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Abstract: Dynamic Sylvester equation (DSE) problems have drawn a lot of interest from academics
due to its importance in science and engineering. Due to this, the quest for the quaternion DSE (QDSE)
solution is the subject of this work. This is accomplished using the zeroing neural network (ZNN)
technique, which has achieved considerable success in tackling time-varying issues. Keeping in mind
that the original ZNN can handle QDSE successfully in a noise-free environment, but it might not work
in a noisy one, and the noise-resilient ZNN (NZNN) technique is also utilized. In light of that, one new
ZNN model is introduced to solve the QDSE problem and one new NZNN model is introduced to solve
the QDSE problem under different types of noises. Two simulation experiments and one application to
control of the sine function memristor (SFM) chaotic system show that the models function superbly.
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1. Introduction

It is well known that solving dynamic Sylvester equations (DSEs) is an important challenge that
occurs in many fields, including robot manipulators [1, 2], cell processors [3], control system architec-
ture [4, 5], permanent magnet synchronous motors [6], image fusion [7], fast tensor product solution
[8], object detection [9] and mobile manipulators [10]. In the past, academics have typically solved
DSEs using classical iterative methods [11], such as Krylov subspace techniques [12] and the Hessen-
berg–Schur iteration technique [13]. However, time-invariant, real-valued and small-scale matrix DSEs
are the only ones for which iterative approaches are appropriate. That is, due to their restricted com-
putational capacity, iterative approaches are not the best option when tackling time-varying complex
computing issues, and particularly DSEs, in real time [14].

We address a quaternion DSE (QDSE) problem through the zeroing neural network (ZNN) and the
noise-resilient ZNN (NZNN) techniques. Hamilton first introduced quaternions, a non-commutative
number system that expands on complex numbers, in 1843 [15]. They are useful for calculations
requiring three-dimensional rotations in both theoretical and applied mathematics [16]. They are par-
ticularly important in several fields, including robotics [17], computer modeling [18], navigation [19],
electromagnetism [20], quantum mechanics [21] and mathematical physics [22]. Lately, there has been
increased interest in the investigation of dynamic problems that involve time-varying quaternion matri-
ces (TQM), including the inversion of TQM [23], the pseudoinversion of TQM [24], the resolution of
the constrained TQM least-squares problem [25] and the resolution of the linear TQM equation [26].
Additionally, chaotic system synchronization [25], mobile manipulator control [23, 27], kinematically
redundant manipulator of robotic joints [28] and picture restoration [26, 29] are real-world uses of
TQMs. One thing unites all of these studies: they all use the ZNN technique to arrive at the solution.

In order to deal with time-varying tasks in real time, the ZNN technique is introduced by Zhang et
al. in [30]. ZNNs are a particular kind of recurrent neural networks that excel in parallel processing and
their next acceptations were dynamic models for calculating the time-varying Moore-Penrose inverse
in the real and complex domains [31, 32]. They are now used to solve problems involving generalized
inversion [33, 34], linear and quadratic programming [35, 36, 37], systems of nonlinear equations
[38, 39], and LMEs [40, 41], among other issues. Two major processes are normally involved in the
construction of a ZNN model. The function of error matrix equation (EME) E(t) must first be defined.
Second, the following ZNN dynamical system must be employed:

Ė(t) = −λE(t), (1.1)

where (˙) is the time derivative operator and t ∈ [0, t f ) ⊆ [0,+∞) denotes the time. On top of that, one
can change the model’s convergence rate by adjusting the parameter λ ∈ R+. As an example, any ZNN
model will converge even more quickly with a bigger value of λ [42]. The ZNN’s architecture is based
on setting each element of E(t) to 0, which is true as t → ∞. This is accomplished using the continuous-
time learning regulation that arises from the establishment of EME in (1.1). As a consequence, EME
can be considered a tool for monitoring ZNN model learning.
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However, the precision of the proposed ZNN techniques is significantly impacted by all types of
noise, and any prior noise reduction procedure adds time and sacrifices required real-time objectives.
Therefore, a noise-resilient model for handling time-varying tasks was introduced in [43]. In particular,
the following NZNN dynamical system was introduced therein:

Ė(t) = −λE(t) − ζ
∫ t

0
E(τ)dτ + N(t), (1.2)

where N(t) denotes a proper dimensional matrix-form noise and ζ, λ ∈ R+ are design parameters for
tracking the NZNN convergence.

Let H = {ξ1 + ξ2ı + ξ3 ȷ + ξ4k | ı2 = ȷ2 = k2 = ı ȷk = −1, ξ1, ξ2, ξ3, ξ4 ∈ R} be the set of quaternions
and Hn×n be the set of all n× n matrices on H [44]. In this paper, the next QDSE problem is addressed:

Ã(t)X̃(t) + X̃(t)B̃(t) = C̃(t), (1.3)

where Ã(t) ∈ Hm×m, B̃(t) ∈ Hn×n and C̃(t) ∈ Hm×n are known and X̃(t) ∈ Hm×n is unknown. It is
important to mention that the QDSE problem has been addressed through the ZNN technique in [45].
However, the ZNN model presented therein always assumes that m = n = 2 in (1.3) and it is based
on the complex representation of the quaternion [46]. In light of that, a new ZNN model, termed
ZNNQ-D, is introduced in this paper to solve the QDSE problem in a more direct manner and it also
covers the case where m , n with m, n ∈ N in (1.3). Computational complexity analysis proves
that the ZNNQ-D model has half the computational complexity of the ZNN model presented in [45].
Additionally, a new NZNN model, termed NZNNQ-D, is introduced in this paper to solve the QDSE
problem under different types of noises. Two simulation experiments and one application to control
of the sine function memristor (SFM) chaotic system show that the models function superbly. Last,
through theoretical analysis of each model that is described, we add to the body of literature.

