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1. Introduction

ByA, we denote an analytic (regular) function’s family and g defined in the following region:

D = {ε ∈ C and |ε| < 1}, (1.1)

with g (0) = 0 = g
′ (0) − 1. Thus, every function g of a familyA is of the form:

g (ε) = ε +
∞∑

k=2

akε
k ε ∈ D. (1.2)
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Moreover, let S indicates a subfamily ofA, whose members are univalent in D. Let h1, h2 ∈ A; we
state that the function h1 is subordinate to h2 (written as h1 ≺ h2) if there exists a regular function u that
satisfies

|u (ε)| ≤ |ε| and u (0) = 0, (1.3)

such that h1 (ε) = h2 (u (ε)) for ε ∈ D. Moreover, if h2 ∈ S, then the above conditions imply the
follwoing:

h1 ≺ h2 ⇔ h1 (0) = h2 (0) and h1 (D) ⊂ h2 (D) . (1.4)

In 1992, Ma and Minda [1] utilized the idea of subordination and initiated the family Λ∗(Ω) as
follows:

Λ∗(Ω) =
{

g ∈ A :
εg′(ε)
g(ε)

≺ Ω(ε)
}
, (1.5)

where the image of Ω under D is a star-shaped functions satisfying that Ω(0) = 1 and Ω′(0) > 0. Also,
they investigated various beautiful geometric results like growth, distortion and covering results. If
we pick Ω(ε) = (1+ε)/(1−ε) categorically, then the family Λ∗(Ω) reduces to the family of functions
whose image domain is star-shaped. For the numerous choices of Ω(ε) on the right hand side of (1.5),
we get various subfamilies of Swhose image domains have some beautiful geometrical interpretations.
Among them some are recorded as follows:

1) If we take Ω(ε) = 1 + sin ε, then we obtain the family Λ∗sin = Λ
∗ (1 + sin ε) , which is described

by the functions bounded by the eight shaped region, and which was established and studied by
Cho et al. [2].

2) By considering a function Ω(ε) = 1 + ε − 1
3ε

3, we get the recently investigated family Λ∗nep =

Λ∗
(
1 + ε − 1

3ε
3
)
, introduced by Wani and Swaminathan [3]. The image of the function Ω(ε) =

1 + ε − 1
3ε

3 under an open unit disc is bounded by a nephroid shaped region.
3) The family Λ∗L = Λ

∗
(√

1 + ε
)
, with Ω(ε) =

√
1 + ε, was established by Sokól et al. [4].

4) The family Λ∗car = Λ
∗
(
1 + 4

3ε +
2
3ε

2
)

was recently investigated by Sharma et al. [5], and the image
of Ω(ε) = 1 + 4

3ε +
2
3ε

2 is cardioid shape under an open unit disc.
5) By choosing Ω(ε) = eε, we get the family Λ∗exp = Λ

∗ (eε) , which was established in [6]. On the
other side, if we pick Ω(ε) = ε +

√
1 + ε2, we get the family Λ∗cre = Λ

∗
(
ε +
√

1 + ε2
)
, which

maps D to a crescent shaped region and was given by Raina [7].

For more particular subfamilies of the family of starlike functions, see the articles [8–10].
Pommerenke [11,12] was the first to initiate the idea of a Hankel determinant Hq,n (g) for a function

g ∈ S of the form (1.2), where the parameters q, n ∈ N = {1, 2, 3, · · · } are as follows:

Hq,n (g) =

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣ . (1.6)

For particular values, e.g., q = 2 and n = 1, we get the Hankel determinant∣∣∣H2,1 (g)
∣∣∣ = ∣∣∣∣∣∣ a1 a2

a2 a3

∣∣∣∣∣∣
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=
∣∣∣a3 − a2

2

∣∣∣ , where a1 = 1.

And for q = 2 and n = 2, in (1.6) we get the second order Hankel determinant

H2,2 (g) =

∣∣∣∣∣∣ a2 a3

a3 a4

∣∣∣∣∣∣
= a2a4 − a2

3.

For the third order Hankel determinant we take q = 3 and n = 1, which yields the following form

∣∣∣H3,1 (g)
∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣ .
The functional

H2,1 (g) = a3 − a2
2

is known as the Fekete-Szego functional. For numerous subfamilies of a regular function’s family
A, the best possible value of the upper bound for

∣∣∣H2,1 (g)
∣∣∣ has been evaluated by various authors

(see [13–15]). Moreover, the second Hankel determinant and the extreme value has been studied
and investigated by several authors from many different directions and perspectives. For instance,
the readers may refer to see [16–21]. Furthermore, Babalola [22] described the Hankel determinant
H3,1 (g) for several subfamilies of regular functions. For some recent works on the third-order Hankel
determinant, we refer the reader to [23–27] and the references therein.

