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Abstract: In this paper, we investigate the mixed solution of reduced biquaternion matrix equation
n∑

i=1
AiXiBi = E with sub-matrix constraints. With the help of LC-representation and the properties

of vector operator based on semi-tensor product of reduced biquaternion matrices, the reduced
biquaternion matrix equation (1.1) can be transformed into linear equations. A systematic method,
GH-representation, is proposed to decrease the number of variables of a special unknown reduced
biquaternion matrix and applied to solve the least squares problem of linear equations. Meanwhile,
we give the necessary and sufficient conditions for the compatibility of reduced biquaternion matrix
equation (1.1) under sub-matrix constraints. Numerical examples are given to demonstrate the results.
The method proposed in this paper is applied to color image restoration.
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1. Introduction

Linear matrix equations play an important role in many fields. Many researchers turn their
attention to the solution of real or complex linear matrix equations [1–4]. Since W. R. Hamilton
proposed quaternion and applied it to various aspects of physics, many models based on quaternion
matrix equations have emerged. Meanwhile, with the application of quaternion and quaternion matrix
equations in many fields such as the stability theory, cybernetics, quantum mechanics and color
images [5–11], the related theory research has become more meaningful [12–18]. However, the
non-commutativeity of quaternion multiplication will make it difficult to implement in many fields.

Reduced biquaternion with product commutability was proposed by Schtte and Wenzel [19] in
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1990, which is represented as
a = ar + aii + a jj + akk,

where i2 = k2 = −1, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = −j and ar, ai, a j, ak ∈ R. A reduced
biquaternion matrix A ∈ Hm×n

R can be expressed as

A = Ar + Aii + A jj + Akk = A1 + A2j,

where Ar, Ai, A j, Ak are real matrices, A1 = Ar + Aii, A2 = A j + Aki and the Frobenius norm of A is
defined as

‖A‖ =

√
‖Ar‖

2 + ‖Ai‖
2 +

∥∥∥A j

∥∥∥2
+ ‖Ak‖

2.

As soon as reduced biquaternion was proposed, it was applied in a digital filter. Ueda and
Takahashi [20] proved in 1993 that the first-order digital filter with reduced biquaternion coefficient
can realize any real coefficients digital filter less than order four. With the in-depth study of reduced
biquaternion, Pei et al. [21, 22] studied Fourier transform, the eigenvalue and the singular value
decomposition of reduced biquaternion matrix, respectively, which were used in signal and image
processing. In addition, the study of reduced biquaternion matrix equations has been a hot topic in
recent years. Yuan et al. [23] solved the Hermitian solution of the reduced biquaternion equation
(AXB,CXD) = (E,G) using the complex representation method, which can transform the problem in
reduced biquaternions into complex number fields. Hidayet Hüda Kösal [24] solved several special
least squares solutions of the reduced biquaternion matrix equation AX = B by using the e1 − e2

representation, and successfully applied the least squares pure imaginary solutions to color image
restoration. Chen et al. [25] presented the general solution and necessary and sufficient conditions for
the existence of an η-(anti) Hermitian solution to a constrained Sylvester-type generalized
communicative quaternion matrix equation. From above we can see that the study of the matrix
equation on reduced biquaternion is a very meaningful work. In this paper, we will study the reduced
biquaternion matrix equation with sub-matrix constraints.

The sub-matrix constraint problems were originally from a practical subsystem expansion problem.
Thus, researchers have great interest in studying such problems under different sub-matrix constraints.
For example, Gong et al. [26] discussed an anti-symmetric solution of AXAT = B for X with a leading
principal sub-matrix constraint. Zhao et al. [27] gave some necessary and sufficient conditions for the
solvability of the matrix equation AX = B with bisymmetrical central principal sub-matrix constraint.
Li et al. [28] proposed an efficient algorithm to study the symmetric solution of matrix equation AXB+

CYD = E with a special sub-matrix constraint. However, as far as we know, the sub-matrix problem
for the reduced biquaternion matrix equation

n∑
i=1

AiXiBi = E (1.1)

has not been considered yet. In this paper, we will discuss the mixed solution of (1.1) with sub-matrix
constraints.

Definition 1.1. If n − q is even, A = (ai j) ∈ Hn×n
R , and

Ac(q) = (Ai j) n−q
2 +1≤i, j≤n− n−q

2
,
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then Ac(q) is called a q-order central principal matrix of A. Clearly, A has only even order central
principal matrices when n is even, and odd central principal matrices when n is odd.

Definition 1.2. Suppose A = (ai j) ∈ Hn×n
R .

1) The matrix A is Hermitian if ai j = a ji, the set of reduced biquaternion Hermition matrices is
denoted by SHn×n

R .
2) The matrix A is Centro-symmetric if ai j = an−i+1,n− j+1, the set of reduced biquaternion
centro-symmetric matrices is denoted by CHn×n

R .
3) The matrix A is Bi-hermitian if ai j = an−i+1,n− j+1 = a ji, the set of reduced biquaternion Bi-hermitian
matrices is denoted by BHn×n

R .

For a given set of matrices
{
Xti

}
, (i = 1, 2, · · · , n), where Xti ∈ SH

ti×ti
R , i = 1, 2, · · · , s; Xti ∈ CH

ti×ti
R ,

i = s + 1, s + 2, · · · ,m; Xti ∈ BH
ti×ti
R , i = m + 1,m + 2, · · · , n. Suppose

θ1 =

{
X
∣∣∣∣∣X ∈ SHn×n

R , and X([1 : ti]) = Xti

}
, (i = 1, 2, · · · , s),

θ2 =

{
X
∣∣∣∣∣X ∈ CHn×n

R , and Xc(ti) = Xti

}
, (i = s + 1, s + 2, · · · ,m),

θ3 =

{
X
∣∣∣∣∣X ∈ BHn×n

R , and Xc(ti) = Xti

}
, (i = m + 1,m + 2, · · · , n).