The following is a list of our contributions.

• A new ZNN model, termed ZNNQ-D, for addressing the QDSE problem is presented.
• A new NZNN model, termed NZNNQ-D, for addressing the QDSE problem under different types

of noises is presented.
• A theoretical investigation is conducted to support the models.
• To support the theoretical research, simulation experiments and practical application to control of

the SFM chaotic system are carried out.

For the remainder of this paper, the identity g × g matrix will be referred to as Ig whereas the zero
g × g and m × n matrices will be referred to as 0g and 0m×n, respectively, and the all ones g × g and
m×n matrices will be referred to as 1g and 1m×n, respectively. Moreover, the vectorization process will
be denoted as vec(·), the Kronecker product will be denoted as ⊗ and the Hadamard product will be
denoted as ⊙. Last, ∥·∥F will denote the matrix Frobenius norm, TR(·) will denote the trace of a square
matrix, and (·)T will denote matrix transposition.

The paper is structured as follows. Section 2 presents quaternion preliminaries and the QDSE
problem reformulation. The ZNNQ-D model, which is based on the ZNN technique, is introduced
in Section 3, while the NZNNQ-D model, which is based on the NZNN technique, is introduced in
Section 4. It is important to note that the theoretical analysis and the computational complexity of the
models are both included in Sections 3 and 4. Simulation experiments and application to control of
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the SFM chaotic system are presented in Section 5. Finally, Section 6 presents closing remarks and
reflections.

2. Preliminaries and reformulation of the QDSE problem

In this section, the TQM foundations are laid out, and the QDSE problem is reformulated. The
purpose of reformulating the QDSE problem (1.3) is to reduce the computational complexity of the
ZNN and NZNN techniques.

Let Ã(t) = A1(t) + A2(t)ı + A3(t) ȷ+ A4(t)k ∈ Hm×m be a TQM with coefficient matrices Ai(t) ∈ Rm×m

for i = 1, 2, · · · , 4. Similarly, consider the TQMs B̃(t) ∈ Hn×n, C̃(t) ∈ Hm×n and X̃(t) ∈ Hm×n with
coefficient matrices Bi(t) ∈ Rn×n and Ci(t), Xi(t) ∈ Rm×n for i = 1, 2, · · · , 4, respectively. On the one
hand, the product of Ã(t) and X̃(t) is as follows:

Ã(t)X̃(t) = Ṽ(t) = V1(t) + V2(t)ı + V3(t) ȷ + V4(t)k ∈ Hm×n (2.1)

where the coefficient matrices Vi(t) ∈ Rm×n for i = 1, 2, · · · , 4 are the following:

V1(t)=A1(t)X1(t)−A2(t)X2(t)−A3(t)X3(t)−A4(t)X4(t),
V2(t)=A1(t)X2(t)+A2(t)X1(t)+A3(t)X4(t)−A4(t)X3(t),
V3(t)=A1(t)X3(t)+A3(t)X1(t)+A4(t)X2(t)−A2(t)X4(t),
V4(t)=A1(t)X4(t)+A4(t)X1(t)+A2(t)X3(t)−A3(t)X2(t).

(2.2)

On the other hand, the product of X̃(t) and B̃(t) is as follows:

X̃(t)B̃(t) = Ũ(t) = U1(t) + U2(t)ı + U3(t) ȷ + U4(t)k ∈ Hm×n (2.3)

where the coefficient matrices Ui(t) ∈ Rm×n for i = 1, 2, · · · , 4 are the following:

U1(t)=X1(t)B1(t)−X2(t)B2(t)−X3(t)B3(t)−X4(t)B4(t),
U2(t)=X1(t)B2(t)+X2(t)B1(t)+X3(t)B4(t)−X4(t)B3(t),
U3(t)=X1(t)B3(t)+X3(t)B1(t)+X4(t)B2(t)−X2(t)B4(t),
U4(t)=X1(t)B4(t)+X4(t)B1(t)+X2(t)B3(t)−X3(t)B2(t).

(2.4)

Based on the aforementioned, (1.3) may be reformulated as below:

Ṽ(t) + Ũ(t) = C̃(t), (2.5)

where the following is true: 
V1(t) + U1(t) = C1(t),
V2(t) + U2(t) = C2(t),
V3(t) + U3(t) = C3(t),
V4(t) + U4(t) = C4(t),

(2.6)
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Then, setting

Y(t)=


X1(t) −X2(t) −X3(t) −X4(t)
X2(t) X1(t) −X4(t) X3(t)
X3(t) X4(t) X1(t) −X2(t)
X4(t) −X3(t) X2(t) X1(t)

∈R4m×4n, X(t)=


X1(t)
X2(t)
X3(t)
X4(t)

∈R4m×n, B(t)=


B1(t)
B2(t)
B3(t)
B4(t)

∈R4n×n,

D(t)=


A1(t) −A2(t) −A3(t) −A4(t)
A2(t) A1(t) −A4(t) A3(t)
A3(t) A4(t) A1(t) −A2(t)
A4(t) −A3(t) A2(t) A1(t)

∈R4m×4m, C(t)=


C1(t)
C2(t)
C3(t)
C4(t)

∈R4m×n,

(2.7)

(2.5) can be reformulated as below:

D(t)X(t) + Y(t)B(t) = C(t), (2.8)

in which X(t) and Y(t) contain the coefficient matrices Xi(t), i = 1, . . . , 4, of the desired solution X̃(t)
to the QDSE problem (1.3). In contrast to solving (1.3), which yields only one TQM, (2.8) yields four
real-valued time-varying matrices.