Recently, Allah et al. [28] defined the family of starlike functions based on the trigonometric
hyperbolic tangent function as follows:

Λ∗tanh =

{
g ∈ A :

εg′(ε)
g(ε)

≺ 1 + tanh (ε)
}

(ε ∈ D).

Motivated by the work mentioned above, we now introduce the subfamily of analytic functions:

Rtanh = {g ∈ A : g′ (ε) ≺ 1 + tanh (ε)} (ε ∈ D). (1.7)

In this paper, we evaluate first three initial sharp coefficient bounds, sharp Fekete-Szegö functional,
the sharp second Hankel determinant, sharp third Hankel determinant and Krushkal inequality for
functions belonging to this family. Further, the sharp initial four logarithmic coefficient bounds and the
second Hankel determinant are investigated.

2. A collection of lemmas

We next indicate by P the family of all holomorphic functions p satisfying that Re(p(ε)) > 0, ε ∈ D,
and that also has series representation:

p (ε) = 1 +
∞∑

k=1

pkε
k ε ∈ D. (2.1)
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Lemma 2.1. [29] Suppose that p ∈ P. Then, for x and δ with |x| ≤ 1and |δ| ≤ 1, it follows that

2p2 = p2
1 + x(4 − p2

1), (2.2)

4p3 = p3
1 + 2(4 − p2

1)p1x − p1(4 − p2
1)x2 + 2(4 − p2

1)(1 − |x|2)δ. (2.3)

Lemma 2.2. If p ∈ P, then the following estimations hold

|pk| ≤ 2, k ≥ 1, (2.4)
|pk+n − µpk pn| < 2, 0 < µ ≤ 1, (2.5)∣∣∣∣∣∣p2 −

p2
1

2

∣∣∣∣∣∣ ≤ 2 −
|p1|

2

2
, (2.6)

and for η ∈ C, we have ∣∣∣p2 − ηp2
1

∣∣∣ < 2 max {1, |2η − 1|} . (2.7)

For the inequalities (2.4)–(2.6) see [30] and (2.7) is given in [31].

Lemma 2.3. [32] If p ∈ P and it has the form (2.1), then

|α1 p3
1 − α2 p1 p2 + α3 p3| ≤ 2|α1| + 2|α2 − 2α1| + 2|α1 − α2 + α3|, (2.8)

where α1, α2 and α3 are real numbers.

Lemma 2.4. [33] Let m1, n1, l1 and r1 satisfy that m1, r1 ∈ (0, 1) and

8r1 (1 − r1)
[
(m1n1 − 2l1)2 + (m1 (r1 + m1) − n1)2

]
+ m1 (1 − m1) (n1 − 2r1m1)2

≤ 4m2
1 (1 − m1)2 r1 (1 − r1) .

If h ∈ P and it is of the form (2.1), then∣∣∣∣∣l1 p4
1 + r1 p2

2 + 2m1 p1 p3 −
3
2

n1 p2
1 p2 − p4

∣∣∣∣∣ ≤ 2.

3. Main results

Theorem 3.1. If g (ε) ∈ Rtanh and it has the form given by (1.2), then

|a2| ≤
1
2
, (3.1)

|a3| ≤
1
3
, (3.2)

|a4| ≤
1
4
. (3.3)
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Equalities of these inequalities are obtained for functions as follows:

g1 (ε) =
∫ ε

0
(1 + tanh (t)) dt = ε +

1
2
ε2 + · · · , (3.4)

g2 (ε) =
∫ ε

0

(
1 + tanh

(
t2
))

dt = ε +
1
3
ε3 + · · · , (3.5)

g3 (ε) =
∫ ε

0

(
1 + tanh

(
t3
))

dt = ε +
1
4
ε4 + · · · , (3.6)

respectively.

