
expected from Lemma 3.3 that this gap converges to a specific value. In connection with this, we are
led to the following lemma.

Lemma 3.4. For each i = 1, 2, . . . , ny, e+iNL converges to the zero in terms of N ∈ N0.
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Proof. The objective of this proof is to show that there exists an N0 ∈ N0 such that

|e+iNL| < ϵ, ∀N ≥ N0, (3.44)

for an arbitrary ϵ > 0. Based on the definition of e+iNL in (3.35), we note that

|e+iNL| =
|CiANL|∞ · |B|∞

1 − |AL|∞
−

(
CiAN+1X(AT )N+1CT

i

) 1
2
<
|CiANL|∞ · |B|∞

1 − |AL|∞
(3.45)

≤
|Ci

[
AN+1 AN+2 · · · AN+L

]
|∞ · |B|∞

1 − |AL|∞
≤
|Ci|∞ · |B|∞ · |

[
A A2 · · · AL

]
|∞

1 − |AL|∞
|AN |∞. (3.46)

If we take p, r ∈ N0 such that 0 ≤ r ≤ L − 1 and pL + r = N, we can further obtain that

|e+iNL| <
|Ci|∞ · |B|∞ · |

[
A A2 · · · AL

]
|∞

1 − |AL|∞
|ApL+r|∞ ≤

|Ci|∞ · |B|∞ · |
[
A A2 · · · AL

]
|∞

1 − |AL|∞
|Ar|∞ · |AL|p∞

(3.47)

≤
|Ci|∞ · |B|∞ · |

[
A A2 · · · AL

]
|∞

1 − |AL|∞

(
max

0≤r≤L−1
|Ar|∞

)
· |AL|p∞ =: γ|AL|p∞. (3.48)

Take p by

p = max(ceil(log|AL |∞
(
ϵ

γ
)), 1). (3.49)

With this p and an arbitrary 0 ≤ r ≤ L − 1, let N0 = pL + r. Then, it readily follows from (3.48) that

|e+iN0L|∞ < γ|A
L|p∞ ≤ ϵ. (3.50)

This together with the fact that e+iNL is monotonically decreasing in terms of n from Lemma 3.3
completes the proof.

This lemma implies that the gap between the upper bound ρ+iNL and the lower bound ρ+
iN

on ρ+iN
converges to the zero by taking the truncation parameter N larger.

From Lemmas 3.3 and 3.4, we obtain the following theorem, i.e., the main results in this subsection.

Theorem 3.2. The gap e+iNL between the upper bound ρ+iNL and the lower bound ρ+
iN

on ρ+iN is
monotonically decreasing and converges to the zero as the truncation parameter N becomes larger.

4. Bisection-based l∞-induced norm computation

For the practical applicability of the results in the preceding section, we develop a bisection-based
method for computing the l∞-induced norm. More precisely, we aim at finding an N ∈ N0

ensuring e+iNL < ϵ, ∀i = 1, . . . , ny for a given tolerance ϵ(> 0) via the bisection approach [28]. The
details can be represented by the following pseudo-code based Algorithm 1.
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Algorithm 1 Bisection-based method for computing the l∞-induced norm.
Input: System matrices A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, D ∈ Rny×nu , parameter L ∈ N0 such that |AL|∞ < 1, and tolerance
ϵ > 0
Solve AXAT − A + BBT = 0 and store X

Split the matrix C into the row vectors Ci (i = 1, 2, · · · , ny) and store it
AL ←

[
A A2 · · · AL

]
Init upper bound← 0, lower bound← 0, ρ−N ← 0, ρ+NL ← 0, and ρ+

N
← 0

for all i = 1 to ny do
Init N ← 0
for all m = 1 to∞ do

A2mL ← A2m
× AL

if
|CiANL|∞ · |B|∞

1 − |AL|∞
−

(
CiAN+1X(AT )N+1CT

i

) 1
2 < ϵ then

break
else

continue
end if

end for
x← 2m−1, y← 2m, and z←

x + y
2

while |x − y| , 1 do
Ã← Az and ÃL ← Ã × AL

if
|CiÃL|∞ · |B|∞

1 − |AL|∞
−

(
CiÃAXAT ÃT CT

i

) 1
2 < ϵ then

y← z and z←
x + y

2
else

x← z and z←
x + y

2
end if

end while
if N < max(x, y) then

N ← max(x, y)
end if
Ã← AN and ÃL ← Ã × AL

ρ−N[i]←
nu∑
j=1

(|Di j| +

N∑
k=0

|CiAkB j|)