3. ZNN adaption for QDSE solution

In this section we shall develop a ZNN model, named ZNNQ-D, to solve the QDSE problem.

3.1. The ZNNQ-D model

We suppose that Ã(t) ∈ Hm×m, B̃(t) ∈ Hn×n and C̃(t), X̃(t) ∈ Hm×n are differentiable TQMs. Accord-
ing to Section’s 2 analysis, the (2.8) problem is a reformulation of the (1.3) problem. We construct the
differentiable matrices D(t) ∈ R4m×4m, B(t) ∈ R4n×n and C(t) ∈ R4m×n in accordance with (2.7) and take
into account the following EME:

ED(t) = D(t)X(t) + Y(t)B(t) −C(t), (3.1)

where Y(t) ∈ R4m×4n and X(t) ∈ R4m×n are unknown matrices. Its first derivative is:

ĖD(t) = Ḋ(t)X(t) + D(t)Ẋ(t) + Ẏ(t)B(t) + Y(t)Ḃ(t) − Ċ(t). (3.2)

The following is the outcome of addressing the ZNN dynamical system in terms of Ẋ(t) and Ẏ(t)
when E(t) and Ė(t) in (1.1) are substituted with ED(t) and ĖD(t) determined in (3.1) and (3.2), respec-
tively:

D(t)Ẋ(t) + Ẏ(t)B(t) = −λED(t) − Ḋ(t)X(t) − Y(t)Ḃ(t) + Ċ(t). (3.3)

To simplify the dynamics of (3.3), the vectorization and Kronecker product are utilized:

(In⊗D(t))vec(Ẋ(t))+(BT(t)⊗I4m)vec(Ẏ(t))=vec(−λED(t)−Ḋ(t)X(t)−Y(t)Ḃ(t)+Ċ(t)). (3.4)

It is significant to note that identical elements, but in different positions, can be found in the vec-
tors vec(Ẋ(t)) and vec(Ẏ(t)). In other words, it is possible to further simplify (3.4) by rewriting the
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vector vec(Ẏ(t)) in terms of vec(Ẋ(t)). As a consequence, it is feasible to create the next equation that
substitutes vec(Ẏ(t)) in (3.4):

vec(Ẏ(t)) = Jvec(Ẋ(t)), (3.5)

where J ∈ R16mn×4mn is an operational matrix that may be computed utilizing the algorithmic process
presented in Algorithm 1. Notice that the notations in Alg. 1 follow the usual MATLAB function
theme [47].

Algorithm 1 Matrix J calculation.
Input: The rows m and columns n numbers of a matrix A ∈ Rm×n.

1: procedure OM J(m, n)
2: Set J =zeros(16mn, 4mn), x = (1 : 4mn)′ and X =reshape(x, 4m, n)
3: Set X1 = X(1 : m, :), X2 = X(m + 1 : 2m, :), X3 = X(2m + 1 : 3m, :), X4 = X(3m + 1 : end, :)
4: Set Y = [X1,−X2,−X3,−X4; X2, X1,−X4, X3; X3, X4, X1,−X2; X4,−X3, X2, X1]
5: Set Z = reshape(Y, [], 1)
6: for j = 1 : 16mn do
7: J(i,abs(Z(i))) =sign(Z(i))
8: end for
9: return J

10: end procedure
Output: The operational matrix J.

By using (3.5), we can further simplify (3.4) as follows:

(In⊗D(t))vec(Ẋ(t))+(BT(t)⊗I4m)Jvec(Ẋ(t))=vec(−λED(t)−Ḋ(t)X(t)−Y(t)Ḃ(t)+Ċ(t)). (3.6)

In addition, once the followings have been set:

Q(t)=In⊗D(t)+(BT(t)⊗I4m)J∈R4mn×4mn, r(t)=vec(X(t))∈R4mn,

G(t)=vec(−λED(t)−Ḋ(t)X(t)−Y(t)Ḃ(t)+Ċ(t))∈R4mn, ṙ(t)=vec(Ẋ(t))∈R4mn,
(3.7)

we get at the next ZNN model:
Q(t)ṙ(t) = G(t) (3.8)

where Q(t) is an invertible mass matrix. The recommended ZNN model to be employed in addressing
the QDSE problem of (1.3) is the dynamic model of (3.8), referred to as ZNNQ-D.

3.2. ZNNQ-D model theoretical analysis

This section presents the ZNNQ-D (3.8) model’s examination of convergence and stability.

Theorem 3.1. Let D(t) ∈ R4m×4m, B(t) ∈ R4n×n and C(t) ∈ R4m×n. Also, suppose that D(t), B(t) and C(t)
are differentiable. Then, the system (3.3) the based on the ZNN theme (1.1) converges to the theoretical
solution (TSOL) X̂(t), and the solution is stable, in line with Lyapunov.

Proof. The replacement X̄(t) := X̂(t) − X(t), where X̂(t) is the TSOL, entails X(t) = X̂(t) − X̄(t).
According to (2.7), Y(t) is a rearrangement of the elements of X(t). As a consequence, Y(t) = Ŷ(t)−Ȳ(t)
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since Ŷ(t) and Ȳ(t) are a rearrangement of the elements of X̂(t) and X̄(t), respectively. The time-
derivatives of X(t) and Y(t) are Ẋ(t) = ˙̂X(t) − ˙̄X(t) and Ẏ(t) = ˙̂Y(t) − ˙̄Y(t), respectively.