Proof. Let g (ε) ∈ Rtanh then by the definitions of subordinations there exists a Schwarz function u (ε)
with the properties given in (1.3), such that

g
′

(ε) = 1 + tanh (u (ε)) . (3.7)

Let p ∈ P; then, it can be written in terms of Schwarz functions as

p (ε) =
1 + u (ε)
1 − u (ε)

= 1 + p1ε + p2ε
2 + p3ε

3 + · · · . (3.8)

Or

u (ε) =
p (ε) − 1
p (ε) + 1

=
p1ε + p2ε

2 + p3ε
3 + · · ·

2 + p1ε + p2ε2 + p3ε3 + · · ·

=
1
2

p1ε +

(
1
2

p2 −
1
4

p1

)
ε2 +

(
1
8

p1 −
1
2

p1 p2 +
1
2

p3

)
ε3 + · · · .

Now, from (3.7) , we have

g
′

(ε) = 1 + 2a2ε + 3a3ε
2 + 4a4ε

3 + 5a5ε
4 + · · · . (3.9)

And

1 + tanh (u (ε)) = 1 +
1
2

p1ε +

(
1
2

p2 −
1
4

p2
1

)
ε2 +

(
1

12
p3

1 −
1
2

p1 p2 +
1
2

p3

)
ε3

+

(
1
2

p4 −
1
2

p1 p3 +
1
4

p2
1 p2 −

1
4

p2
2

)
ε4 + · · · . (3.10)

Comparing (3.9) and (3.10) , we get

a2 =
1
4

p1, (3.11)

a3 =
1
6

(
p2 −

1
2

p2
1

)
, (3.12)

a4 =
1

48
p3

1 −
1
8

p1 p2 +
1
8

p3, (3.13)

a5 =
1

10
p4 −

1
10

p1 p3 +
1

20
p2

1 p2 −
1

20
p2

2. (3.14)
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Applying (2.4) to (3.11), we get

|a2| ≤
1
2
.

From (3.12), and by using (2.6), we have

|a3| =
1
6

∣∣∣∣∣p2 −
1
2

p2
1

∣∣∣∣∣
≤

1
6

(
2 −
|p1|

2

2

)
= H (p1) .

Clearly, H (p1) is a decreasing function with the maximum attained at p1 = 0; hence,

|a3| ≤
1
3
.

Applying Lemma 2.3 to (3.13), we get

|a4| ≤
1
4
.

□

Theorem 3.2. If g (ε) ∈ Rtanh and it has the form given by (1.2), then

∣∣∣a3 − λa2
2

∣∣∣ ≤ 1
3

max
{

1,
3 |λ|

4

}
. (3.15)

Equalities of this inequality can be obtained for the function g2 defined in (3.5) for |λ| ≤ 4
3 and for the

function g1 defined by (3.4) for |λ| ≥ 4
3 .

Proof. From (3.11) and (3.12), we get∣∣∣a3 − λa2
2

∣∣∣ = 1
6

∣∣∣∣∣p2 −
4 − 3λ

8
p2

1

∣∣∣∣∣ .
Applying (2.7) to the above equation we get the required results. □

Corollary 3.3. If g (ε) ∈ Rtanh and it has the form given by (1.2), then

∣∣∣a3 − a2
2

∣∣∣ ≤ 1
3
. (3.16)

The equality of this inequality can be obtained for the function g2 defined in (3.5).

Theorem 3.4. If g (ε) ∈ Rtanh and it has the form given by (1.2), then

|a2a3 − a4| ≤
1
4
. (3.17)

The equality of this inequality can be obtained for the function g3 defined in (3.6).

AIMS Mathematics Volume 8, Issue 11, 27396–27413.
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Proof. From (3.11)–( 3.13), we get

|a2a3 − a4| =

∣∣∣∣∣ 1
24

p3
1 −

1
6

p2 p1 +
1
8

p3

∣∣∣∣∣ .
Applications of Lemma 2.3 lead us to the required results. □

Theorem 3.5. If g (ε) ∈ Rtanh and it has the form given by (1.2), then

∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1
9
. (3.18)

The equality of this inequality can be obtained for the function g2 defined in (3.5).

Proof. From (3.11)–(3.13), we get

a2a4 − a2
3 = −

1
576

p4
1 −

1
288

p2
1 p2 +

1
32

p3 p1 −
1
36

p2
2.

Applying (2.2) and (2.3) to write p2 and p3 in terms of p1 = p ∈ [0, 2], we get

a2a4 − a2
3 = −

1
384

p4 −
1

144

(
4 − p2

)2
x2

−
1

128

(
4 − p2

)
x2 p2 +

1
64

(
4 − p2

)
p
(
1 − |x|2

)
δ.