Problem 1. Given Ai ∈ H
m×n
R , Bi ∈ H

n×q
R , E ∈ Hm×q

R , and
{
Xti

}
, (i = 1, 2, · · · , n), find a matrix group

(X1, X2, · · · , Xn) satisfying

||
n∑

i=1
AiXiBi − E|| = min,

and denoted the set of such matrix group

S Q =

{
(X1, X2, · · · , Xn)

∣∣∣∣∣ ∥∥∥∥∥ n∑
i=1

AiXiBi − E
∥∥∥∥∥ = min

}
,

where, Xi ∈ θ1, i = 1, 2, · · · , s, Xt ∈ θ2, t = s + 1, s + 2, · · · ,m, Xk ∈ θ3, k = m + 1,m + 2, · · · , n. Find
out

(
XQ

1 , X
Q
2 , · · · , X

Q
n

)
∈ S Q such that∥∥∥∥(XQ

1 , X
Q
2 , · · · , X

Q
n

)∥∥∥∥ = min
(X1,X2,··· ,Xn)∈S Q

‖(X1, X2, · · · , Xn)‖ .(
XQ

1 , X
Q
2 , · · · , X

Q
n

)
is called the minimal norm least squares mixed solution of (1.1). If min = 0,(

XQ
1 , X

Q
2 , · · · , X

Q
n

)
is called the minimal norm mixed solution of (1.1).

Our main tool is the semi-tensor product (STP) of matrices, which is a generalization of
conventional matrix product. With the help of the STP of matrices, many meaningful problems have
been resolved and scholars have obtained many constructive results [29–32]. Recently, STP has been
applied to the study of the matrix equation [33–35]. However, the limitation of the expanded
dimension leads to high computational complexity. This paper aims at providing an improved method
based on STP to reduce the computational complexity, as well as extend this method to solve reduced
biquaternion matrix equations.

The main contributions of this paper include: (i) The algebraic expression of isomorphism relation
between complex matrix and reduced biquaternion matrix is defined by using STP, which is called
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LC-representation of reduced biquaternion matrix. At the same time, the necessary and sufficient
conditions for computable algebraic expressions are given by using the structure matrix of reduced
biquaternion product; (ii) A new method to reduce the number of variables of unknown reduced
biquaternion matrix with special structure is proposed, which is called GH-representation. Relative to
the H-representation method, the GH-representation method proposed in this paper is suitable for
more special matrix forms. Meanwhile, compared with the method of element simplification in [36],
the GH-representation method is more systematic.

Notations: R/HR represent the set of real numbers/reduced biquaternions. Rt represents the set of
all real column vectors with order t. Rm×n/Hm×n

R represent the set of all m × n real matrices/reduced
biquaternion matrices, respectively. AT , AH and A† represent the transpose, the conjugate transpose and
Moore-Penrose (MP) inverse of matrix A, respectively. ‖·‖ represents the Frobenius norm of a matrix.

The rest of this paper is organized as follows: Section 2 provides the definition and properties of STP
on reduced biquaternion. The main results of this paper are contained in Section 3, in which we define
LC-representation of the reduced biquaternion matrix, then the vector operator on reduced biquaternion
matrices are proposed. The general expression of least squares mixed solution of Problem 1 and the
necessary and sufficient conditions for compatibility are also given in this section. Section 4 provides
the corresponding algorithm of Problem 1 and two numerical examples are proposed to illustrate the
effectiveness of the algorithm. Section 5 applies the proposed algorithm to color image restoration.
Finally, we make some concluding remarks in Section 6.

2. Basic definitions

In this section we give some necessary preliminaries that will be used throughout this paper, and
we introduce some definitions and properties of STP on reduced biquaternion [37].

Definition 2.1. Let A = (ai j) ∈ Hm×n
R and B = (bi j) ∈ H

p×q
R , then, the Kronecker product of A and B is

defined to be the following block matrix

A ⊗ B =


a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 .
Lemma 2.2. Let A ∈ Hm×n

R , B ∈ Hn×p
R , C ∈ Hn×s

R , and D ∈ Hp×t
R , then

1) (A ⊗ B) ⊗C = A ⊗ (B ⊗C).

2) (A ⊗ B)(C ⊗ D) = AC ⊗ BD.

Definition 2.3. Let A ∈ Hm×n
R , B ∈ Hp×q

R and t = lcm(n, p) be the least common multiple of n and p.
Then, the left STP of A and B, denoted by A n B, is defined as A n B =

(
A ⊗ It/n

) (
B ⊗ It/p

)
.

Definition 2.4. Let A ∈ Hm×n
R , B ∈ Hp×q

R and t = lcm(n, p) be the least common multiple of n and p,
then the right STP of A and B, denoted by A o B, is defined as A o B =

(
It/n ⊗ A

) (
It/p ⊗ B

)
.
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Example 2.5. Let A =
(
2 + i −1 + j 1 + k 2 + i + j

)
, B =

(
i j

)T
, then

A n B =
(
2 + i −1 + j 1 + k 2 + i + j

)
(B ⊗ I2) =

(
2 + i −1 + j 1 + k 2 + i + j

) 
i 0
0 i
j 0
0 j


=

(
−1 + 3i + j 1 − i + 2j + 2k

)
=

(
2 + i −1 + j

)
i +

(
1 + k 2 + i + j

)
j,

A o B =
(
2 + i −1 + j 1 + k 2 + i + j

)
(I2 ⊗ B) =

(
2 + i −1 + j 1 + k 2 + i + j

) 
i 0
j 0
0 i
0 j


=

(
2i − j 1 + i + j + k

)
,

(
2 + i −1 + j

)
i +

(
1 + k 2 + i + j

)
j.

If n = p, the STP of matrices reduces to the common matrix product and the STP of matrices retains
most of the properties of common matrix product. From Example 2.5, we can obtain one difference
between the left STP and the right STP is that the right STP does not satisfy the block product law.
This difference makes the left STP more useful. Next, we mainly discuss some properties of the left
STP.