ρ+NL[i]←
|CiÃL|∞ · |B|∞

1 − |AL|∞

ρ+
N

[i]←
(
CiÃAXAT ÃT CT

i

) 1
2

end for
upper bound← max

1≤i≤ny

(
ρ−N[i] + ρ+NL[i]

)
lower bound← max

1≤i≤ny

(
ρ−N[i] + ρ+

N
[i]

)
return upper bound, lower bound
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5. Numerical Examples

This section demonstrates the theoretical validity of the developed l∞-induced norm computation
method through a numerical example for a multivariable discrete-time linear system. Furthermore, the
practical effectiveness of the developed computation method is verified in a comparative fashion to the
method in [26] through a numerical example for a SISO discrete-time linear system.

5.1. Demonstration of Theoretical Validity with Multivariable Case

Let us consider the two-mass-spring-damper system as shown in Figure 1, where (m1,m2), (c1, c2),
(k1, k2), (d1, d2) and ( f1, f2) denote the masses, damping constants, spring constants, displacements
from the equilibrium points and external disturbances applied to the masses, respectively.

Figure 1. Two-mass-spring-damper system.

Taking x :=
[
d1 ḋ1 d2 ḋ2

]T
, u :=

[
f1 f2

]T
and y :=

[
d1 d2

]T
leads to the continuous-time

linear time-invariant (LTI) differential equation given by

G :



ẋ =


0 1 0 0

−
k1+k2

m1
−

c1+c2
m1

k2
m1

c2
m1

0 0 0 1
k2
m2

c2
m2

−
k2
m2
−

c2
m2

 x +


0 0
1

m1
0

0 0
0 1

m2

 u,

y =

1 0 0 0
0 0 1 0

 x.

(5.1)

In this 2-input/2-output (i.e., MIMO) case, let m1 = 2.0, m2 = 1.0, k1 = 4.0, k2 = 2.0, c1 = 1.5
and c2 = 0.5. For this continuous-time LTI system, we consider its discretization model through the
zero-order-hold (ZOH) method [29] with the sampling time T = 0.1, i.e.,

Gd :



xk+1 =


0.9856 0.0947 0.0047 0.0013
−0.2814 0.8916 0.0920 0.0277
0.0096 0.0027 0.9903 0.0972
0.1864 0.0555 −0.1918 0.9423

 xk +


0.0024 0.0000
0.0474 0.0013
0.0000 0.0049
0.0013 0.0972

 uk,

yk =

1 0 0 0
0 0 1 0

 xk,

(5.2)
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where xk := x(kT ), uk := u(t) (kT ≤ t < (k + 1)T ), and yk := y(kT ).
With L = 100 leading to (|AL|∞ = 0.3641), we conduct Algorithm 1 by taking the tolerance ϵ

ranging from 5 to 0.001. The results for the truncation parameter N completing this algorithm, the
upper and lower bounds provided in (3.33) of Theorem 3.1 (i.e., |ρ−N + ρ

+
NL|∞ and |ρ−N + ρ

+

N
|∞), the gap

between these bounds and the required CPU time are given in Table 2.

Table 2. Computation results for truncation parameter, upper bound, lower bound, and gap.

ϵ 5 1 0.1 0.01 0.001
N 56 153 292 428 567
Upper bound 7.557185 4.621345 3.964013 3.901031 3.894637
Lower bound 2.576044 3.631531 3.865266 3.891087 3.893644
Gap 4.98 × 100 9.90 × 10−1 9.87 × 10−1 9.94 × 10−3 9.92 × 10−4

CPU time [s] 2.43 × 10−3 4.68 × 10−3 6.23 × 10−3 7.38 × 10−3 1.03 × 10−2

We can observe from this table that the gap between the upper and lower bounds is monotonically
decreasing and converges to 0 by taking the truncation parameter N larger, as clarified in
Theorem 3.2 (as well as Theorem 3.1), although the CPU time with respect to completing
Algorithm 1 is naturally increasing as the truncation parameter N becomes larger.

To put it another way, this observation clearly demonstrates that taking the arguments in
Theorems 3.1 and 3.2 together with Algorithm 1 is valid for computing the l∞-induced norm of
multivariable discrete-time linear systems.