Implementing the triangle inequality and using |δ| ≤ 1 and |x| = y ≤ 1, we have∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1
384

p4 +
1

144

(
4 − p2

)2
y2 +

1
128

p2
(
4 − p2

)
y2

+
1

64
p
(
4 − p2

) (
1 − y2

)
= G (p, y) .

Now, differentiating partially with respect to y, we get

∂R (p, y)
∂y

=
1

72

(
4 − p2

)2
y +

1
64

p2
(
4 − p2

)
y −

1
32

p
(
4 − p2

)
y.

Obviously, ∂R(p,y)
∂y > 0 is an increasing function, so it has a maximum at y = 1; thus

R (p, y) ≤ Y (p, 1) =
1

384
p4 +

1
144

(
4 − p2

)2
+

1
128

p2
(
4 − p2

)
=

1
576

p4 −
7

288
p2 +

1
9
.

Now, differentiating with respect to p, we get

G
′

(p, 1) =
1

144
p3 −

7
144

p.

Clearly, G
′ (p, 1) = 0 only has the root p = 0 ∈ [0, 2]. Hence, G

′′ (p, 1) < 0 at p = 0, so the
maximum value is attained, that is ∣∣∣a2a4 − a2

3

∣∣∣ ≤ 1
9
.

□
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Theorem 3.6. If g (ε) ∈ Rtanh and it has the form given by (1.2), then,

∣∣∣H3,1 (g)
∣∣∣ ≤ 1

16
.

The equality of this inequality can be obtained for the function given by (3.6).

Proof. We know that

H3,1 (g) = a3a2a4 − a3
3 + a4a2a3 − a2

4 + a5a3 − a5a2
2.

Setting the values of (3.11)–(3.14), and putting p1 = p, we get

H3,1( f ) =
1

34 560

(
−504p1 p4 + 144p1 p3 + 48p1 p2 − 448p2 − 576p3

−25p1 − 120p1 p2 + 576p2 p4 + 864p1 p2 p3

)
. (3.19)

Now, supposing that p1 = p and t =
(
4 − p2

1

)
in (2.2), (2.3) and (3.19), we get

p2 =
1
2

[
p2 + xt

]
, (3.20)

p3 =
1
4

[
p3

1 + 2tpx − ptx2 + 2t(1 − |x|2)δ
]
, (3.21)

p4 =
1
8


(
4x +

(
x2 − 3x + 3

)
p2

)
tx − 4m(1 − |x|2)

−ρ
(
1 − |δ|2

)
+ (x − 1) δp + δx + p4

 .
by putting the above values of p2, p3 and p4 in (3.19), we get

H3,1( f ) =
1

34 560


−15

4 p6 − 27p4tx3 + 9
2 p4tx2 + 12p4tx + 108p3(1 − |x|2)txδ + 45p3(1 − |x|2)tδ

+108p2(1 − |x|2)txδ2 − 108(1 − |δ|2)ρp2(1 − |x|2)t + 9
4 p2t2x4

−81p2t2x3 − 9p2t2x2 − 108p2tx2 − 9p(1 − |x|2)t2x2δ

+90p(1 − |x|2)t2xδ − 135(1 − |x|2)2t2δ2 − 144(1 − |x|2)t2x2δ2

+144(1 − |δ|2)ρ(1 − |x|2)t2x − 56t3x3 + 144t2x3


,

where t =
(
4 − p2

)
; then, we have

H3,1( f ) =
1

34 560

[
v1(p, x) + v2(p, x)δ + v3(p, x)δ2 + ϕ(p, x, δ)ρ

]
,

where

v1(p, x) = −
1
4

(4 − p2)x

 (4 − p2)x
(
100p2x − 9p2x2 + 36p2 + 320x

)
+

(
432p2x − 18p4x + 108p4x2 − 48p4

)  − 15
4

p6,

v2(p, x) = −9p(4 − p2)
(
1 − |x|2

) (
(4 − p2)

(
x2 − 10x

)
− 5p2 − 12p2x

)
,

v3(p, x) = −9(4 − p2)
(
1 − |x|2

) (
(4 − p2)

(
15 + x2

)
− 12p2x

)
,

and
ϕ(p, x, δ) = 36(4 − p2)

(
1 − |x|2

) (
4x(4 − p2) − 3p2

) (
1 − |δ|2

)
.