Proposition 2.6. Assume the dimensions of the matrices involved in (1) and (2) meet the dimension
requirement such that n is well defined, then we have

(1) (Distributive Law) F n (aG ± bH) = aF nG ± bF n H,

(aG ± bH) n F = aG n F ± bH n F, a, b ∈ HR.

(2) (Associative Law)
(F nG) n H = F n (G n H).

Definition 2.7. For A ∈ Hm×n
R , let at = (a1t, a2t, · · · , amt), t = 1, 2, · · · , n, ap = (ap1, ap2, · · · , apn),

p = 1, 2, · · · ,m, we define

Vc(A) = (a1, a2, · · · , an)T ∈ Hmn×1
R ,Vr(A) = (a1, a2, · · · , am)T ∈ Hmn×1

R ,

and Vr(A) = Vc(AT ).

Definition 2.8. A swap matrix W[m,n] is an mn × mn matrix defined as follows: Its rows and columns
are labeled by double index (i, j), the columns are arranged by the ordered multi-index Id(i, j; m, n),
and the rows are arranged by the order multi-index Id( j, i; n,m). The element at position [(I, J), (i, j)]
is

W[m,n](I, J)(i, j) = δI,J
i, j =

1, I = i and J = j,

0, otherwise.
(2.1)

Next, we illustrate the construction of swap matrix through a simple example.

AIMS Mathematics Volume 8, Issue 11, 27901–27923.
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Example 2.9. Let m = 3, n = 2. The swap matrix W[m,n] can be constructed as follows: Using
double index (i, j) to label its columns and rows, the columns of W[m,n] are labeled by Id(i, j; 3, 2), i.e.,
(11, 12, 21, 22, 31, 32) and the rows of W[m,n] are labeled by Id( j, i; 2, 3), i.e., (11, 21, 31, 12, 22, 32).
According to (2.1), we have

W[3,2] =



(11) (12) (21) (22) (31) (32)
(11) 1 0 0 0 0 0
(21) 0 0 1 0 0 0
(31) 0 0 0 0 1 0
(12) 0 1 0 0 0 0
(22) 0 0 0 1 0 0
(32) 0 0 0 0 0 1


.

The followings are some useful pesudo-commutative properties. Later on, you can see that they are
very useful.

Proposition 2.10. Let A ∈ Hm×n
R , then

(1) W[m,q] n A nW[q,n] = Iq ⊗ A,

(2) W[m,n] n Vr(A) = Vc(A), W[n,m] n Vc(A) = Vr(A).

As a kind of cross-dimensional matrix theory with far-reaching significance, the above proposed
extended STP not only enriches the reduced biquaternion matrix theory, but also provides a new method
for solving reduced biquaternion matrix equation. The two classic conclusions of real matrix equation
are stated as follows.

Lemma 2.11. [38] The least squares solutions of the linear system of equations Ax = b, with A ∈ Rm×n

and b ∈ Rm, can be represented as

x = A†b +
(
I − A†A

)
y,

where y ∈ Rn is an arbitrary vector. The minimal norm least squares solution of the linear system of
equations Ax = b is A†b.

Lemma 2.12. [38] The linear system of equations Ax = b, with A ∈ Rm×n and b ∈ Rm, has a solution
x ∈ Rn if, and only if,

AA†b = b.

In that case, it has the general solution

x = A†b +
(
I − A†A

)
y,

where y ∈ Rn is an arbitrary vector. The minimal norm solution of the linear system of equations
Ax = b is A†b.

AIMS Mathematics Volume 8, Issue 11, 27901–27923.
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3. Main results

3.1. LC-representation of reduced biquaternion matrix

Definition 3.1. For A = A1 + A2j ∈ Hm×n
R , As ∈ C

m×n(s = 1, 2). Denote

−→
A =

(
A1

A2

)
, E2 =

(
±1 0
0 ±1

)
, M =

(
1 0 0 1
0 1 1 0

)
.

Suppose there is a mapping ϕ(A) = M n
(
I2 ⊗ (E2 n

−→
A)

)
of Hm×n

R into C2m×2n, denote ϕc(A) =

ϕ(A) n δ1
2 for A ∈ Hm×n

R , B ∈ Hn×p
R . If ϕ satisfies

1) ϕ(AB) = ϕ(A)ϕ(B),

2) ϕc(AB) = ϕ(A)ϕc(B),

ϕ is called the LC-representation of the reduced biquaternion matrix.
The computable equivalent conditions of 1) and 2) in Definition 3.1 can be obtained by using the

left STP.

Proposition 3.2. Let A ∈ Hm×n
R , B ∈ Hn×p

R , then ϕ is the LC-representation of the reduced biquaternion
matrix if

1) (M ⊗ Im)
(
I2 ⊗ (E2 n

−−→
AB)

)
= (M ⊗ Im)

(
M ⊗ (E2 n

−→
A)

) (
I2 ⊗ (E2 n

−→
B)

)
,

2) (M ⊗ Im)
(
δ1

2 ⊗ (E2 n
−−→
AB)

)
= (M ⊗ Im)

(
M ⊗ (E2 n

−→
A)

) (
δ1

2 ⊗ (E2 n
−→
B)

)
.

Proof. The proof is straightforward. Here, we only prove 2). By the LC-representation of the reduced
biquaternion matrix, we know ϕc(AB) = ϕ(A)ϕc(B) holds if, and only if,

M n
(
I2 ⊗ (E2 n

−−→
AB)

)
n δ1

2 = M n
(
I2 ⊗ (E2 n

−→
A)

) (
M n

(
I2 ⊗ (E2 n

−→
B)

)
n δ1

2

)
,

which is equivalent to

(M ⊗ Im)
(
δ1

2 ⊗ (E2 n
−−→
AB)

)
= M n

(
I2 ⊗ (E2 n

−→
A)

)
n M n

(
I2 ⊗ (E2 n

−→
B)

)
n δ1

2

= (M ⊗ Im)
(
M ⊗ (E2 n

−→
A)

) (
δ1

2 ⊗ (E2 n
−→
B)

)
.