Furthermore, it would be worthwhile to note that the developed method for computing an
l∞-induced norm can be readily applied to more complex systems consisting of interconnections
between a number of mass-spring-damper elements, i.e., multiple mass-spring-damper systems.
These large-scale systems can be also described by multivariable discrete-time linear systems with a
number of system variables. Thus, the developed computation method can be used for multiple
mass-spring-damper systems regardless of their sizes, although the computational cost might increase
as the number of the sizes becomes larger.

5.2. Comparative study with SISO case

Let us consider the single mass-spring-damper system as shown in Figure 2, where m = 1.0, k = 1.5
and c = 0.5. With the sampling time T = 0.1, its discrete-time state space model is given by

Gd :


xk+1 =

 0.4343 0.6052
−0.9078 0.1317

 xk +

0.3772
0.6052

 uk =: Axk + buk

yk =
[
1 0

]
xk =: cxk

(5.3)
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Figure 2. Single mass-spring-damper system.

For this example, we evaluate the practical effectiveness of the developed l∞-induced norm
computation method by comparing it with the conventional computation method in [26], since the
structure of the conventional method is similar to that of the developed method. Simply put, the gap
between an upper bound and a lower bound in [26] is described by

2
n∑

i=1

σi(W1/2
o ANW1/2

c ) − σ1(W1/2
o ANW1/2

c ), (5.4)

where σi(·) is the ith largest singular value of (·) and Wc and Wo are the solutions to the following
discrete-time Lyapunov equations.

AWcAT −Wc + bbT = 0, AT WoA −Wo + cT c = 0. (5.5)

The results for the upper bound, the lower bound, the gap between these bounds and the required
CPU time relevant to the arguments in [26] with the truncation parameter N ranging from 10 to 80 are
given in Table 3, while those relevant to the developed arguments with the same truncation parameter
and L = 10 are provided in Table 4.

Table 3. Computation results with the conventional method [26].

N 10 20 40 80
Upper bound 2.1381590837 2.0111416154 1.9987362622 1.9986440193
Lower bound 1.9329088063 1.9943273164 1.9986265009 1.9986440142
Gap 2.05250 × 10−1 1.68143 × 10−2 1.09761 × 10−4 5.05627 × 10−9

CPU time [s] 3.50 × 10−4 1.04 × 10−3 3.03 × 10−3 1.24 × 10−2

Table 4. Computation results with the developed method.

N 10 20 40 80
Upper bound 2.0772671476 2.0059689593 1.9986925232 1.9986440178
Lower bound 1.9132465024 1.9921825468 1.9986010354 1.9986440133
Gap 1.64021 × 10−1 1.37864 × 10−2 9.14878 × 10−5 4.44698 × 10−9

CPU time [s] 1.29 × 10−4 2.02 × 10−4 3.71 × 10−4 7.27 × 10−4

It can be observed from these tables that the gap in the developed method is always smaller than
that in the conventional method [26] under the same truncation parameter N. More interestingly, the
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CPU time required for completing the developed method is smaller than that for completing the
conventional method under the same truncation parameter. To put it another way, these observations
clearly demonstrate that the developed method is superior to the conventional method [26] in
computing the l∞-induced norm of SISO discrete-time systems, by showing that the former is more
accurate and faster than the latter in this example. This clearly implies that the developed method is
superior to the conventional method in computing the discrete-time l∞-induced norm for this example,
and thus the former could be an effective alternative to the latter even for the SISO case.

6. Conclusions

This paper developed a new approximation method for computing the l∞-induced norm of a
multivariable discrete-time linear system. This computation problem was reinterpreted as finding
the ∞-norm of the infinite-dimensional matrix P corresponding to the input/output relation of the
system. To alleviate difficulties occurring from the infinite-dimensional property, we applied a
truncation idea to P, by which P is divided into the finite-dimensional truncated part P−N and the
infinite-dimensional tail part P+N with the truncation parameter N ∈ N0. An upper bound and a lower
bound on the ∞-norm of the latter part (i.e., |P+N |∞) were derived in terms of the sum of a geometric
sequence and the discrete-time generalized H2 norm, respectively, while the former part (i.e., |P−N |∞)
can be treated rigorously. They led to an upper bound and a lower bound on the l∞-induced norm of
the original multivariable discrete-time linear system, and the gap between these bounds was also
shown to tend as 0 within an exponential order of N. Based on these arguments, we further introduced
a bisection-based numerical algorithm for computing the l∞-induced norm. Finally, some numerical
studies were provided to demonstrate the overall arguments with respect to both the theoretical
validity and the practical effectiveness.
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