Considering that
D(t)X̂(t) + Ŷ(t)B(t) −C(t) = 04m×n, (3.9)

and its first derivative

D(t) ˙̂X(t) + Ḋ(t)X̂(t) + ˙̂Y(t)B(t) + Ŷ(t)Ḃ(t) − Ċ(t) = 04m×n, (3.10)

one can confirm the following after replacing X(t) = X̂(t) − X̄(t) and Y(t) = Ŷ(t) − Ȳ(t) with (3.1):

ÊD(t) = D(t)X̂(t) − D(t)X̄(t) + Ŷ(t)B(t) − Ȳ(t)B(t) −C(t). (3.11)

In addition, the dynamics of (1.1) yield

˙̂ED(t)=D(t) ˙̂X(t)−D(t) ˙̄X(t)+ ˙̂Y(t)B(t)− ˙̄Y(t)B(t)−Ċ(t)+Ḋ(t)X̂(t)−Ḋ(t)X̄(t)+Ŷ(t)Ḃ(t)−Ȳ(t)Ḃ(t)
=−λÊD(t).

(3.12)

After that, we choose the following potential Lyapunov function to corroborate convergence:

L(t) =
1
2

∥∥∥ÊD(t)
∥∥∥2

F
=

1
2

TR
(
ÊD(t)

(
ÊD(t)

)T)
. (3.13)

The next may then be confirmed:

L̇(t) =
2TR
((

ÊD(t)
)T ˙̂ED(t)

)
2

= TR
((

ÊD(t)
)T ˙̂ED(t)

)
= −λTR

((
ÊD(t)

)T
ÊD(t)

)
. (3.14)

As a consequence, it holds

L̇(t)

< 0, ÊD(t) , 0

= 0, ÊD(t) = 0,
⇔ L̇(t)

< 0, D(t)X̂(t) + Ŷ(t)B(t) −C(t) − D(t)X̄(t) − Ȳ(t)B(t) , 0

= 0, D(t)X̂(t) + Ŷ(t)B(t) −C(t) − D(t)X̄(t) − Ȳ(t)B(t) = 0,

⇔L̇(t)

< 0, X̄(t) , 0 & Ȳ(t) , 0

= 0, X̄(t) = 0 & Ȳ(t) = 0,
⇔ L̇(t)

< 0, X̄(t) , 0

= 0, X̄(t) = 0.

(3.15)

Notice that Ȳ(t) , 0 when X̄(t) , 0 and Ȳ(t) = 0 when X̄(t) = 0 since Y(t) is a rearrangement of the
X(t) elements. Also, due to the fact that X̄(t) is the equilibrium point of (3.12) and ED(0) = 0, the
following holds:

L̇(t) ≤ 0, ∀ X̄(t) , 0. (3.16)

We conclude that the equilibrium state X̄(t) = X̂(t) − X(t) = 0 is stable in line with the Lyapunov
stability theory. Thereafter, X(t) → X̂(t) as t → ∞. Notice that Y(t) → Ŷ(t) as t → ∞ since Y(t) is a
rearrangement of the X(t) elements.

Theorem 3.2. Let Ã(t) ∈ Hm×m, B̃(t) ∈ Hn×n and C̃(t) ∈ Hm×n. Also, suppose that Ã(t), B̃(t) and C̃(t)
are differentiable. At every t ∈ [0, t f ) ⊆ [0,+∞), the ZNNQ-D model (3.8) converges exponentially to
the TSOL r̂(t) for every initial price r(0) that one may take into consideration.
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Proof. First, the QDSE problem of (1.3) is converted into the problem of (2.8), based on the analysis
shown in Section 2. More particularly, using the matrices Ã(t) and B̃(t), we create the matrices D(t) ∈
R4m×4m, B(t) ∈ R4n×n and C(t) ∈ R4m×n according to (2.7). As a result, we convert the problem of (1.3)
into the problem of (2.8). Second, to solve the problem of (2.8), the EME of (3.1) is declared. For
zeroing (3.1), the model (3.3) is deployed in line with the ZNN theme (1.1). According to Theorem 3.1,
X(t)→ X̂(t) and Y(t)→ Ŷ(t) when t → ∞ for any choice of initial value. So, the model (3.3) converges
to the TSOL of the (1.3), since (2.8) is a reformulation of the QDSE problem of (1.3). Third, the model
(3.3) is simplified into the ZNNQ-D model (3.8) using the Kronecker product and vectorization. As an
alternative version of (3.3), for every initial value r(0), the ZNNQ-D model (3.8) also converges to the
TSOL r̂(t) when t → ∞. Thereafter, the proof is finished.

3.3. ZNNQ-D model computational complexity

The complexity of creating and addressing (3.8) adds to the ZNNQ-D’s total computational com-
plexity. Particularly, the complexity of creating (3.8) is O((4mn)2) operations because at every iteration
we conduct (4mn)2 multiplications and 4mn subtractions/additions. On top of that, the implicit MAT-
LAB solver ode15s is used to address at each step the linear system of equations. The complexity of
addressing (3.8) is O((4mn)3 as it necessitates a 4mn × 4mn matrix. So, the ZNNQ-D model’s total
computational complexity is O((4mn)3).

It is significant also to mention the total computational complexity of the ZNN model presented in
[45]. However, this model deals with complex numbers. That is, it takes a total of 4 multiplications
and 2 subtraction/addition operations to multiply two complex numbers, as shown by the formula
(q + bı)(c + pı) = qc − bp + qpı + bcı. So, the total computational complexity of the model presented
in [45] is O((8mn)3), where m = n = 2. Therefore, the ZNNQ-D model has half the computational
complexity of the ZNN model presented in [45] when m = n = 2.