Example 3.3. Let E2 =

(
1 0
0 1

)
. It is easy to compute

ϕ1(A) = M n
(
I2 ⊗ (E2 n

−→
A)

)
=

(
A1 A2

A2 A1

)
.

If E2 =

(
1 0
0 −1

)
, we obtain

ϕ2(A) = M n
(
I2 ⊗ (E2 n

−→
A)

)
=

(
A1 −A2

−A2 A1

)
.
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Moreover, we bring ϕ1(A) and ϕ2(A) into Proposition 3.2 for inspection. It can be found that
ϕ1(A) and ϕ2(A) meet the requirements, so ϕ1(A) and ϕ2(A) are all LC-representation of the reduced
biquaternion matrix.

It is not difficult to see that the product of reduced biquaternion matrices is more difficult than that
of complex matrices. Therefore, it is very meaningful for us to find the above isomorphic relationship
between the reduced biquaternion matrix and the complex matrix to realize the equivalent
transformation of the problem. Moveover, the above isomorphism is more general compared with the
conclusion [23].

3.2. Vector operator over reduced biquaternion

Using the STP of reduced biquaternion matrices, we can obtain some new properties of vector
operators over reduced biquaternions.

Proposition 3.4. Let A ∈ Hm×n
R , B ∈ Hn×p

R , then

Vr(AB) = A n Vr(B), (3.1)
Vc(AB) = A o Vc(B). (3.2)

Proof. It can be seen from Example 2.5 that the left STP can realize the multiplication of block
matrices. Here, by means of this property, we realize the proof of (3.1).

A n Vr(B) =


((δ1

n)T n Row1(A))((δ1
n)T n Vr(B)) + · · · + ((δn

n)T n Row1(A))((δn
n)T n Vr(B))

...

((δ1
n)T n Rowm(A))((δ1

n)T n Vr(B)) + · · · + ((δn
n)T n Rowm(A))((δn

n)T n Vr(B))



=



a11


b11

b12
...

b1p

 + a12


b21

b22
...

b2p

 + . . . + a1n


bn1

bn2
...

bnp


...

am1


b11

b12
...

b1p

 + am2


b21

b22
...

b2p

 + . . . + amn


bn1

bn2
...

bnp





=



Row1(A)Col1(B)
Row1(A)Col2(B)

...

Row1(A)Colp(B)
...

Rowm(A)Col1(B)
Rowm(A)Col2(B)

...

Rowm(A)Colp(B)


= Vr(AB).

(3.1) can be obtained. From Proposition 2.10, we get

Vc(AB) = W[m,p] n Vr(AB) = W[m,p] n A n Vr(B)
= W[m,p] n A nW[p,n] n Vc(B) = (Ip ⊗ A) n Vc(B) = A o Vc(B).

After straightforward calculation, it is not difficult to draw the following conclusions.
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Proposition 3.5. Let A ∈ Hm×n
R , B ∈ Hn×p

R , then

Vr(AB) = BT o Vr(A), (3.3)
Vc(AB) = BT n Vc(A). (3.4)

Proposition 3.6. Let A ∈ Hm×n
R , X ∈ Hn×n

R , B ∈ Hn×p
R , then

Vc(AXB) = (BT ⊗ A)Vc(X). (3.5)

Proof. Using Propositions 3.4 and 3.5, we get

Vc(AXB) = BT n Vc(AX) = BT n A o Vc(X)
= (BT ⊗ Im)(In ⊗ A)Vc(X)
= (BT ⊗ A)Vc(X).

3.3. Algebra solutions of Problem 1

Using LC-representation and the vector operator over reduced biquaternion, we can transform the
problem of the reduced biquaternion matrix equation into a system of linear equations in complex
number fields. In this subsection, we will discuss Problem 1 using the above methods. According
to the special structure of the solution in Problem 1, we propose a systematic method to simplify the
calculation.

Definition 3.7. [36] Consider a p-dimensional real matrix subspace X ⊂ Rn×n. Assume e1,e2, . . .,ep

form the bases of X, which means that for any X ∈ X we have X = x1e1 + x2e2 + · · ·+ xpep, and define
H =

[
Vc(e1),Vc(e2), . . . ,Vc(ep)

]
if we express Ψ(X) = Vc(X) in the form of

Ψ(X) = Vc(X) = HX̃.

Then, HX̃ is called an H-representation of Ψ(X), and H is called an H-representation matrix of
Ψ(X).

Remark 3.8. The main advantage of H-representation is the ability to transform a matrix-valued
equation into a standard vector-valued equation with independent coordinates, allowing for the
well-known results in the linear system theory to be applied in our study. However, some reduced
biquaternion matrices that have special structures cannot be represented by H-representation to
achieve the purpose of variable reduction. This is our motivation to give GH-representation.

Definition 3.9. Consider a reduced biquaternion matrix subspace X ⊂ Hn×n
R . For each X = X1 + X2i +

X3j + X4k ∈ X, denote χ(X) = [X1 X2 X3 X4] if we express

Φ(X) = Vc(χ(X)) = HX̂.

Then, HX̂ is called a GH-representation of Φ(X) and H is called a GH-representation matrix of

Φ(X), where H =


HX1 O O O
O HX2 O O
O O HX3 O
O O O HX4

, X̂ =


X̃1

X̃2

X̃3

X̃4

, HXs represents the H-representation matrix

of Xs, (s = 1, 2, 3, 4).
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In this paper we consider the Hermitian matrix, the centro-symmetric matrix and the bisymmetric
matrix on reduced biquaternions. From Definition 3.9, we know that the GH-representation matrix can
be constructed from some corresponding real matrices, so we are interested in theH-representation of
the related real matrices.