AIMS Mathematics Volume 8, Issue 11, 27396–27413.
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Now, let |δ| = y, |x| = x and |ρ| ≤ 1. Then we have∣∣∣H3,1( f )
∣∣∣ ≤ 1

34 560

(
|v1(p, x)| + |v2(p, x)| y + |v3(p, x)| y2 + |ϕ(p, x, δ)|

)
≤

1
34 560

(H(p, x, y)) ,

where
H(p, x, y) = h1(p, x) + h2(p, x)y + h3(p, x)y2 + h4(p, x)(1 − y2). (3.22)

Then,

h1(p, x) =
1
4

(4 − p2)x

 (4 − p2)x
(
100p2x + 9p2x2 + 36p2 + 320x

)
+

(
432p2x + 18p4x + 108p4x2 + 48p4

)  + 15
4

p6,

h2(p, x) = 9p(4 − p2)
(
1 − x2

) (
(4 − p2)

(
x2 + 10x

)
+ 5p2 + 12p2x

)
,

h3(p, x) = 9(4 − p2)
(
1 − x2

) (
(4 − p2)

(
15 + x2

)
+ 12p2x

)
,

h4(p, x) = 36(4 − p2)
(
1 − x2

) (
4x(4 − p2) + 3p2

)
.

Now, we need to attain the maxima of H (p, x, y) in the interior of the closed cuboid ∆ : [0, 2] ×
[0, 1]× [0, 1]. In order to do this, we have to maximize H (p, x, y) on all six internal faces and at the 12
edges of the cuboid ∆.
1) First, we will check for the maximum of the function H in the interior of ∆. Let (p, x, y) ∈ (0, 2) ×
(0, 1) × (0, 1). Then differentiating (3.22) partially with rspect to y, we get

∂H (p, x, y)
∂y

= 9(4 − p2)
(
1 − x2

)  p
(
(4 − p2)

(
x2 + 10x

)
+ 5p2 + 12p2x

)
+2

(
(4 − p2)

(
15 + x2

)
+ 12p2x

)
y − 8

(
4x(4 − p2) + 3p2

)
y

 ;

by setting ∂H(p,x,y)
∂y = 0, we get

y =
p
(
(4 − p2)

(
x2 + 10x

)
+ p2 (12x + 5)

)
2
((

4 − p2) (15 − x) − 12p2) (x − 1)
= y0 ∈ (0, 1),

which is possible only if

p3 (12x + 5) + px(4 − p2) (x + 10) + 2
(
4 − p2

)
(15 − x) (1 − x)

< 24p2 (1 − x) (3.23)

and
p2 >

4 (15 − x)
27 − x

.

Let g(x) = 4(15−x)
27−x ; it follows that

∂

∂x

(
4 (15 − x)

27 − x

)
= −

48
(x − 27)2 < 0 in (0, 1) .
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This shows that g(x) is a decreasing function. Hence, p2 > 28
13 ; a simple calculation show that the

above inequality (3.23) does not hold true for the given values of x ∈ (0, 1), so the function L is no
critical point in the interior of the cuboid.
2) We will check the maximum value on the six faces. First on p = 0, we have

H(0, x, y) = m1(x, y) = 1280x3 + 144
(
1 − x2

) (
15 + x2

)
y2 + 2304x

(
1 − x2

) (
1 − y2

)
.

Now,
∂m1(x, y)
∂y

= −288y (x − 1)2
(
x2 − 14x − 15

)
, 0, (x, y ∈ (0, 1))

Hence, H(0, x, y) is no optimal point in (0, 1) × (0, 1).
At p = 2,

H(2, x, y) =
15
4

(2)6 = 240.

At x = 0,

H(p, 0, y) = m2(p, y) =
15
4

p6 + 45p3(4 − p2)y + 135(4 − p2)2y2

+108p2(4 − p2)
(
1 − y2

)
and

∂m2(p, y)
∂y

= −9
(
p2 − 4

) (
5p3 − 54yp2 + 120y

)
,

by taking ∂m2(p,y)
∂y = 0, we get that y = 5p3

(54p2−120) =: y0. For the provided range of y, p > p0 =

1.490711984999.
Further,

∂m2

∂p
=

9
2

p
(
5p4 − 50p3y + 216p2y2 − 96p2 + 120py − 672y2 + 192

)
.

Taking ∂m2
∂p = 0, we get(

5p4 − 50p3y + 216p2y2 − 96p2 + 120py − 672y2 + 192
)
= 0.

By putting y = 5p3

(54p2−120) , we get

135p8 − 6232p6 + 37584p4 − 80640p2 + 57600 = 0.