4. NZNN adaption for QDSE solution under different types of noises

In this section we shall develop a NZNN model, named NZNNQ-D, to solve the QDSE problem
under different forms of noise.

4.1. The NZNNQ-D model

We suppose that Ã(t) ∈ Hm×m, B̃(t) ∈ Hn×n and C̃(t), X̃(t) ∈ Hm×n are differentiable TQMs. Accord-
ing to Section’s 2 analysis, the (2.8) problem is a reformulation of the (1.3) problem. We construct the
differentiable matrices D(t) ∈ R4m×4m, B(t) ∈ R4n×n and C(t) ∈ R4m×n in accordance with (2.7) and take
into account the EME defined in (3.1) and its first derivative defined in (3.2).

The following is the outcome of addressing the NZNN dynamical system in terms of Ẋ(t) and
Ẏ(t) when E(t) and Ė(t) in (1.2) are substituted with ED(t) and ĖD(t) determined in (3.1) and (3.2),
respectively:

D(t)Ẋ(t) + Ẏ(t)B(t) = −λED(t) − ζ
∫ t

0
ED(τ)dτ + N(t) − Ḋ(t)X(t) − Y(t)Ḃ(t) + Ċ(t), (4.1)

where N(t) ∈ R4m×n is matrix-form noise. To simplify the dynamics of (4.1), the vectorization and
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Kronecker product are utilized:

(In⊗D(t))vec(Ẋ(t))+(BT(t)⊗I4m)vec(Ẏ(t))=vec(−λED(t)−ζP(t)+N(t)−Ḋ(t)X(t)−Y(t)Ḃ(t)+Ċ(t)),
(4.2)

where P(t) =
∫ t

0
ED(τ)dτ ∈ R4m×n. By using (3.5), we can further simplify (4.2) as follows:

(In⊗D(t))vec(Ẋ(t))+(BT(t)⊗I4m)Jvec(Ẋ(t))=vec(−λED(t)−ζP(t)+N(t)−Ḋ(t)X(t)−Y(t)Ḃ(t)+Ċ(t)).
(4.3)

In addition, once the followings have been set:

R(t)=
[

I4mn 04mn×4mn

04mn×4mn In⊗D(t)+(BT(t)⊗I4m)J

]
∈R8mn×8mn, h(t)=

[
vec(P(t))
vec(X(t))

]
∈R8mn,

K(t)=
[

vec(ED(t))
vec(−λED(t)−ζP(t)+N(t)−Ḋ(t)X(t)−Y(t)Ḃ(t)+Ċ(t))

]
∈R8mn, ḣ(t)=

[
vec(Ṗ(t))
vec(Ẋ(t))

]
∈R8mn,

(4.4)

we get at the next NZNN model:
R(t)ḣ(t) = K(t) (4.5)

where R(t) is an invertible mass matrix. The recommended NZNN model to be employed in addressing
the QDSE problem of (1.3) under different forms of noise is the dynamic model of (4.5), referred to as
NZNNQ-D.

The complexity of creating and addressing (4.5) adds to the NZNNQ-D’s total computational com-
plexity. Particularly, the complexity of creating (4.5) is O((8mn)2) operations because at every iteration
we conduct (8mn)2 multiplications and 8mn subtractions/additions. On top of that, the implicit MAT-
LAB solver ode15s is used to address at each step the linear system of equations. The complexity of
addressing (4.5) is O((8mn)3 as it necessitates a 8mn × 8mn matrix. So, the NZNNQ-D model’s total
computational complexity is O((8mn)3).

4.2. NZNNQ-D model theoretical analysis

This section presents the NZNNQ-D (3.8) model’s examination of convergence and stability. Notice
that some of following theorems seek to address various forms of noise and are rehashed from [43].

Theorem 4.1. Let D(t) ∈ R4m×4m, B(t) ∈ R4n×n and C(t) ∈ R4m×n. Also, suppose that D(t), B(t) and C(t)
are differentiable. Then, the system (4.1), which is based on the NZNN theme (1.2), converges to the
TSOL X̂(t) under the ideal noise-free condition, and the solution is stable, in line with Lyapunov.

Proof. The proof is omitted as it is analogous to the Theorem’s 3.1 proof.

Theorem 4.2. [43, Theorem 3] Considering the Theorem’s 4.1 presumptions, the system (4.1) contam-
inated with the constant noise N(t) = N ∈ R4m×n converges globally to the TSOL.

Theorem 4.3. [43, Theorem 4] Considering the Theorem’s 4.1 presumptions, the system (4.1) con-
taminated with the linear noise N(t) = N · t ∈ R4m×n converges globally to the TSOL, with the upper
bound of the EME accomplishing lim

t→∞
∥ED(t)∥F = 1

ζ
∥N∥F. Also, as ζ → +∞, ED(t) accomplishes

lim
t→∞
∥ED(t)∥F ↓ 0.
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Theorem 4.4. [43, Theorem 5] Considering the Theorem’s 4.1 presumptions, the system (4.1) contam-
inated with the bounded random noise N(t) := σ(t) = [σi j(t)]i, j=1,...,n ∈ R

4m×n preserves the bounded
residual error ∥ED(t)∥F. Also, lim

t→∞
∥ED(t)∥F is bounded by

sup
0≤τ≤t
|σi j(τ)| 2ρ

√
Q

,Q > 0

sup
0≤τ≤t
|σi j(τ)| 4ρζ

√
−Q

,Q < 0
(4.6)

where Q = −4ζ + η2 and η, ζ > 0 are parameters. Thus, the upper bound of lim
t→∞
∥ED(t)∥F is basically

an inverted counterpart of η in the case of Q , 0 as well as lim
t→∞
∥ED(t)∥F arbitrarily being tiny for

sufficient large η and proper ζ.