We can see from Definition 1.2 that when X = X1 + X2i + X3j + X4k is Hermitian, X1 is symmetric
and X2, X3, X4 are anti-symmetric. Denote S n as the set of symmetric matrices and S −n as the set of
anti-symmetric matrices. For X = S n, we select a standard basis throughout this paper as

{E11, E21, · · · , En1, E22, · · · , En2, · · · , Enn} =
{
Ei j, 1 ≤ j ≤ i ≤ n

}
, (3.6)

where Ei j = (elk)n×n with ei j = e ji = 1 and the other entries being zero. Similarly, for X = S −n, we
select a standard basis as{

Ẽ21, Ẽ31, · · · , Ẽn1, Ẽ32, · · · , Ẽn2, · · · , Ẽn,n−1

}
=

{
Ẽi j, 1 ≤ j < i ≤ n

}
, (3.7)

where Ẽi j = (̃elk)n×n with ẽi j = −ẽ ji = 1 and the other entries being zero. After the bases are determined
above, for X = S n/X = S −n we have

X̃S n = (x11, x21, · · · , xn1, x22, · · · , xn2, · · · , xnn)T ,

X̃S −n =
(
x21, · · · , xn1, x32, · · · , xn2, · · · , xn,n−1

)T .

Note that Ψ(XS n/S −n) is a column vector formed by all elements of XS n/XS −n , while X̃S n and X̃S −n

are column vectors formed by different nonzero elements of XS n and XS −n , respectively. We denote
the H-representation matrix corresponding to X = S n by Hn, and H−n refers to the H-representation
matrix corresponding to X = S −n.

Similarly, we use the above ideas to consider two other classes of special matrices. For X = Cn×n
s ,

we can select the following standard basis{
F11, F21, · · · , Fn1, F12, F22, · · · , Fn2, · · · , Fn, n

2

}
=

{
Fi j, 1 ≤ i ≤ n, 1 ≤ j ≤

n
2

}
, n is even, (3.8)

{
F11, F21, · · · , Fn1, F12, F22, · · · , Fn2, · · · , F1, n−1

2
, · · · , Fn, n−1

2

}
∪

{
F1, n+1

2
, · · · , F n+1

2 , n+1
2

}
=

{
Fi j, 1 ≤ i ≤ n, 1 ≤ j ≤

n − 1
2

}
∪

{
Fi j, 1 ≤ i ≤

n + 1
2

, j =
n + 1

2

}
, n is old,

(3.9)

where Fi j = ( flk)n×n with fi j = fn−i+1,n− j+1 and the other entries are zero. After the basis is determined,
we have:

X̃Ce
s =

{
x11, x21, · · · , xn1, x12, x22, · · · , xn2, · · · , xn, n

2

}
n is even,

X̃Co
s =

{
x11, x21, · · · , xn1, x12, x22, · · · , xn2, , x1, n−1

2
, · · · , xn, n−1

2
, · · · , x n+1

2 , n+1
2

}
n is odd.

We denote theH-representation matrix corresponding to X = Cn×n
s by HCe

s and HCo
s .

For the Bi-hermitian matrix, we have the same discussion as the Hermitian matrix. The components
of the Bi-hermitian matrix are considered as two kinds of sets. One is the matrix corresponding to the
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real part, denoted as BRn, and the other is the matrix corresponding to the imaginary part, denoted as
BIn. For X = BRn, we can select a standard basis as{

B11, B21, · · · , Bn1, B22, · · · , Bn−1,2, · · · , B n
2 ,

n
2
, B n

2 +1, n
2

}
=

{
Bi j, 1 ≤ j ≤

n
2
, j ≤ i ≤ n − j + 1

}
, n is even,

(3.10)

{
B11, B21, · · · , Bn1, B22, · · · , Bn−1,2, · · · , B n+1

2 , n+1
2

}
=

{
Bi j, 1 ≤ j ≤

n + 1
2

, j ≤ i ≤ n − j + 1
}
, n is odd,

(3.11)

where Bi j = (blk)n×n with bi j = bn−i+1,n− j+1 = b ji = 1 and the other entries are zero. Based on the above
basis, we have

XBR =
{
x11, x21, · · · , xn1, x22, · · · , xn−1,2, · · · , x n

2 ,
n
2
, x n

2 +1, n
2

}
, n is even,

XBR =
{
x11, x21, · · · , xn1, x22, · · · , xn−1,2, · · · , x n+1

2 , n+1
2

}
, n is odd.

For X = BIn, we can select the following standard basis{
B̃21, B̃31, · · · , B̃n−1,1, B̃32, · · · , B̃n−2,2, · · · , B̃ n

2 ,
n
2−1, B̃ n

2 +1, n
2−1

}
, n is even, (3.12){

B̃21, · · · , B̃n−1,1, B̃32, · · · , B̃n−2,2, · · · , B̃ n+1
2 , n−1

2

}
, n is odd, (3.13)

where B̃i j = (̃blk)n×n with b̃i j = b̃n−i+1,n− j+1 = −b̃ ji = 1 and the other entries are zero. Based the above
basis, we have

XBI =
{
x21, x31, · · · , xn−1,1, x32, · · · , xn−2,2, · · · , x n

2 +1, n
2−1

}
, n is even,

XBI =
{
x21, · · · , xn−1,1, x32, · · · , xn−2,2, · · · , x n+1

2 , n−1
2

}
, n is odd.

We denote theH-representation matrix corresponding to X = BRn by HBRe /HBRo and denote theH-
representation matrix corresponding to X = BIn by HBIe /HBIo . Based on our earlier discussion, we now
turn our attention to Problem 1. The following notation is necessary to derive a solution to Problem 1.

θ́1 =

{
X
∣∣∣∣∣X ∈ SHn×n

R , and X ([1 : ti]) = 0ti×ti

}
θ́2 =

{
X
∣∣∣∣∣X ∈ CHn×n

R , and Xc (ti) = 0ti×ti

}
θ́3 =

{
X
∣∣∣∣∣X ∈ BHn×n

R , and Xc (ti) = 0ti×ti

} (3.14)

X̂i =


Xti 0 0
0 0 0
0 0 0

 ∈ SHn×n
R , whereX̂i([1 : ti]) = Xti , (i = 1, 2, · · · , s) ,

X̂i =


0 0 0
0 Xti 0
0 0 0

 ∈ CHn×n
R , where X̂ic(ti) = Xti , (i = s + 1, s + 2, · · · ,m) ,

X̂i =


0 0 0
0 Xti 0
0 0 0

 ∈ BHn×n
R , where X̂ic(ti) = Xti , (i = m + 1,m + 2, · · · , n) .