When solving for p ∈ (0, 2), the solution is p = 1.2751; upon checking we conclude that there is no
optimal solution for H(p, 0, y) = m2(p, y) in (0, 2) × (0, 1).

At x = 1, we have

H(p, 1, y) = m3(p, y) = −
7
2

p6 − 144p4 + 372p2 + 1280,

and
∂m3

∂p
= −21p5 − 576p3 + 744p.
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Now, for the critical point put ∂m3
∂p = 0; we obtain the solution to be p = 1.1117, at which m3 yields

the maximum value, which is
m3(p, y) ≤ 1513.2.

At y = 0, we obtain

H(p, x, 0) = m4 (p, x) =
9
4

p6x4 − 2p6x3 +
9
2

p6x2 − 12p6x +
15
4

p6 − 18p4x4 − 156p4x3

−54p4x2 + 192p4x − 108p4 + 36p2x4 + 912p2x3

+144p2x2 − 1152p2x + 432p2 − 1024x3 + 2304x.

From the computation it is clear that the system of equations has no solution for (0, 2) × (0, 1).
At y = 1,

H(p, x, 1) = m5(p, x) =
9
4

p6x4 − 2p6x3 +
9
2

p6x2 − 12p6x +
15
4

p6 − 9p5x4

+18p5x3 + 54p5x2 − 18p5x − 45p5 − 27p4x4

+96p4x3 − 288p4x2 − 60p4x + 135p4 + 72p3x4

+288p3x3 − 252p3x2 − 288p3x + 180p3 + 108p2x4

−672p2x3 + 1584p2x2 + 432p2x − 1080p2 − 144px4

−1440px3 + 144px2 + 1440px − 144x4 + 1280x3

−2016x2 + 2160.

Computation indicates that the solution for the system of equations associated with ∂m5
∂x = 0 and ∂m5

∂p = 0
in the region (0, 2) × (0, 1) does not exist.
3) Now, we will check the maximum of H(p, x, y) at the 12 edges of cuboid.

By putting x = 0 and y = 0, we have

H(p, 0, 0) = m6(p) =
15
4

p6 − 108p4 + 432p2.

For the critical points put ∂m6
∂p = 0; its critical point is p = 1.5059, at which the maximum value of

m6(p) is
m6(p) ≤ 467.99.

By putting x = 0 and y = 1,

H(p, 0, 1) = m7(p) =
15
4

p6 − 45p5 + 135p4 + 180p3 − 1080p2 + 2160.

For critical point
∂m7

∂p
=

45
2

p5 − 225p4 + 540p3 + 540p2 − 2160p.

As ∂m7
∂p < 0, for p ∈ [0, 2] , ∂m7

∂p is a decreasing function that achieves its maximum value at p = 0,
which is

H(p, 0, 1) ≤ 2160.
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For x = 0 and p = 0, we have

H(0, 0, y) = m8(y) = 9(4) ((4) (15)) y2 = 2160y2.

As m8(y) is an increasing function, its maximum occurs at y = 1, that is

H(0, 0, y) ≤ 2160.

Now, the equation

H(p, 1, y) = m3(p, y) = −
7
2

p6 − 144p4 + 372p2 + 1280

is free from y. So,

H(p, 1, 0) = H(p, 1, 1) = −
7
2

p6 − 144p4 + 372p2 + 1280.

Then, m9(p) = −7
2 p6−144p4+372p2+1280 has its maximum value at p = 1.1117, which corresponds

to
m9(p) ≤ 1513.2.

For p = 0 and x = 1,

H(0, 1, y) = m10(y) =
1
4

(4) [((4) (320))] = 1280

For p = 2, all of the terms of H(p, x, y) are free from p, x and y. So,

H(2, 0, y) = H(2, 1, y) = H(2, x, 1) = H(2, x, 0) = −
7
2

p6 = −
7
2

(2)6 = −224.

At p = 0 and y = 0,
H(0, x, 0) = m11(x) = 2304x − 1024x3.

To find the critical point at which m11(x) gives the maximum value, put ∂m11
∂x = 0 which gives

x0 = 1.5 at which the maximum value of m11(x) is given by

H(0, x, 0) = m10(x) ≤ 0.

For p = 0 and y = 1,

H(0, x, 1) = m12(x) = −144x4 + 1280x3 − 2016x2 + 2160.

As ∂m12
∂x = −576x3 + 3840x2 − 4032x < 0, for x ∈ (0, 1) which shows that it is decreasing function then

its maximum occurs at x = 0, that is
m12(x) ≤ 2160.