Theorem 4.5. Let Ã(t) ∈ Hm×m, B̃(t) ∈ Hn×n and C̃(t) ∈ Hm×n. Also, suppose that Ã(t), B̃(t) and C̃(t)
are differentiable. At every t ∈ [0, t f ) ⊆ [0,+∞), the NZNNQ-D model (4.5) converges exponentially to
the TSOL ĥ(t) under constant, linear and bounded random noises N(t) ∈ R4m×n for every initial price
h(0) that one may take into consideration.

Proof. The proof is omitted as it is analogous to the Theorem’s 3.2 proof once we replace Theorem 3.1
with Theorem 4.1 and also include the Theorems 4.2, 4.3 and 4.4, respectively, for the constant, linear
and bounded random noises, it is omitted.

5. Simulation experiments

This section will outline an application to control of the SFM chaotic system as well as two simula-
tion examples (SEs). The following includes a few key justifications. In the SEs, the initial conditions
(ICs) of the ZNNQ-D and NZNNQ-D models have been set as follows:

• IC1: r(0) = 0mn and h(0) = 0mn,
• IC2: r(0) = 1mn and h(0) = 1mn,

the parameter λ is utilized with values 10 and 102, and the parameter ζ is utilized with values 10,
102 and 103. For simplicity, we have set ξ(t) = sin(t) and ψ(t) = cos(t). Additionally, in the SEs
and application, computations are performed using the MATLAB ode solver, ode15s, while its time
interval has been set to [0, 10] in SEs and [0, 500] in application. It is crucial to note that we utilize the
ode15s with its regular double precision arithmetic (eps = 2.22 · 10−16), which means that all of the
errors in the figures of this section have a minimum value that is close to 10−5.

5.1. Simulations

Example 5.1. In this SE, the matrix Ã(t) coefficients are set to

A1(t) =


3ξ(t) + 1 4 4
3ψ(t) + 2 5 5

2 ψ(t) + 3 ψ(t) + 3

 , A2(t) =


5 2ξ(t) + 2 2ξ(t) + 2

3ξ(t) − 2 3 3
−2ψ(t) + 5 ψ(t) + 5 ψ(t) + 5

 ,

A3(t) =


3ξ(t) + 2 5 5
2ξ(t) + 1 6 6
−ψ(t) + 3 4 4

 , A4(t) =


1 2ξ(t) + 3 2ξ(t) + 3
5 9 9

3ψ(t) + 2 5 5

 ,
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the matrix B̃(t) coefficients are set to

B1(t) =
[
ψ(t) ξ(t) + 2

5 ξ(t) + 1

]
, B2(t) =

[
ψ(t) + 4 2
ψ(t) 8

]
, B3(t) =

[
3ξ(t) + 2 6

5 8

]
, B4(t) =

[
2ξ(t) + 3 4
ψ(t) ξ(t) + 1

]
,

and the matrix C̃(t) coefficients are set to

C1(t) =


ψ(t) + 3 ψ(t)

3 ψ(t) + 3
1 1

 , C2(t) =


ψ(t) + 1 3
ξ(t) 4

ψ(t) + 3 ξ(t)

 ,

C3(t) =


2ξ(t) + 3 7

5 8
4 ψ(t)

 , C4(t) =


5ψ(t) + 1 3
ξ(t) ξ(t) + 1
6 1

 .
As a result, Ã(t) ∈ H3×3, B̃(t) ∈ H2×2 and B̃(t) ∈ H3×2. The ZNNQ-D model’s generated results
are presented in Figure 1, whereas the NZNNQ-D model’s generated results under the bounded noise
N = 13×2 ⊙ (ξ(t) + 2) are presented in Figure 2.
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Figure 1. EMEs and (1.3) error of ZNNQ-D in SEs 5.1 and 5.2.
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Example 5.2. In this SE, the matrix Ã(t) coefficients are set to

A1(t) = I10 ⊙ (ψ(t) + 2), A2(t) = I10 ⊙ ξ(t), A3(t) = I10 ⊙ ξ(t)/2, A4(t) = 110 ⊙ ψ(t)/2,

the matrix B̃(t) coefficients are set to

B1(t) = I10 ⊙ 2ξ(t), B2(t) = I10 ⊙ 2(ξ(t) + 5), B3(t) = I10 ⊙ 2(ξ(t) + 3), B4(t) = I10 ⊙ 2ξ(t),

and the matrix C̃(t) coefficients are set to

C1(t) = I10 ⊙ 3(ξ(t) + 3), C2(t) = 110 ⊙ 3ψ(t), C3(t) = I10 ⊙ 3ξ(t), C4(t) = 110 ⊙ 3(ψ(t) + 2).

Therefore, Ã(t), B̃(t), C̃(t) ∈ H10×10. The results of the ZNNQ-D model are presented in Figure 1, while
the results of the NZNNQ-D model under the constant noise N = 110×10 ⊙ 10 are presented in Figure 2.
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Figure 2. EMEs and (1.3) error of NZNNQ-D in SEs 5.1 and 5.2.