(3.15)
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Then, the subspace θ1, θ2 and θ3 can be written as

θ1 = θ́1 + X̂i, i = 1, 2, · · · , s,

θ2 = θ́2 + X̂i, i = s + 1, s + 2, · · · ,m,

θ3 = θ́3 + X̂i, i = m + 1,m + 2, · · · , n,

and Problem 1 is converted into the following problem.
Find a matrix group

(
Ẍ1, Ẍ2, · · · , Ẍn

)
such that

n∑
i=1

AiẌiBi = Ê, (3.16)

where Ẍi ∈ θ́1, (i = 1, 2, · · · , s); Ẍi ∈ θ́2, (i = s + 1, s + 2, · · · ,m); Ẍi ∈ θ́3, (i = m + 1,m + 2, · · · , n),

Ê = E −
n∑

i=1
AiX̂iBi.

The solution of Problem 1 is expressed as

Xi = Ẍi + X̂i, i = 1, 2, · · · , n. (3.17)

We firstly state the following notations to Problem 1. For A ∈ Hm×n
R , B ∈ Hn×p

R , let

γi = ϕ(
(
BT

i ⊗ Ai

)
), ζ =

(
In2 i ∗ In2 O O
O O In2 i ∗ In2

)
,

U =

(
Re(γ1ζ)H1 · · · Re(γsζ)H1 Re(γs+1ζ)H2 · · · Re(γmζ)H2 Re(γm+1ζ)H3 · · · Re(γnζ)H3

Im(γ1ζ)H1 · · · Im(γsζ)H1 Im(γs+1ζ)H2 · · · Re(γmζ)H2 Im(γm+1ζ)H3 · · · Im(γnζ)H3

)
,

H1 =


Ĥn O O O
O Ĥ−n O O
O O Ĥ−n O
O O O Ĥ−n

 ,

H2 =


ĤCe

s/Co
s O O O

O ĤCe
s/Co

s O O
O O ĤCe

s/Co
s O

O O O ĤCe
s/Co

s

 ,

H3 =


ĤBRe/BRo O O O

0 ĤBIe/BIo O O
O O ĤBIe/BIo O
O O O ĤBIe/BIo

 .
Theorem 3.10. Suppose Ai ∈ H

m×n
R , Bi ∈ H

n×p
R , C ∈ Hm×p

R , then the set S Q of Problem 1 can be
expressed as

S Q =


(
Ẍ1, Ẍ2, · · · , Ẍn

) ∣∣∣∣∣

̂̈X1̂̈X2
...̂̈Xn


= U†

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
+ (I − U†U)y


, (3.18)
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where Ẍi ∈ θ́1, (i = 1, 2, · · · , s); Ẍi ∈ θ́2, (i = s + 1, s + 2, · · · , l); Ẍi ∈ θ́3, (i = l + 1, l + 2, · · · , n),
and y is an arbitrary real vector of appropriate order. Futhermore, the minimal norm least squares
constraint mixed solution

(
ẌQ

1 , Ẍ
Q
2 , · · · Ẍ

Q
n

)
∈ S Q satisfies



̂̈XQ
1̂̈XQ
2
...̂̈XQ
n


= U†

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
). (3.19)

Proof. In order to facilitate our description of the Problem 1, ϕ is designated as ϕ1 in Example 3.3 and∥∥∥∥∥∥∥
n∑

i=1

AiẌiBi − Ê

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
n∑

i=1

(
BT

i ⊗ Ai

)
Vc(Ẍi) − Vc(Ê)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
n∑

i=1

ϕ(
(
BT

i ⊗ Ai

)
)ϕc(Vc(Ẍi)) − ϕc(Vc(Ê))

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
n∑

i=1

ϕ(
(
BT

i ⊗ Ai

)
)
(
In2 i ∗ In2 O O
O O In2 i ∗ In2

)
Vc(χ(Ẍi)) − ϕc(Vc(Ê))

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
n∑

i=1

γiζVc(χ(Ẍi)) − ϕc(Vc(Ê))

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
n∑

i=1

(Re(γiζ) + Im(γiζ)i)Vc(χ(Ẍi)) − (Re(ϕc(Vc(Ê))) + Im(ϕc(Vc(Ê)))i)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥


n∑
i=1

Re(γiζ)Vc(χ(Ẍi)) − Re(ϕc(Vc(Ê)))
n∑

i=1
Im(γiζ))Vc(χ(Ẍi)) − Im(ϕc(Vc(Ê)))


∥∥∥∥∥∥∥∥∥∥ .

Using the GH-representation matrix of special matrix, we can continue to simplify the above
process. As Ẍi has certain constraints, we only need to remove the constraint part of the bases of
GH-representation matrix of Ẍi, i = 1, 2, · · · , n, t = 1, 2, 3, 4. Denote

Vc(χ(Ẍi)) =


Ĥn 0 0 0
0 Ĥ−n 0 0
0 0 Ĥ−n 0
0 0 0 Ĥ−n



˜̈X1

i˜̈X2
i˜̈X3
i˜̈X4
i

 = H1
̂̈Xi, i = 1, 2, · · · , s.

Vc(χ(Ẍi)) =


ĤCe

s/Co
s 0 0 0

0 ĤCe
s/Co

s 0 0
0 0 ĤCe

s/Co
s 0

0 0 0 ĤCe
s/Co

s



˜̈X1

i˜̈X2
i˜̈X3
i˜̈X4
i

 = H2
̂̈Xi, i = s + 1, s + 2, · · · ,m.
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Vc(χ(Ẍi)) =


ĤBRe/BRo 0 0 0

0 ĤBIe/BIo 0 0
0 0 ĤBIe/BIo 0
0 0 0 ĤBIe/BIo



˜̈X1

i˜̈X2
i˜̈X3
i˜̈X4
i

 = H3
̂̈Xi, (i = m + 1,m + 2, · · · , n).