Here from all of the calculations, we conclude that

L(p, x, y) ≤ 2160.

For △ : [0, 2] × [0, 1] × [0, 1], it follows that∣∣∣H3,1( f )
∣∣∣ ≤ 1

34560
(L(p, x, y) ≤

1
16
.

□
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4. Krushkal inequality

In this section for the particular choice of n = 4 and p = 1, we will give a direct proof of the
inequality ∣∣∣ap

n − ap(n−1)
2

∣∣∣ ≤ 2p(n−1)
− np

over the family Rtanh. For the whole family of univalent functions Krushkal [34] introduced and proved
this inequality.

Theorem 4.1. Let g ∈ A belong to Rtanh. Then,

∣∣∣a4 − a3
2

∣∣∣ ≤ 1
4
.

The equality associated with this inequality can be obtained for the function defined by (3.4).

Proof. From Eqs (3.11) and (3.13), we get∣∣∣a4 − a3
2

∣∣∣ = ∣∣∣∣∣ 1
192

p3
1 −

1
8

p2 p1 +
1
8

p3

∣∣∣∣∣ .
By applying Lemma 2.3 to the above equation, we get the required result. □

5. Logarithmic coefficients for the family Rtanh

The logarithmic coefficients of g ∈ S denoted by γn = γn (g) , are defined by the following series
expansion:

log
g (ε)
ε
= 2

∞∑
n=1

γnε
n.

For the functions g given by (1.2), the logarithmic coefficients are as follows

γ1 =
1
2

a2, (5.1)

γ2 =
1
2

(
a3 −

1
2

a2
2

)
, (5.2)

γ3 =
1
2

(
a4 − a2a3 +

1
3

a2
2

)
, (5.3)

γ4 =
1
2

(
a5 − a2a4 + a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
, (5.4)

γ5 =
1
2

(
a6 − a2a5 − a3a4 + a2a2

3 + a2
2a4 − a3

2a3 +
1
5

a5
2

)
. (5.5)

Theorem 5.1. If g (ε) ∈ Rtanh and it has the form given by (1.2), then

|γ1| ≤
1
4
,
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|γ2| ≤
1
6
,

|γ3| ≤
1
8
,

|γ4| ≤
1

10
.

The equality associated with these inequalities can be obtained for the function

gn (ε) =
∫ ε

0
(1 + tanh (tn)) dt = ε +

1
n + 1

εn+1 + · · · for n = 1, 2, 3, 4. (5.6)

Proof. Now from (5.1) to (5.5) and (3.11) to (3.14), we get

γ1 =
1
8

p1, (5.7)

γ2 =
1
12

(
p2 −

11
16

p2
1

)
, (5.8)

γ3 =
3

128
p3

1 −
1
12

p2 p1 +
1

16
p3, (5.9)

γ4 = −
137

18 432
p4

1 +
19
360

p2
1 p2 −

21
320

p3 p1 −
23

720
p2

2 +
1

20
p4. (5.10)

Applying (2.4) to (5.7), we get

|γ1| ≤
1
4
.

From (5.8) and by using (2.5), we get

|γ2| ≤
1
6
.

Applying Lemma 2.3 to (5.9), we get

|γ3| ≤
1
8
.

Also, applying Lemma 2.4 to (5.10), we get

|γ4| ≤
1

10
.

Proof of sharpness. Since

log
g1 (ε)
ε

= 2
∞∑

n=2

γ (g1) εn =
1
2
ε + · · · ,

log
g2 (ε)
ε

= 2
∞∑

n=2

γ (g2) εn =
1
3
ε2 + · · · ,

log
g3 (ε)
ε

= 2
∞∑

n=2

γ (g2) εn =
1
4
ε3 + · · · ,

log
g4 (ε)
ε

= 2
∞∑

n=2

γ (g2) εn =
1
5
ε4 + · · · ,
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it follows that these inequalities are obtained for the functions gn (ε) for n = 1, 2, 3, 4 as defined in (5.6).
□

Theorem 5.2. If g (ε) ∈ Rtanh and it has the form given by (1.2), then

∣∣∣γ1γ3 − γ
2
2

∣∣∣ ≤ 1
36
.

The equality in this inequality can be obtained for the function g2 in (5.6).

Proof. From (5.7)–(5.9), we have

γ1γ3 − γ
2
2 = −

13
36 864

p4
1 −

1
1152

p2
1 p2 +

1
128

p3 p1 −
1

144
p2

2.