5.2. Discussion on SEs results

The performance of the ZNNQ-D (3.8) and NZNNQ-D (4.5) models for solving the QDSE problem
of (1.3) is investigated throughout the SEs 5.1 and 5.2. Each SE is associated with a unique QDSE
problem that is specified by the proper matrices Ã(t), B̃(t) and C̃(t).
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In the SE 5.1, we have that Ã(t) ∈ H3×3, B̃(t) ∈ H2×2 and B̃(t) ∈ H3×2. That is, m = 3 and n = 2 in
the QDSE problem of (1.3). For the ZNNQ-D model, we have the following findings under IC1 and
IC2 for λ = 10 and λ = 102. Fig. 1a shows the EMEs of the ZNNQ-D model. In this figure, all cases
start at t = 0 from a large error value and arrive to a small one in the interval [10−6, 10−3] at t = 2 when
λ = 10 and at t = 0.2 when λ = 102. In other words, the ZNNQ-D model converges to a minimum
value for two different ICs, validating Theorem 3.2, whereas the value of λ influences the rate at which
the EMEs converge. Fig. 1b shows the (1.3) error of the ZNNQ-D model. The findings shown there
are the same as the results shown in Figure 1a, demonstrating that solving (2.8) is equivalent to solving
(1.3). The trajectories of the solutions generated by the model are presented in Figure 1e–1h. The real
part and the three imaginary parts of the solutions are depicted in these figures, respectively. These
graphs demonstrate that the solutions generated by the models are identical and that they converge to
the TSOL in a way that is compatible with the convergence tendency of the associated EMEs.

For the NZNNQ-D model in the SE 5.1, we have the following findings under IC1 and a bounded
noise for λ = 10 and λ = 102 with ζ = 10, ζ = 102 and ζ = 103. Figure 2a shows the EMEs of the
NZNNQ-D model. In this figure, all cases start at t = 0 from a large error value and arrive to a small
one in the interval [10−4, 10−1] at t = 2 when λ = 10 and at t = 0.2 when λ = 102. Additionally, as
the value of ζ rises, the overall value of EMEs is dropping. To put it another way, the ZNNQ-D model
converges to a minimum value for two distinct ICs, verifying Theorem 4.5, while the values of λ and
ζ affect the rate of convergence of the EMEs and the total value of the EMEs, respectively. Fig. 2b
shows the (1.3) error of the NZNNQ-D model. The findings shown there are the same as the results
shown in Figure 2a, demonstrating that solving (2.8) is equivalent to solving (1.3). The trajectories
of the solutions generated by the model are presented in Figure 2e–2h. The real part and the three
imaginary parts of the solutions are depicted in these figures, respectively. These graphs demonstrate
that the solutions generated by the models are identical and that they converge to the TSOL in a way
that is compatible with the convergence tendency of the associated EMEs.

In the SE 5.2, we have that Ã(t), B̃(t), C̃(t) ∈ H10×10. That is, m = n = 10 in the QDSE problem
of (1.3). For the ZNNQ-D model, we have the following findings under IC1 and IC2 for λ = 10 and
λ = 102. Figure 1c shows the EMEs of the ZNNQ-D model. In this figure, all cases start at t = 0
from a large error value and arrive to a small one in the interval [10−5, 10−3] at t = 2 when λ = 10
and at t = 0.2 when λ = 102. In other words, the ZNNQ-D model converges to a minimum value
for two different ICs, validating Theorem 3.2, whereas the value of λ influences the rate at which the
EMEs converge. Figure 1d shows the (1.3) error of the ZNNQ-D model. The findings shown there are
the same as the results shown in Figure 1c, demonstrating that solving (2.8) is equivalent to solving
(1.3). The trajectories of the solutions generated by the model are presented in Figure 1i–1l. The real
part and the three imaginary parts of the solutions are depicted in these figures, respectively. These
graphs demonstrate that the solutions generated by the models are identical and that they converge to
the TSOL in a way that is compatible with the convergence tendency of the associated EMEs.

For the NZNNQ-D model in the SE 5.2, we have the following findings under IC1 and a constant
noise for λ = 10 and λ = 102 with ζ = 10, ζ = 102 and ζ = 103. Figure 2a shows the EMEs of the
NZNNQ-D model. In this figure, all cases start at t = 0 from a large error value and arrive to a small
one in the interval [10−5, 100] at t = 2 when λ = 10 and at t = 0.2 when λ = 102. Additionally, as
the value of ζ rises, the overall value of EMEs is dropping. To put it another way, the ZNNQ-D model
converges to a minimum value for two distinct ICs, verifying Theorem 4.5, while the values of λ and
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ζ affect the rate of convergence of the EMEs and the total value of the EMEs, respectively. Figure 2d
shows the (1.3) error of the NZNNQ-D model. The findings shown there are the same as the results
shown in Figure 2c, demonstrating that solving (2.8) is equivalent to solving (1.3). The trajectories
of the solutions generated by the model are presented in Figure 2i–2l. The real part and the three
imaginary parts of the solutions are depicted in these figures, respectively. These graphs demonstrate
that the solutions generated by the models are identical and that they converge to the TSOL in a way
that is compatible with the convergence tendency of the associated EMEs.

Overall, the ZNNQ-D model works excellent in solving two different QDSE problems, and the
NZNNQ-D model works excellent in solving two different QDSE problems under two different types
of noises. It is important to note that the aforementioned discussion verifies the results of Theorems
3.2 and 4.5. Additionally, the total computational complexity of the ZNNQ-D and NZNNQ-D mod-
els, respectively, is O((4mn)3) and O((8mn)3). Although the ZNNQ-D model is less computationally
complex overall than the NZNNQ-D model, it is unable to handle noise-polluted scenarios. Also, the
computational complexity analysis presented in Section 3.3 proves that the ZNNQ-D model has half
the computational complexity of the ZNN model presented in [45], while the ZNN model presented in
[45] always assumes that m = n = 2 in (1.3). Therefore, we may conclude that the ZNNQ-D model
has more advantages than the ZNN model presented in [45].