Further, we can get

=

∥∥∥∥∥∥∥∥∥∥


s∑
i=1

Re(γiζ)Vc(χ(Ẍi)) +
m∑

i=s+1
Re(γiζ)Vc(χ(Ẍi)) +

n∑
i=m+1

Re(γiζ)Vc(χ(Ẍi)) − Re(ϕc(Vc(Ê)))
s∑

i=1
Im(γiζ)Vc(χ(Ẍi)) +

m∑
i=s+1

Im(γiζ)Vc(χ(Ẍi)) +
n∑

i=m+1
Im(γiζ)Vc(χ(Ẍi)) − Im(ϕc(Vc(Ê)))


∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥


s∑
i=1

Re(γiζ)H1
̂̈Xi +

m∑
i=s+1

Re(γiζ)H2
̂̈Xi +

n∑
i=m+1

Re(γiζ)H3
̂̈Xi − Re(ϕc(Vc(Ê)))

s∑
i=1

Im(γiζ)H1
̂̈Xi +

m∑
i=s+1

Im(γiζ)H2
̂̈Xi +

n∑
i=m+1

Im(γiζ)H3
̂̈Xi − Im(ϕc(Vc(Ê)))


∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
U


̂̈X1̂̈X2
...̂̈Xn


−

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Thus, ∥∥∥∥∥∥∥
n∑

i=1

AiẌiBi − Ê

∥∥∥∥∥∥∥ = min,

if, and only if, ∥∥∥∥∥∥∥∥∥∥∥∥∥∥
U


̂̈X1̂̈X2
...̂̈Xn


−

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= min .

For the real matrix equation

U


̂̈X1̂̈X2
...̂̈Xn


=

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
,

according to Lemma 2.11, its least squares mixed solutions can be represented as
̂̈X1̂̈X2
...̂̈Xn


= U†

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
+ (I − U†U)y,
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where y is an arbitrary real vector of appropriate order, and the minimal norm least squares mixed
solution

(
XQ

1 , X
Q
2 , · · · , X

Q
n

)
∈ S Q of (1.1) satisfies

̂̈XQ
1̂̈XQ
2
...̂̈XQ
n


= U†

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
.

Therefore, (3.18) and (3.19) can be obtained.

Corollary 3.11. Suppose Ai ∈ H
m×n
R , Bi ∈ H

n×p
R , C ∈ Hm×p

R i = 1, 2, · · · , n. (1.1) has a solution
satisfying (3.16) if, and only if, (

UU† − I
) (Re(ϕc(Vc(Ê)))

Im(ϕc(Vc(Ê)))

)
= 0. (3.20)

The set S L of the general solution is

S L =


(
Ẍ1, Ẍ2, · · · , Ẍn

) ∣∣∣∣∣

̂̈X1̂̈X2
...̂̈Xn


= U†

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
+ (I − U†U)y


,

where y is an arbitrary real vector of appropriate order and the minimal norm solution(
ẌL

1 , Ẍ
L
2 , · · · Ẍ

L
n

)
∈ S L satisfies 

̂̈XL
1̂̈XL
2
...̂̈XL
n


= U†

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
, (3.21)

where y is an arbitrary real vector of appropriate order. U and
(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
are given in

Theorem 3.10.

Proof. Since

∥∥∥∥∥ n∑
i=1

AiXiBi −C
∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
U


̂̈X1̂̈X2
...̂̈Xn


−

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
UU†U


̂̈X1̂̈X2
...̂̈Xn


−

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥UU†
(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
−

(
Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)∥∥∥∥∥∥
=

∥∥∥∥∥∥(UU† − I
) (Re(ϕc(Vc(Ê)))

Im(ϕc(Vc(Ê)))

)∥∥∥∥∥∥ ,
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then ∥∥∥∥∥∥∥
n∑

i=1

AiXiBi −C

∥∥∥∥∥∥∥ = 0⇐⇒

∥∥∥∥∥∥(UU† − I
) (Re(ϕc(Vc(Ê)))

Im(ϕc(Vc(Ê)))

)∥∥∥∥∥∥ = 0

⇐⇒
(
UU† − I

) (Re(ϕc(Vc(Ê)))
Im(ϕc(Vc(Ê)))

)
= 0

(3.20) holds. Moreover, we can obtain the expression of general solution and the minimal norm mixed
solution using Lemma 2.12.

4. Algorithms and numerical examples

Algorithm 1 Calculate the minimal norm least squares mixed solution of reduced biquaternion matrix
equation (1.1).

Require: Ai ∈ H
m×n
R , Bi ∈ H

n×p
R , C ∈ Hm×p

R , Ĥn/Ĥ−n, ĤCe
s/ĤCo

s , ĤBRe/BRo/ĤBIe/BIo , i = 1, 2, · · · , n;

Ensure:
( ̂̈X1,

̂̈X2, · · · ,
̂̈Xn

)
;

Fix the form of ψ satisfying Proposition 3.2;
Calculate the matrix γ, ζ, H1, H2, H3, U and the form of ζ that depends on the choice of ϕ;
Calculate the set S Q of Problem 1 according to (3.18);
Calculate the minimal norm least squares mixed solution (X1, X2, · · · , Xn) that satisfies (3.19);

return
( ̂̈X1,

̂̈X2, · · · ,
̂̈Xn

)
;

Algorithm 2 Calculate the minimal norm Hermitian solution of reduced biquaternion matrix equation
AXB = C.
Require: A ∈ Hm×n

R , B ∈ Hn×p
R , C ∈ Hm×p

R ; Hn/H−n;
Ensure: ϕc(Vc(X));

Fix the form of ψ satisfying the Proposition 3.2 and Calculate ζ;
Calculate the GH-representation matrix of Hermitian matrices, denoted by Hh;
Calculate the V = BT ⊗ A;
Calculate the minimal norm Hermitian solution X ∈ SHn×n

R satisfies

ϕc(Vc(X)) = Hh(ϕ(V)Hh)†ϕc(Vc(C));

return ϕc(Vc(X));

A real vector representation of reduced biquaternion matrices based on STP was proposed [34], and

used it to solve the anti-Hermitain solution of the reduced biquaternion matrix equation
n∑

i=1
AiXBi = C.