Applying (2.2) and (2.3) to write p2 and p3 in terms of p1 = p ∈ [0, 2], we get

γ1γ3 − γ
2
2 = −

7
12 288

p4 −
1

576

(
4 − p2

)2
x2 −

1
512

p2
(
4 − p2

)
x2 p1 +

1
256

p
(
4 − p2

) (
1 − |x|2

)
δ.

By the triangle inequality, and by using |δ| ≤ 1 and |x| = y ≤ 1, we get∣∣∣γ1γ3 − γ
2
2

∣∣∣ ≤ 7
12 288

p4 +
1

576

(
4 − p2

)2
y2 +

1
512

p2
(
4 − p2

)
y2 +

1
256

p
(
4 − p2

) (
1 − y2

)
. (5.11)

Now, differentiating Eq (5.11) partially with respect to y, we have

∂G (p, y)
∂y

=
1

2304
y (p − 2)2

(
−p2 + 14p + 32

)
.

It is easy to observe that ∂G(p,y)
∂y ≥ 0 in the interval [0, 1], so the maximum is attained at y = 1; thus

G (p, y) ≤ G (p, 1) =
7

12 288
p4 +

1
576

(
4 − p2

)2
+

1
512

p2
(
4 − p2

)
=

13
36 864

p4 −
7

1152
p2 +

1
36
.

Now, differentiating with respect to p, we get

G
′

(p, 1) =
1

9216
p3 −

1
576

p.

Clearly, G
′ (p, 1) = 0, has three roots namely 0, ±4, and the only root that lies in the interval [0, 2] is 0,

so
G
′′

(p, 1) =
1

3072
p2 −

1
576
.

Thus, G
′′ (0, 1) ≤ 0, so the function has its maximum at p = 0, that is∣∣∣γ1γ3 − γ

2
2

∣∣∣ ≤ 1
36
.

□
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6. Conclusions

Recently, the investigations of the Hankel determinant have attracted the attention of many
researchers due to their applications in many diverse areas of mathematics and other sciences. In this
paper, we have defined a new subfamily of analytic functions connected with the hyperbolic tangent
function with bounded boundary rotation. We have also investigated the upper bound of the third
Hankel determinant for this newly defined family of functions. On the other hand, we have obtained the
Krushkal inequality and investigated the first four initial sharp bounds of the logarithmic coefficients
and the sharp second Hankel determinant of the logarithmic coefficients for this defined family of
functions.

Here, we want to remark on the fact that one can extend the suggested results investigated in this
article to some other subclasses of analytic functions, and also that those interested scholars can use
the Dq derivative operator and generalize the work presented here.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgment

1) This work was supported by a National Research Foundation of Korea (NRF) grant funded by
the South Korea government (MSIT) (No. NRF-2022R1A2C2004874).

2) This work was supported by the Korea Institute of Energy Technology Evaluation and Planning
(KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No.
20214000000280).

Conflicts of Interest

The authors declare that they have no competing interest.

References

1. W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions,
Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157–169.

2. N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike
functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232.
https://doi.org/10.1007/s41980-018-0127-5

3. L. A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain,
Bull. Malays. Math. Sci. Soc., 44 (2021), 79–104. https://doi.org/10.1007/s40840-020-00935-6

4. J. Sokól, S. Kanas, Radius of convexity of some subclasses of strongly starlike functions, Zesz.
Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105.

5. K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with cardioid, Afr. Mat., 27
(2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7

AIMS Mathematics Volume 8, Issue 11, 27396–27413.

http://dx.doi.org/https://doi.org/10.1007/s41980-018-0127-5
http://dx.doi.org/https://doi.org/10.1007/s40840-020-00935-6
http://dx.doi.org/https://doi.org/10.1007/s13370-015-0387-7


27412

6. R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions
associated exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386.
https://doi.org/10.1007/s40840-014-0026-8

7. R. K. Raina, J. Sokól, On Coefficient estimates for a certain class of starlike functions, Hacet. J.
Math. Stat., 44 (2015), 1427–1433. https://doi.org/10.15672/HJMS.2015449676

8. N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H. M. Srivastava, Starlike functions related to
the Bell numbers, Symmetry, 11 (2019), 219. https://doi.org/10.3390/sym11020219

9. J. Dziok, R. K. Raina, J. Sokól, On certain subclasses of starlike functions related to a shell-
like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203–1211.
https://doi.org/10.1016/j.mcm.2012.10.023
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