5.3. Applications to control of the SFM chaotic system

The ZNN design technique is not only useful for solving the QDSE, but it can also be applied to
chaotic system control. One type of typical nonlinear system, chaotic systems [48], are employed in
network and power systems [49, 50], and secure communications [51]. As a result, this section presents
two controllers based on ZNNs as well as the SFM chaotic control system [52].

Following is a detailed introduction to the SFM [52]:
ẋ1(t) = ξ(x2(t)),
ẋ2(t) = −ξ(x1(t))/3 + ξ(x2(t))/2 − η2ξ(x2(t))ξ2(x3(t))/2,
ẋ3(t) = −ξ(x2(t)) − 0.6ξ(x3(t)) + ηξ(x2(t))ξ(x3(t)).

(5.1)

After setting

X(t) =
[
x1(t), x2(t), x3(t)

]T
∈ R3, Ẋ(t) =

[
ẋ1(t) ẋ2(t) ẋ3(t)

]T
∈ R3

F(X(t)) =


ξ(x2(t))

−ξ(x1(t))/3 + ξ(x2(t))/2 − η2ξ(x2(t))ξ2(x3(t))/2
−ξ(x2(t)) − 0.6ξ(x3(t)) + ηξ(x2(t))ξ(x3(t))

 ∈ R3
(5.2)

(5.1) may be rewritten in matrix form as follows:

Ẋ(t) = F(X(t)). (5.3)

When considering the following uncertainties ∆(X(t)), noise h(t) and the controller U(t):

∆(X(t)) =
[
ξ(x2(t)), 2ψ(x1(t)), 3ξ(x1(t))ψ(x3(t))

]T
∈ R3,

h(t) =13×1 ⊙ (t/4 + 4) ∈ R3, U(t) =
[
u1(t), u2(t), u3(t)

]T
∈ R3

(5.4)
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(5.3) is formulated as follows:

Ẋ(t) = F(X(t)) + ∆(X(t)) + h(t) + U(t). (5.5)

When combining (5.5) with ZNN (1.1), we have that

U(t) = Ė(t) = −λE(t) − F(X(t)), (5.6)

whereas, when combining (5.5) with NZNN (1.2), we have that

U(t) = Ė(t) = −λE(t) − ζ
∫ t

0
E(τ)dτ − F(X(t)). (5.7)

It is crucial to note that we set E(t) = X(t) − 03×1 in (5.6) and (5.7), and η = 3 in (5.2). Therefore,
we set Ã(t) = I3, B̃(t) = 0 and C̃(t) = 03 in the QDSE problem of (1.3). Also, the ICs have been set to
X(0) = 0.1 ⊙ 13, r(0) = 0.1 ⊙ 13 and h(0) = 0.1 ⊙ 16, whereas the design parameters of the ZNN and
NZNN have been set to ζ = 103 and λ = 10. The results are presented in Figure 3.

Particularly, Figure 3a shows the EMEs of the ZNNQ-D and NZNNQ-D models. In this figure, both
EMEs start at t = 0 from a high error value but only the NZNNQ-D model’s EME arrives to a small
one in the interval [10−4, 10−3] at t = 2. In other words, the NZNNQ-D model converges to a minimum
value, validating Theorem 3.2. Figure 3a shows the phases of (5.3) and Figure 3f shows their state
(i.e., errors) trajectories. Figure 3b shows the phases of (5.5) with no controller, i.e. U(t) = 0, and
Figure 3g shows their state trajectories. Fig. 3c shows the phases of (5.5) with U(t) of (5.6), which is
based on the ZNNQ-D model, and Figure 3h shows their state trajectories. Fig. 3d shows the phases
of (5.5) with U(t) of (5.7), which is based on the NZNNQ-D model, and Figure 3i shows their state
trajectories.

The state of system (5.5) under controllers U(t) = 0 and U(t) of (5.6) is unable to get close to zero
in a three-dimensional space, as is seen from Figure 3g and 3h. The controller’s (5.7) states and phases
can both stabilize to zero at the same time. We anticipate that the the phase’s end point of the controller
is as close to zero as possible in order to obtain the least error possible. The preceding data show that
the SFM system’s phase under controller (5.7) is almost zero with a very little error. The experimental
findings support the controller’s (5.7) viability and efficacy. In this regard, while using SFM chaotic
system control, a controller based on NZNNQ-D may also successfully eliminate any existing linear
noise as well as any extra interferences.
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(g) State trajectories of (5.5)
with U(t) = 0.
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(h) State trajectories of (5.5)
with U(t) of (5.6).
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Figure 3. EMEs, phases and state trajectories of the SFM systems (5.3) and (5.5).

6. Conclusions

One new ZNN model, termed ZNNQ-D, is introduced in (3.8) to solve the QDSE problem and
one new NZNN model, termed NZNNQ-D, is introduced in (4.5) to solve the QDSE problem under
different types of noises. The creation of such models has been backed by theoretical research and an
examination of their computational complexity, in addition to simulation examples and application to
control of the SFM chaotic system. The findings of the simulation examples and the application show
that the models function superbly.

The established results open the door for future interesting study efforts in light of this. Here are a
few topics to contemplate:

• The use of nonlinear ZNNs in dynamic quaternion issues may be investigated.
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• It is doable to examine applying the finite-time ZNN theme to dynamic quaternion problems.
• Another area of research is using carefully selected design parameters stated in fuzzy settings to

quicken the ZNN models’ convergence.
• A potential research direction is to investigate the application and performance of ZNN controllers

in chaotic systems other than SFM.
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