In this paper, we take the Hermitian solution of the reduced biquaternion matrix equation AXB = C as
an example to illustrate the advantagement of our algorithm.
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Example 4.1. For Al ∈ H
m×n
R , Bl ∈ H

n×p
R , l = 1, 2, 3, X1 ∈ θ1, X2 ∈ θ2, X3 ∈ θ3, let m = n = p = 5K,

ti = 3K, K = 1 : 10. Then, we compute

E = A1X1B1 + A2X2B2 + A3X3B3.

By Algorithm 1, we obtain the calculated solution [X∗1, X
∗
2, X

∗
3]. Denote the error between the

calculated solution and the exact solution as ε = log10

∥∥∥[X1, X2, X3] − [X∗1, X
∗
2, X

∗
3]
∥∥∥, and ε is recorded

in Figure 1.

Figure 1. The ε under different matrix dimensions.

Example 4.2. For A ∈ Hm×n
R , B ∈ Hn×p

R , X ∈ SHn×n
R , let m = n = p = 2K, K = 1 : 9. Then, we compute

C = AXB. (4.1)

For coefficient matrices of the reduced biquaternion equation (4.1) with different orders, we solve
the unique solution Xς by the method in this paper and the method in [34]. Denote ξ = log10

∥∥∥X − Xς

∥∥∥
and note down the ξ and CPU times of two methods, respectively. Detailed results are shown in
Figure 2.

Figure 2. The error and CPU time for solving Hermitian solution.
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Remark 4.3. We make some explanations for the above three examples.

1) It can be seen from Figure 1 that the order of magnitude of ε < −9. Thus, the effectiveness of our
algorithm can be tested.

2) As seen from Figure 2, when calculating the Hermitian solution of the reudced biquaternion
matrix equation (4.1) by the two methods, the errors between the obtained solution and the exact
solution are very small. Compared with the method in [34], the method in this paper has an
absolute advantage in calculation time. Moreover, with the increasing of K, the memory occupied
by the method in [34] is also relatively large, which is not feasible for calculating the reduced
biquaternion matrix equation under large dimension. It can be seen that the effect of our proposed
algorithm is very clear.

5. Application to color image restoration

In the process of image acquisition, it is always affected by external conditions and the surrounding
environment, resulting in image quality damage. For example, underwater images are severely affected
by the particular physical and chemical characteristics of underwater conditions. It is well known
that the first encounters with digital image restoration in the engineering community were in the area
of astronomical imaging. With the progress of society, color image restoration technology has been
applied in many fields.

Image restoration is the process of removing and minimizing degradations in an observed image. A
linear discrete model of image restoration is the matrix-vector equation

g = K f + n,

where g is an observed image, f is the true or ideal iamge, n is additive noise, and K is a matrix
that represents the blurring phenomena. The methods used in image restoration aim to construct an
approximation to f given g, K and in some cases statistical information about the noise. However, in
most cases, the noise n is unknown. We wish to find f ′ such that

‖n‖ = ‖K f ′ − g‖ = min ‖K f − g‖ .

In [21], Pei proposed to encode the three channel components of a color image on the three
imaginary parts of a pure reduced biquaternion. That is,

q(x, y) = r(x, y)i + g(x, y)j + b(x, y)k,

where r(x, y), g(x, y) and b(x, y) are the red, green, and blue values of the pixel (x, y), respectively.
Thus, a color image with m rows and n columns can be represented by a pure imaginary reduced
biquaternion matrix

Q = (qi j)m×n = Ri + Gj + Bk, qi j ∈ HR.

Since then, reduced biquaternion representation of a color image has attracted great attention. Many
researchers applied the reduced biquaternion matrix to study the problems of color image processing
[24, 34, 39, 40] due to the ability of reduced biquaternion matrices treating the three color channels
holistically without losing color information. The effectiveness of the proposed method was tested by
a practical example.
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Example 5.1. Two color images are given in Figures 3 and 4. M = (R,G, B) is the image matrix
with special structure. M can be represented as the pure imaginary matrix M = Ri + Gj + Bk. By
operation, we can get m = (mr,mg,mb), where mr = vec(R), mg = vec(G) and mb = vec(B). By
using LEN = 15, T HET A = 30 and PS F = f special(‘motion′, LEN,T HET A), we disturb the image
R and get the image dR. Clearly, K = drm

†
r , where dr = vec(dR). For convenience, we disturb the

images G, B using the same matrix K. Thus, d = (R,G, B) becomes an image matrix d = Km, that is
d = (dr, db, db) = Km = K(mr,mg,mb). By computation, we obtain

(a) The original image (b) The disturbed image (c) The restored image

Figure 3. 64× 64 symmetric color image.

(a) The original image (b) The disturbed image (c) The restored image

Figure 4. 64× 64 centro-symmetric color image.

We denote ϑR, ϑG and ϑB as the differences between the computed R and original R, computed G
and original G and the computed B and original B, respectively. All the information is contented in
Table 1.

Table 1. The error between computed R,G, B and original R,G, B.

ϑR ϑG ϑB
Figure 3 2.1128e−10 1.7678e−11 8.1071e−12

Figure 4 4.1478e−10 1.8661e−10 2.0285e−10

6. Conclusions

In this paper, with the help of STP, some new properties of the reduced biquaternion vector
operator were proposed, and the LC-representation, a class of algebraic expressions of isomorphism
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relation between the set of reduced biquaternion matrices and the set of complex matrices, were
given. Making use of vector operator LC-representation and GH-representation of special reduced
biquaternion matrices, we solved the mixed solution of reduced biquaternion matrix equation
n∑

i=1
AiXiBi = E with sub-matrix constraints. Both the comparison with other methods, and the effect of

application in color image restoration demonstrated the effectiveness of our proposed method.
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